Hullámtan. A hullám fogalma. A hullámok osztályozása.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Hullámtan. A hullám fogalma. A hullámok osztályozása."

Átírás

1 Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen [0:08] Kifeszített rugón keltett zavar végig fut a rugón [0:05, lassított] Kifeszített drótszál elejét hirtelen egcsavarva, ajd a csavarást egszüntetve, a szál többi része időben késve egtekeredik (Julius-féle hullágép) [0:0] Vízfelszínen zavart keltve, a vízfelszín többi része később ozgásba jön [0:07] Szeléltetés filekről (lökéshullá, hőérsékleti hullá, stb) Rugalas közegben keltett deforáció (zavar) a közegben tovaterjed Hullá Valailyen közeg kis tartoányában keltett, a közegben tovaterjedő zavar. Hulláforrás A zavar forrása, vagyis a zavart létrehozó tárgy.

2 A hulláok osztályozása A közeg dienziója alapján beszélhetünk egyenes entén (általánosabban pontsoron) terjedő hulláokról: (pl. rezgő húr) felületi hulláokról (pl. vízhulláok) térbeli hulláokról (pl. hang, fény). A hulláfelületek alakja alapján síkhulláról, göbhulláról, hengerhulláról, stb. A rezgő ennyiség iránya és a terjedési sebesség irányának viszonya alapján longitudinális és transzverzális hullá: longitudinális hullá esetén a rezgés a terjedési irány entén egy végbe, transzverzális hullá esetén a rezgés iránya a terjedési irányra erőleges.

3 A tér- és időbeli lefutás alapján: periodikus hulláok szinuszos vagy onokroatikus hullá, [0:06] hároszög, négyszög, fűrészfog, stb. ne-periodikus hulláok csupán néhány periódust tartalazó hullácsoag (ipulzus), [0:06] zaj A rezgő fizikai ennyiség típusa alapján: elektroágneses hullá (pl. fény, rádióhullá), rugalas hullá (pl. hang, földrengéshullá), vízhullá, (stb). A hullában különböző fizikai ennyiségek terjednek: fázis (rezgési állapo, energia, ipulzus, ipulzusoentu (stb). Pontsor entén terjedő hulláok Milyen ateatikai képlettel írható le ideális esetben azaz torzulás és csillapodás nélkül az x tengely entén terjedő hullá? Az egyszerűség kedvéért vizsgáljunk transzverzális deforációt (könnyebben ábrázolható). Az t időpontban a pontsor x koordinátájú helyén jelölje Ψ a kitérést. Milyen ateatikai képlettel írható le Ψ Ψ(x, függvény?

4 Adott helyen az időfüggést vizsgálva origó f ( Ψ 0 t Ψ f ( t x c) 0 x c x hely t Ha az origóból kiinduló zavar c sebességgel terjed, akkor az x helyen x/c idővel később lesz ugyanaz a kitérés, int az origóban a t időpontban volt. Ψ( x, f ( t x c) O x X f ( a hullá időbeli alakjára jellező! Adott időben a helyfüggést vizsgálva 0 idő ct t idő g(x) g( x x ) 0 O x 0 Ha a zavar c sebességgel terjed, akkor x 0 ct A kitérés hely- és időfüggését leíró képlet x Ψ( x, g( x c g(x) a hullá térbeli alakjára jellező! Nyílván a két nézőpont ne független egyástól, a kapcsolat közöttük: g( x) f ( x c) Haronikus (szinuszos) hullá A tér inden pontjában a hullában rezgő fizikai ennyiség ω körfrekvenciájú haronikus rezgést végez. Szinuszos hullára az időbeli függést leíró függvény: f ( A sin( ωt + α)

5 Az x pontsoron terjedő szinuszos hullá forulája: A a hullá aplitúdója Ψ ( x, A sin ω t x c + α Hulláhossz π ω t x összefüggést felhasználva Ψ( x, A sin T π + α T ct t x Ψ( x, A sin π + α ahol ct T c T ν Ebből az alakból látható, hogy a szinuszos hullá térben és időben periodikus Adott helyen (rögzített x esetén) az időbeli periódus T: periódusidő Adott időben (rögzített t esetén) a térbeli periódus : hulláhossz Mivel a térbeli periódus, nyílván az azonos fázisú helyek között is távolság van! Hullászá Szinuszos hullá fázisa ω π Ψ( x, A sin( ωt kx + α) ahol k c k 1 hullászá, körhullászá x ϕ ( x, ω t + α π c t T x + α ω t kx + α

