1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben."

Átírás

1 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai, Karnaugh, Quine stb.. élszerű négy változó esetén a grafikus egyszerűsítést alkalazni Karnaugh. Ehhez iserni kell a függvény teljes norál diszjunktív akját TN. Két ódon juthatunk hozzá: inden kapu kienetén felírjuk a függvény értékét, így legvégül egkapjuk F teljes alakját, az így kapott iplikánsokkal leírt függvényt kibővítjük TN-ra F Karnaugh tábla 1. ábra: 1. ábra: Karnaugh tábla z egyszerűsített függvény: F, vagyis valójában ne lehetett tovább egyszerűsíteni. kapcsolás rajza 2. ábra: 2. ábra: kapcsolási rajz

2 ásik lehetőség, kitöltjük a négyváltozós igazságtáblát, ajd inden kobinációra egadjuk a függvény kienetét. hol logikai 1-est kapunk, ott ár egkaptuk a interet is. Ez a ódszer eléggé hosszadalas, de sokszor valaelyik változó több kobinációnál is azonnal egadja a helyes értéket. 2. Egy négytagú zsűri egyszerre szavaz, a kijelző akkor gyullad ki, ha legalább 4 pontos volt a szavazás. z elnök E 3, a helyttes H 2 és a tagog T1 és T2 szavazatai 1 1 pontot érnek. Rajzolja le a kapcsolást kizárólag 2 beenetű NN kapukkal. MEGOLÁS: Kitöltjük az igazságtáblázatot. PONT oszlopba kerülnek be az egyes szavazások pontértékei, ha bárelyik legalább 4 pontot ér, a függvény kienete F 1 lesz F oszlop. 1. táblázat: a 2. példa igazságtáblázata pont sorszá E H T1 T2 PONT F Karnauhh tábla 3. ábra: 3. ábra: példa egyszerűsítése Karnaugh táblával 2

3 z egyszerűsített függvény: F E H E T2 E T1 H T1 T2. Felhasználva a e Morgan azonosságot és figyelebe véve azt a feltételt, hogy inden NN kapu csak két beenetű, a következő átalakításokat kell végrehajtani: F E H E T 2 E T1 H T1 T2 E H E T2 E T1 H T1 T2 Ha X E H E T2 és Y E T1 H T1 T2, valaint Z T 1 T2, akkor írhatjuk, hogy: F X Y, Z T 1 T2, X E H E T2 és Y E T1 H Z. teljes kapcsolás, kizárólag 2 beenetű NN kapukkal 4. ábra: 4. ábra: példa egoldása 2 beenetű NN kapukkal 1. z FE Σ0,1,2,3,4,5,6,7Σx8,9,10,18,19,20,22,23,24,30,31 ötváltozós függvényt: a egyszerűsítse a Quine-Mc luskey-féle nuerikus ódszer segítségével, b rajzolja le a kapcsolást tetszőleges logikai kapukkal, c rajzolja le a kapcsolást tetszőleges logikai kapukkal, indegyik kapu 3 beenetű, d rajzolja le a kapcsolást 2 beenetű NOR logikai kapukkal. MEGOLÁS Quine egyszerűsítésnél az x-szel jelölt határozatlan kobinációkat is be kell vonni, töltsük ki a intereknek egfelelő bináris táblázatot 3. táblázat: 3. táblázat: a interek bináris alakban E

4 Mivel egyszerűsíteni indig csak a szoszédos interek között lehet, ezért rendezzük át a táblázatot úgy, hogy egy-egy csoportban ugyanannyi száú egyes legyen, a ár átvitt interet pedig jelöljük eg jellel 4. táblázat. 4. táblázat: a interek bináris alakban, átrendezve az egyesek száa szerint E

5 Egyszerűsíteni csak a szoszédos csoportok között kell, azokkal a interekkel, elyek között egy változó a különbség a változó az egyik interben ponált, a ásikban negált 5. táblázat. 5. táblázat: az egyszerűsítés első lépése E 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , z 5. táblázatban keletkezett iplikánsokat tovább lehet egyszerűsíteni 6. táblázat. 6. táblázat: az egyszerűsítés ásodik lépése E 0,1,2, ,1,4, ,1,8,