6 Szinuszos hullá fázissebessége Mekkora a fázis terjedési sebessége, az un. fázissebesség? A t időpontban az x helyen Φ a fázis, Mivel a fázis terjed a pontsor entén, t idővel később (azaz t+ t időpontban) x távolságra (azaz az x+ x helyen) szintén Φ lesz a fázis. Ekkor a terjedési sebesség a v f x/ t. Φ ωt kx + α Φ ω( t + k( x + x) + α ω t k x v f 0 x t ω v f c k Hulláok polarizációja Longitudinális hullánál a rezgések a terjedési irány entén ennek végbe. A terjedési irányon kívül nincs ás kitüntetett irány. Transzverzális hullánál a rezgések a terjedési irányra erőlegesen ennek végbe. A terjedési irányon kívül lehetséges ás kitüntetett irány. Ha a terjedési irányon kívül ás kitüntetett irány is van a hulláterjedés során, akkor azt ondjuk, hogy a hullá poláros.

7 Ezek alapján a transzverzális hulláok polárosak lehetnek. A kitüntetett irány létét guikötélen terjedő hullára egy réssel szeléltethetjük. [0:54] Poláros hulláok fontosabb típusai Lineárisan poláros (vagy síkban poláros) hullá A rezgések a terjedési irányon átfektetett időben állandó helyzetű síkban ennek végbe. A rezgő fizikai ennyiség a tér pontjaiban azonos irányú lineárisan poláros rezgést végez. A rezgések között a hullá fázisának egfelelő fáziskülönbség van. Elliptikusan poláros hullá A rezgések a terjedési irányra erőleges síkban egy ellipszis entén ennek végbe. A rezgő fizikai ennyiség a tér pontjaiban ellipszisben poláros rezgést végez. A rezgések között a hullá fázisának egfelelő fáziskülönbség van. Cirkulárisan poláros (vagy körben poláros) hullá Az elliptikusan poláros hullá olyan speciális esete, ikor az ellipszis egy kör. A rezgő fizikai ennyiség a tér pontjaiban körben poláros rezgést végez. A rezgések között a hullá fázisának egfelelő fáziskülönbség van.

8 Pontsor entén terjedő hulláok interferenciája Interferencia Azon jelenségek összessége, elyek akkor figyelhetők eg, ha a tér egy adott pontjában egyszerre két vagy több hullá találkozik. A jelenség értelezésénél fontos szerepet játszik a szuperpozíció elve. Szuperpozíció elve A találkozó hulláok egyás terjedését ne befolyásolják, a egfigyelhető hulláhatás a hullában rezgő fizikai ennyiségek összege. Ez az elv a legtöbb hullá terjedésére érvényes. Az olyan közeget, aelyre érvényes a szuperpozíció elve lineáris közegnek nevezik. Szinuszos hulláok interferenciája Haronikus hullá esetén a tér adott pontjában egy haronikus rezgés alakul ki, így interferencia esetén haronikus rezgések adódnak össze. Az interferencia leírásához a haronikus rezgések összeadásánál egállapított összefüggéseket kell alkalazni. Két azonos síkban lineáris poláros hullá interferenciájánál az eredő hullá a találkozó hulláokkal azonos frekvenciájú és azonos síkban poláros hullá, elynek aplitúdóját és kezdőfázisát az azonos irányú rezgések összeadásánál egisert képletek adják eg. A hulláok axiálisan erősítik egyást, ha a hulláok azonos fázisban találkoznak, és axiálisan gyengítik egyást, ha ellentétes fázisban találkoznak.

9 Két egyásra erőleges síkban lineáris poláros hullá interferenciájánál a két hullá összege egy ellipszisben poláros hulláot hoz létre, ivel általában két egyásra erőleges haronikus rezgés összege egy ellipszisben poláros rezgés. Ha a két aplitúdó azonos és a fáziskülönbség π/ vagy 3π/, akkor cirkulárisan (körben) poláros hullá jön létre. Ha két hullá azonos vagy ellentétes fázisban találkozik, akkor lineárisan (síkban) poláros hullá jön létre. A rezgési síkot a két aplitúdó aránya határozza eg. a η b B O y A a ξ x Pontsor entén terjedő hulláok visszaverődése Kísérletek b Visszaverődés rögzített végről [0:08] A kísérletek szerint rögzített végről ellentétes fázisban verődik vissza a hullá. Haronikus hulláokra ez π fázisugrást jelent. Visszaverődés szabad végről. A kísérletek szerint szabad végről azonos fázisban verődik vissza a hullá.

10 rögzített vég A visszaverődés szeléltetése aniáció aniáció szabad vég tükrözés (1) tükrözés ()

11 Állóhulláok végtelen és véges pontsoron. Sajátrezgések és sajátfrekvenciák Láttuk, hogy a közeg határához érve a hullá visszaverődik. Ekkor a visszavert és a beeső hullá egyással találkozik, közöttük interferencia lép fel. Vizsgáljuk eg, hogy ilyen hullá jön létre két egyással szebe haladó azonos aplitúdójú és azonos frekvenciájú szinuszos hullá interferenciája során! ( x, A sin t π T x + α Ψ1 1 ( x, A sin t π T x + + α Ψ Ψ x, Ψ ( x, + Ψ ( x, ) ( 1 t v u u + v sin u + sin v cos sin összefüggést felhasználva: A kialakult hulláot állóhullának nevezik. A +x (vagy x) irányba terjedő hulláot haladó hullának is szokás nevezni. A t sin π T x + α + sin t π T x + + α 1 Ψ u π x, A cos α α v π sin T α + α 1 1 ( x + t +

12 Az aniációból és a forulából is látható, hogy a pontsoron vannak olyan pontok, ahol a rezgés aplitúdója zérus. Ezeket a helyeket csoópontoknak hívjuk. Két szoszédos csoópont távolsága a hulláhossz fele (/), ugyanis π α α1 cos x + 0 α α π 1 x + + π + π ( ahol Z ) Két szoszédos csoópont között középen un. duzzadó-helyeken a rezgés aplitúdója axiális. Két szoszédos duzzadóhely távolság szintén /. Két szoszédos csoópont között a rezgések fázisa azonos, a csoópontok ellentétes fázisban rezgő tartoányokat választanak el! π 1 Aiből az indexhez tartozó csoópont helye + α Az álló- és haladó hulláok között lényeges különbség van a rezgések aplitúdójában és fázisában! Haladó hullára az aplitúdó indenhol A, íg álló hullára helytől függően 0 és A között változik. A részecskék azonos frekvenciájú haronikus rezgést végeznek, azonban állóhullá esetén azonos vagy ellentétes fázisban, íg haladó hullánál a helytől függő fázisban különböznek! Haladó hullában a fázis tovaterjed, az állóhullában ne. x α 1 1 Két szoszédos csoópont távolsága x x x + 1 π

13 Állóhulláok kialakulásához az szükséges, hogy a jobboldali végről visszavert hullá a baloldali végen isét visszaverődve egegyezzen a kezdeti hulláal. Mindkét vég szabad t x ( ) t l x Ψ1 ( x, A sin π Ψ ( x, A sin π T T Mindkét vég rögzített kezdeti hullá ( sz) Ψ1 (0, Ψ (0, Ψ1( x, A sin π t T x l π sz π A baloldali végről visszavert hullá egegyezik a kezdeti hulláal, ha ( r) Ψ1 (0, Ψ (0, l π Ψ π rögzített végen π fázisugrás lép fel jobboldali végről visszavert hullá A baloldali végről visszavert hullá egegyezik a kezdeti hulláal, ha kezdeti hullá l 1,, 3, K jobboldali végről visszavert hullá t π T ( r ) ( x, A sin l l x 1,, 3, K