6 0,2,4, ,2,8, ,3,5, ,3,18, ,3,6, ,6,18, ,5,6, ,6, ,7,19, ,7,22, ,19,22, ,23,30, táblázatban keletkezett iplikánsokat tovább lehet egyszerűsíteni 7. táblázat. 7. táblázat: az egyszerűsítés haradik lépése E 0,1,2,3,4,5,6, ,3,6,7,18,19,22, táblázatban a jel azt jelenti, hogy az adott iplikáns ne vonható ár össze seelyik ás iplikánssal se ne lehet tovább egyszerűsíteni, a jel azokat az iplikánsokat jelenti, elyek tovább egyszerűsíthetők. ne egyszerűsíthető iplikánsok bekerülnek a 8. táblázatba Quine McKaluskey táblázat, ahol az eredeti interekkel hozzuk azokat kapcsolatba. 8. táblázat: Quine McKaluskey táblázat x x x x x x x x x x x E E E 8. táblázatba került ilikánsokhoz azokat a intereket kapcsoljuk, aelyekből erednek, ide egy jelet teszünk. Ezután egkeressük azokat az oszlopokat, elyekben csak egy jel van, ezt és a vele egy sorban levő összes jelet átalakítjuk jellé. határozatlan 6

7 kobinációhoz tartozó jelet ne tekintjük ilyenkor egyesnek a példában a 24. inter. Ha egy oszlopban internél több jel van, azt választjuk ki, aelyik vízszintesen a lehető legtöbb interet fedi le. kiaradt iplikánsokat a továbbiakban ne vesszük figyelebe a példában E. kapott egoldás: F 4. a írja fel az RS tároló áteneti tábláját, ajd annak alpján tervezze eg a tárolót és rajzolja le tetszőleges eleekkel, b 2 pont rajzolja le a tárololó szinkron változatát. MEGOLÁS: z R/S flip flop űködését leíró igazság táblázat az 5. ábrán látható. táblázat utolsó két sorában tiltott kobinációt találunk ezt X szel jelöljük. Mostani Következő állapot állapot R S Qt Qt1 Leírás HOL HOL SET SET RESET RESET X tiltott állapot X tiltott állapot 5. ábra: az R/S flip flop igazság táblázata Ha az igazság táblázatból kiindulva elvégezzük a inializálást 6. ábra, akkor egkapjuk a tároló analitikus alakját: Q S R t1 Q t 6. ábra: az R/S flip flop egyszerűsítése Karnaugh ódszerével 7

8 Q t 1 és Q t jelölés valójában ugyanazt a kienetet jelöli, de a t 1 index a következő állapotra az órajel utáni utal, íg a t index az előző állapotot adja az órajel elötti állapot. z R/S flip flop-nak két beenete R és S van, valójában azonban a eória üködésére ég a kienet ostani állapota is kihat, így gyakorlatilag a kapu 3 beenettel rendelkezik R, S és Q, ai azt jelenti, hogy a kobinációk száa n ábra. t 7. ábra: az aszinkron R/S flip flop kapcsolási rajza tetszőleges eleekkel z aszinkron R/S tároló ábra a LK szinkronizáló jel, valaint két ÉS kapu hozzáadásával könnyen átalakítható szinkron R/S tárolóvá 8. ábra. flip flop állapota csak a szinkronizáló jel egjelenésekor változik eg LK ábra: szinkron R/S flip flop 8

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ) I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA 206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,

Részletesebben

MUNKAANYAG. Mészáros Miklós. Logikai algebra alapjai, logikai függvények I. A követelménymodul megnevezése:

MUNKAANYAG. Mészáros Miklós. Logikai algebra alapjai, logikai függvények I. A követelménymodul megnevezése: Mészáros Miklós Logikai algebra alapjai, logikai függvények I. MUNKNYG követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása követelménymodul száma: 0917-06 tartalomelem azonosító

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás

Részletesebben

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

2. hét Kombinációs hálózatok leírási módjai

2. hét Kombinációs hálózatok leírási módjai 2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

Aszinkron sorrendi hálózatok

Aszinkron sorrendi hálózatok Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

6. hét: A sorrendi hálózatok elemei és tervezése

6. hét: A sorrendi hálózatok elemei és tervezése 6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Elektronikai

Részletesebben

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE . EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK É RETTSÉGI VIZSGA 2005. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 24., 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI

Részletesebben

1. Melyik területet kell öntözni?

1. Melyik területet kell öntözni? 1. Melyik területet kell öntözni? Rajzolja le kertjének alaprajzát (ideális esetben -papírra) 1:100 (1 c 1 ), vagy 1:200 (1 c 2 ) éretarányban. Jelölje be az öntözendő és ne öntözendő felületeket. Rajzolja

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával

Részletesebben

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK 28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök

1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök 1. hét: A Boole - algebra Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Elérhetőségek Dr. Steiner Henriette steiner.henriette@nik.uni-obuda.hu Féléves követelmények Heti óraszámok:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

6. hét Szinkron hálózatok tervezése és viszgálata

6. hét Szinkron hálózatok tervezése és viszgálata 6. hét Szinkron hálózatok tervezése és viszgálata 6.1. Bevezetés A szinkron sorrendi hálózatok kapcsán a korábbiakban leszögeztük, hogy a hálózat az alábbi módon épül fel: Bemenetek A Kombinációs hálózat

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint 6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,

Részletesebben

E L Ő T E R J E S Z T É S

E L Ő T E R J E S Z T É S E L Ő T E R J E S Z T É S A Képviselő-testület 2011. árcius 7-én tartandó ülésének 4. száú Az Alsó-Szabolcsi szennyvízelvezetési és tisztítási projekt elnevezésű, KEOP-7.1-2-0-2008-0133 azonosítószáú projekt

Részletesebben

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT 1.a) Paramétert nem tartalmazó eset A bázistranszformáció egyszerűsített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA

3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA 3. LOGIKI FÜGGVÉNYEK GRFIKUS EGYSZERŰSÍTÉSE ÉS RELIZÁLÁS tananyag célja: a többváltzós lgikai függvények grafikus egyszerűsítési módszereinek gyakrlása. Elméleti ismeretanyag: r. jtnyi István: igitális

Részletesebben

Élelmiszeripari folyamatirányítás 2016.03.12.

Élelmiszeripari folyamatirányítás 2016.03.12. Élelmiszeripari folyamatirányítás 2016.03.12. Hidraulikus rendszerek Közeg: hidraulika-olaj Nyomástartomány: ált. 200-400 bar Előnyök: Hátrányok: - Nagy erők kifejtésére alkalmas (200-400 bar!) - Kisebb

Részletesebben

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KLTRÁLIS

Részletesebben

Boole algebra, logikai függvények

Boole algebra, logikai függvények Boole algebra, logikai függvények Benesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint ÉETTSÉG VZSG 0. május. ELEKTONK LPSMEETEK EMELT SZNTŰ ÍÁSEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ EME EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladatok Maximális pontszám:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 4 ÉETTSÉGI VIZSGA 04. október. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladatok

Részletesebben

2. Digitális hálózatok...60

2. Digitális hálózatok...60 2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk

Részletesebben

Membránsebesség-visszacsatolásos mélysugárzó direkt digitális szabályozással

Membránsebesség-visszacsatolásos mélysugárzó direkt digitális szabályozással udapeti Műzaki é Gazdaágtudoányi Egyete Villaoérnöki é Inforatikai Kar TUDOMÁNYOS DIÁKKÖRI DOLGOZT Mebránebeég-vizacatoláo élyugárzó direkt digitáli zabályozáal Kézítetteték: aláz Géza V. Vill., greae@evtz.be.hu

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

Ó T A T U M T I Ú S Á T R A T N A B R A K S I É S É L

Ó T A T U M T I Ú S Á T R A T N A B R A K S I É S É L Vezérlőegység KEZELÉSI ÉS KARBANTARTÁSI ÚTMUTATÓ Tartalojegyzék Alkalazás, üzei körülények, felépítés...3 Alkalazás...4 Kiválasztás...4 Dokuentáció...4 Üzei körülények...4 Berendezés felépítése...4 Szabályzó

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 3 ÉETTSÉGI VIZSG 0. május 0. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ EMEI EŐOÁSOK MINISZTÉIM Egyszerű, rövid feladatok Maximális

Részletesebben

Zalotay Péter Digitális technika I

Zalotay Péter Digitális technika I Zalotay Péter Digitális technika I Távoktatás előadási anyaga Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...5 1. LOGIKAI ALAPISMERETEK...8 1.1. Halmazelméleti alapfogalmak...8 1.2. A logikai

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2009. 2006. május 22. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK TÁVKÖZLÉS ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. Elektrotechnika feladat R-C tag számítása Maximális pontszám: 25 pont Az U = 230 V effektív értékű, f = 50 Hz-es hálózatra egy soros

Részletesebben

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése: Szabó László Áralástani alaptörények A köetelényodul egneezése: Kőolaj- és egyipari géprendszer üzeeltetője és egyipari technikus feladatok A köetelényodul száa: 07-06 A tartaloele azonosító száa és célcsoportja:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép

Használható segédeszköz: Függvénytáblázat, szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 04 Mechatronikai technikus

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?