14 Egyik vég szabad (baloldali), ásik rögzített (jobboldali) kezdeti hullá t x ( ) t l x Ψ1 ( x, A sin π Ψ ( x, A sin π T T ( r) Ψ1 (0, Ψ (0, l π jobboldali végről visszavert hullá r A baloldali végről visszavert hullá egegyezik a kezdeti hulláal, ha + π π l 1 1,, 3, K Vagyis, elgondolásunk szerint egy l hosszúságú pontsoron csak olyan állóhulláok alakulhatnak ki, elyek hulláhossza teljesíti a fent levezetett feltételeket! A pontsor sajátrezgései és sajátfrekvenciái Ha a pontsoron állóhulláok alakul ki, akkor a pontsor inden pontja ugyanolyan frekvenciájú haronikus rezgést végez, azonos vagy ellentétes fázisban! Ez pedig éppen azt jelenti, hogy a pontsor lehetséges állóhulláai éppen a pontsor sajátrezgéseivel azonosak. Hasonlóan a kettős inga ozgásához, egutatható, hogy a pontsor általános ozgása előállítható a sajátrezgések szuperpozíciójaként. Más szavakkal: a pontsoron terjedő bárely hullá a pontsor állóhulláainak az összegeként állítható elő.

15 Mivel az állóhulláok hulláhossza ne lehet tetszőleges, így a hozzájuk tartozó frekvenciák a sajátfrekvenciák se vehetnek fel tetszőleges értéket! c ν c ν Mindkét vég szabad Mindkét vég rögzített Egyik vég szabad, ásik rögzített 1 3 l l 1 l l c ν l c ν l c 1 ν guiszál Melde-féle készülék Szeléltetés: Julius-féle hullágép

16 A szuperpozíció elvének szeléltetése (1) Aniáció [0:06] Szebe haladó hulláok rugón

17 A szuperpozíció elvének szeléltetése () Aniáció [0:06] vissza Szebe haladó hulláok rugón

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.

A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus. HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1. (b) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1. (b) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 Síkhullámok végtelen kiterjedésű, szilárd izotróp közegekben (1) longitudinális hullám transzverzális

Részletesebben

Optika fejezet felosztása

Optika fejezet felosztása Optika Optika fejezet felosztása Optika Geometriai optika vagy sugároptika Fizikai optika vagy hullámoptika Geometriai optika A közeg abszolút törésmutatója: c: a fény terjedési sebessége vákuumban, v:

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

A harmonikus rezgőmozgás (emelt szint)

A harmonikus rezgőmozgás (emelt szint) haronikus rezgőozgás (eelt szint) ozgás jellezői: két szélső helzet között égbeenő periodikus (időben isétlődő) ozgás. Jellező enniségek: rezgésidő (periódusidő): eg teljes rezgés (a két szélső helzet

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése

Legyen a rések távolsága d, az üveglemez vastagsága w! Az üveglemez behelyezése 6. Gyakorlat 38B-1 Kettős rést 600 nm hullámhosszúságú fénnyel világitunk meg és ezzel egy ernyőn interferenciát hozunk létre. Ezután igen vékony flintüvegből (n = 1,65) készült lemezt helyezünk csak az

Részletesebben

A hang mint mechanikai hullám

A hang mint mechanikai hullám A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

A harmonikus rezgőmozgás

A harmonikus rezgőmozgás Esszé a rezgőozgásról A haronikus rezgőozgás A környezetünkben sok periodikus (isétlődő) jelenséggel találkozunk. Ezen jelenségek egy része a rezgések közé sorolható. Például: rezgő gitárhúr, billegő teáscsésze,

Részletesebben

Mechanikai hullámok (Vázlat)

Mechanikai hullámok (Vázlat) Mechanikai hullámok (Vázlat) 1. A hullám ogalma, csoportosítása és jellemzői a) A mechanikai hullám ogalma b) Hullámajták c) A hullámmozgás jellemzői d) A hullámok polarizációja 2. Egydimenziós hullámok

Részletesebben

A fény mint elektromágneses hullám és mint fényrészecske

A fény mint elektromágneses hullám és mint fényrészecske A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá

Részletesebben

P vízhullámok) interferenciáját. A két hullám hullámfüggvénye:

P vízhullámok) interferenciáját. A két hullám hullámfüggvénye: Hullámok találkozása, interferencia Ha a tér egy pontjában két hullám van jelen, akkor hatásuk ott valamilyen módon összegződik. A hullámok összeadódását interferenciának nevezzük. Mi az interferencia

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com Rezgésdiagnoszika. Bevezeés rezgésdiagnoszika a űszaki diagnoszika egy eghaározo erülee. gépek állapovizsgálaánál alán a legelerjedebb vizsgálai ódszer a rezgésérés. Ebben a jegyzeben először a rezgésérés

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

Harmonikus rezgések összetevése és felbontása

Harmonikus rezgések összetevése és felbontása TÓTH.: Rezgésösszetevés (kibővített óravázlat) 30 005.06.09. Harmonikus rezgések összetevése és felbontása Gyakran előfordul hogy egy rezgésre képes rendszerben több közelítőleg harmonikus rezgés egyszerre

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

Mechanikai rezgések = 1 (1)

Mechanikai rezgések = 1 (1) 1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek

Részletesebben

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése: Szabó László Áralástani alaptörények A köetelényodul egneezése: Kőolaj- és egyipari géprendszer üzeeltetője és egyipari technikus feladatok A köetelényodul száa: 07-06 A tartaloele azonosító száa és célcsoportja:

Részletesebben

Fotó elmélet 2015. szeptember 28. 15:03 Fény tulajdonságai a látható fény. 3 fő tulajdonsága 3 fizikai mennyiség Intenzitás Frekvencia polarizáció A látható fények amiket mi is látunk Ibolya 380-425 Kék

Részletesebben

a terjedés és a zavar irányának viszonya szerint:

a terjedés és a zavar irányának viszonya szerint: TÓTH A.: Hullámok (összefoglaló) Hullámtani összefoglaló A hullám fogalma és leírása A hullám valamilyen (mehanikai, elektromágneses, termikus, stb.) zavar térbeli tovaterjedése. Terjedésének mehanizmusa

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika Rezgések és hullámok; hngtn Rezgéstn Hullámtn Optik Geometrii optik Hullámoptik Hullámtn és optik Ajánlott irodlom Budó Á.: Kísérleti fizik I, III. (Tnkönyvkidó, 99) Demény-Erostyák-Szbó-Trócsányi: Fizik

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Indoklás: Hamis a D, mert csak az a rezgőmozgás egyúttal harmonikus rezgőmozgás is, amelyik kitérése az idő függvényében szinuszfüggvénnyel írható le.

Indoklás: Hamis a D, mert csak az a rezgőmozgás egyúttal harmonikus rezgőmozgás is, amelyik kitérése az idő függvényében szinuszfüggvénnyel írható le. Bolyai Farkas Orszáos Fizika Tantáryverseny 04 Bolyai Farkas Eléleti Líceu Válaszoljatok a következő kérdésekre:. feladat Az alábbi állítások közül elyik a hais? A) A test rezőozást véez, ha két szélső

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

A lézer alapjairól (az iskolában)

A lézer alapjairól (az iskolában) A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató! Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk

Részletesebben

A hullám frekvenciája egyenlő a hullámforrás frekvenciájával, azzal a kikötéssel, hogy a hullámforrás és megfigyelő nyugalomban van.

A hullám frekvenciája egyenlő a hullámforrás frekvenciájával, azzal a kikötéssel, hogy a hullámforrás és megfigyelő nyugalomban van. Mechanikai hullámok 1) Alapfogalmak A rugalmas közegekben a külső behatás térben tovaterjed. Ezt nevezzük mechanikai hullámnak. A hullám lehet egy-, két- vagy háromdimenziós, mint például kifeszített húr

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.

11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény. 11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az

Részletesebben

Bevezetés a modern fizika fejezeteibe. Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1. Rugalmas hullámok Utolsó módosítás: 2015. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika

2. OPTIKA 2.1. Elmélet 2.1.1. Geometriai optika 2. OPTIKA 2.1. Elmélet Az optika tudománya a látás élményéből fejlődött ki. A tárgyakat azért látjuk, mert fényt bocsátanak ki, vagy a rájuk eső fényt visszaverik, és ezt a fényt a szemünk érzékeli. A

Részletesebben

f A hullámforrás frekvenciája c a közegbeli terjedési sebesség

f A hullámforrás frekvenciája c a közegbeli terjedési sebesség MECHANIKAI HULLÁMOK Deormáió terjedése rugalmas közegben A tér egy adott helyén történt zavarkeltés eredménye a tőle r távolságra lévő pontban idő múlva jelenik meg: a zavar terjedéséhez időre van szükség:

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapiseretek középszit 1211 ÉRETTSÉGI VIZSGA 213. ájus 23. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIMA Fotos tudivalók

Részletesebben

A hullámoptika alapjai

A hullámoptika alapjai KÁLMÁN P-TÓTH A: Hullámoptika/ 53 A hullámoptika alapjai Számos kísérlet mutatja, hogy a fény hullámként viselkedik Ez elsősorban abból derül ki, hogy a fény interferenciát és elhajlási jelenségeket mutat

Részletesebben

Hullámtani összefoglaló

Hullámtani összefoglaló Hullámtani összefoglaló A hullám fogalma és leírása A hullám valamilyen (mehanikai, elektromágneses, termikus, stb.) zavar térbeli tovaterjedése. Terjedésének mehanizmusa függ a zavar jellegétől, így például

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS

OPTIKA. Geometriai optika. Snellius Descartes-törvény. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS OPTIKA Geometriai optika Snellius Descartes-törvény A fényhullám a geometriai optika szempontjából párhuzamos fénysugarakból áll. A vákuumban haladó fénysugár a geometriai egyenes fizikai megfelelője.

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál

Hármas integrál Szabó Krisztina menedzser hallgató. A hármas és háromszoros integrál Hármas integrál Szabó Krisztina menedzser hallgató A hármas és háromszoros integrál Definició A fizikai meggondolások előzményeként jutunk el a hármas integrál következő értelmezéséhez. Legyen értelmezve

Részletesebben

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v - III. 1- ALAKÍTÁSTECHNIKA Előadásjegyzet Prof Ziaja György III.rész. ALAKÍTÓ GÉPEK Az alakítási folyaatokhoz szükséges erőt és energiát az alakító gépek szolgáltatják. Az alakképzés többnyire az alakító

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

3. mérés. Villamos alapmennyiségek mérése

3. mérés. Villamos alapmennyiségek mérése Budapesti Műszaki és Gazdaságtudoányi Egyete Autoatizálási és Alkalazott Inforatikai Tanszék Elektrotechnika Alapjai Mérési Útutató 3. érés Villaos alapennyiségek érése Dr. Nagy István előadásai alapján

Részletesebben

V. Egyszerű váltakozó áramú körök árama, feszültsége, teljesítménye

V. Egyszerű váltakozó áramú körök árama, feszültsége, teljesítménye V Egyszerű váltakozó áraú körök áraa, feszültsége, teljesíténye Feszültség előállítása indukcióval Forgási (ozgási) indukció: forgási indukált feszültség keletkezik, aikor egy vezető és a ágneses tér között

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

A fény visszaverődése

A fény visszaverődése I. Bevezető - A fény tulajdonságai kölcsönhatásokra képes egyenes vonalban terjed terjedési sebessége függ a közeg anyagától (vákuumban 300.000 km/s; gyémántban 150.000 km/s) hullám tulajdonságai vannak

Részletesebben

TERMIKUS NEUTRONFLUXUS MEGHATÁROZÁSA AKTIVÁCIÓS MÓDSZERREL

TERMIKUS NEUTRONFLUXUS MEGHATÁROZÁSA AKTIVÁCIÓS MÓDSZERREL TERMIKUS NEUTRONFLUXUS MEGHATÁROZÁSA AKTIVÁCIÓS MÓDSZERREL 1. BEVEZETÉS Neutronsugárzás hatására bizonyos stabil eleekben agátalakulás egy végbe, és a keletkezett radioaktív terék aktivitása egfelelő szálálórendszer

Részletesebben

XVIII. A FÉNY INTERFERENCIÁJA

XVIII. A FÉNY INTERFERENCIÁJA XVIII. A FÉNY INTERFERENCIÁJA Bevezetés A fény terjedését egyenes vonal mentén képzelve fény- sugarakról szoktunk beszélni. A fénysugár egy hasznos és szemléletes fogalom. A fény terjedését sugárként elképzelve,

Részletesebben

Tartalom. Fizika 1,

Tartalom. Fizika 1, Fizika 1, 2011-09-25 Tartalom Fizikai mennyiségek... 3 Skalármennyiségek... 3 Mérőszám, mértékegység... 3 mértékegység... 3 mérőszám... 4 hiba:... 4 Mértékegység rendszerek... 4 Történelmi mértékegység

Részletesebben

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte:

Modern Fizika Labor. Értékelés: A mérés dátuma: A mérés száma és címe: Az optikai pumpálás. A beadás dátuma: A mérést végezte: Modern Fizika Labor A mérés dátuma: 2005.10.19. A mérés száma és címe: 7. Az optikai pumpálás Értékelés: A beadás dátuma: 2005.10.28. A mérést végezte: Orosz Katalin Tóth Bence Optikai pumpálás segítségével

Részletesebben

Összefüggések egy csonkolt hasábra

Összefüggések egy csonkolt hasábra Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai fizikából. I. kategória Oktatási Hivatal A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet

1. ábra Tükrös visszaverődés 2. ábra Szórt visszaverődés 3. ábra Gombostű kísérlet A kísérlet célkitűzései: A fény visszaverődésének kísérleti vizsgálata, a fényvisszaverődés törvényének megismerése, síktükrök képalkotásának vizsgálata. Eszközszükséglet: szivacslap A/4 írólap vonalzó,

Részletesebben

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben

Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Hang terjedési sebességének meghatározása állóhullámok vizsgálata Kundt csőben Akusztikai állóhullámok levegőben vagy egyéb gázban történő vizsgálatához és azok hullámhosszának meghatározására alkalmas

Részletesebben

Hullámoptika II.Két fénysugár interferenciája

Hullámoptika II.Két fénysugár interferenciája Hullámoptika II. Két fénysugár interferenciája 2007. november 9. Vázlat 1 Bevezet 2 Áttekintés Két rés esetének elemzése 3 Hullámfront-osztáson alapuló interferométerek Amplitúdó-osztáson alapuló interferométerek

Részletesebben

Lehetséges minimumkérdések laboratóriumi mérések előtt Villamos mérések c. tárgyból

Lehetséges minimumkérdések laboratóriumi mérések előtt Villamos mérések c. tárgyból Leetséges iniukérdések laboratóriui érések előtt Villaos érések c. tárgyból (A válaszok inden esetben 1-1 soros rövid válaszok, a száolások 1-1 képletes, könnyen száolató feladatok, a rajzok egyszerű,

Részletesebben

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31.

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31. 2010/2011. tanév Szakác enő Megyei Fizika Vereny II. forduló 2011. január 31. Minden verenyzőnek a záára kijelölt négy feladatot kell egoldania. A zakközépikoláoknak az A vagy a B feladatort kell egoldani

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Függvények csoportosítása, függvénytranszformációk

Függvények csoportosítása, függvénytranszformációk Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

2012. október 9 és 11. Dr. Vincze Szilvia

2012. október 9 és 11. Dr. Vincze Szilvia 2012. október 9 és 11. Dr. Vincze Szilvia Egyváltozós valós függvények nevezetes osztályai I. Algebrai függvények Racionális egész függvények (polinomok) Racionális törtfüggvények Irracionális függvények

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK Környezetvédeli-vízgazdálkodási alaiseretek közéint ÉRETTSÉGI VIZSGA 0. október 5. KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI

Részletesebben

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet)

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet) 3. oán-magyar Előolipiai Fizika Verseny Pécs Kísérleti forduló 2. ájus 2. péntek MÉÉ NAPELEMMEL (zász János, PE K Fizikai ntézet) Ha egy félvezető határrétegében nok nyelődnek el, akkor a keletkező elektron-lyuk

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Az optikai jelátvitel alapjai. A fény két természete, terjedése

Az optikai jelátvitel alapjai. A fény két természete, terjedése Az optikai jelátvitel alapjai A fény két természete, terjedése A fény kettős természete 1. A fény: - Elektromágneses hullám (EMH) - Optikai jelenség Egyes dolgokat a hullám természettel könnyű magyarázni,

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

Elektromos áramkörök és hálózatok, Kirchhoff törvényei

Elektromos áramkörök és hálózatok, Kirchhoff törvényei TÓTH : Eletroos ára/ (ibővített óravázlat) Eletroos áraörö és hálózato, Kirchhoff törvényei gyaorlatban az eletroos ára ülönböző vezetőrendszereben folyi gen fontos, hogy az áraot fenntartó telepe iseretében

Részletesebben

1. Az ultrahangos diagnosztika fizikai alapjai

1. Az ultrahangos diagnosztika fizikai alapjai 1. Az ultrahangos diagnosztika fizikai alapjai 1.1. Harmonikus hullámmozgás A hullám egy rendszer olyan állapotváltozása, amely időbeli és térbeli periodicitást mutat, más megfogalmazásban a hullám valamely

Részletesebben