Részletesebben

Összefüggések egy csonkolt hasábra

Összefüggések egy csonkolt hasábra Összefüggések egy sonkolt hasábra Az idők során ár többször készítettünk hasonló dolgozatokat. Ne baj: az isétlés sose árt. Most tekintsük az. ábrát!. ábra Eszerint úgy is képzelhetjük hogy egy téglalap

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

II. Zárthelyi feladat (1) Automatika c. tárgyból. 2. Rajzoljon le egy-egy 3 bites szinkron illetve aszinkron számlálót ütemdiagramjával együtt

II. Zárthelyi feladat (1) Automatika c. tárgyból. 2. Rajzoljon le egy-egy 3 bites szinkron illetve aszinkron számlálót ütemdiagramjával együtt 2000-2001. tanév 1 félév II. Zárthelyi feladat (1) 1. Adja meg az alábbi háromváltozós függvény: F=bc+ac PLC programját 2. Rajzoljon le egy-egy 3 bites szinkron illetve aszinkron számlálót ütemdiagramjával

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK TÁVKÖZLÉS ISMERETEK KÖZÉPSZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK 1. feladat Maximális pontszám: 25 pont Elektrotechnika feladat RC tag számítása Egy C = 300 nf kapacitású kondenzátort egy R = 10 kω-os

Részletesebben

Standard cellás tervezés

Standard cellás tervezés Budapesti Műszaki és Gazdaságtudományi Egyetem Elektronikus Eszközök Tanszéke Standard cellás tervezés A tanszéken rendelkezésre álló CENSORED technológia bemutatás és esettanulmány Figyelmeztetés! Ez

Részletesebben

4. hét Az ideális és a valódi építőelemek

4. hét Az ideális és a valódi építőelemek 4. hét Az ideális és a valódi építőelemek 4.1. Az ideális és valódi építőelemek Most ismerkedjünk meg a rendszereket felépítő építőelemekkel. Előtte azonban célszerű néhány alapfogalmat tisztázni. 4.1.1.

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök

Részletesebben

DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR

DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR Írta: MATIJEVICS ISTVÁN Szegedi Tudományegyetem DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Matijevics István, Szegedi Tudományegyetem Természettudományi és

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 07 ÉETTSÉG VZSG 007. október 4. ELEKTONK LPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ OKTTÁS ÉS KLTÁLS MNSZTÉM Teszt Maximális pontszám: 40.) Határozza

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén

10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok

Részletesebben

BeoSound 9000. Referenciafüzet

BeoSound 9000. Referenciafüzet BeoSound 9000 Referenciafüzet VIGYÁZAT: Az áraütés kockázatának csökkentése érdekében ne vegye le a készülék fedelét vagy hátulját. A készülék ne tartalaz felhasználó által javítható alkatrészeket. A javítást

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

13. a) Oldja meg a valós számok halmazán a következ egyenletet! 2

13. a) Oldja meg a valós számok halmazán a következ egyenletet! 2 A 13. a) Oldja eg a valós száok halazán a következ egyenletet! ( x ) 90 5 (0,5x 17) 3 x b) Oldja eg a valós száok halazán a egyenl tlenséget! 7x a) 5 pont b) 7 pont 1 pont írásbeli vizsga, II. összetev

Részletesebben

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31.

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31. 2010/2011. tanév Szakác enő Megyei Fizika Vereny II. forduló 2011. január 31. Minden verenyzőnek a záára kijelölt négy feladatot kell egoldania. A zakközépikoláoknak az A vagy a B feladatort kell egoldani

Részletesebben

1.3.1. Önismeretet támogató módszerek

1.3.1. Önismeretet támogató módszerek TÁMOP.1. -08/1/B-009-000 PÁLYÁZAT 1. SZ. ALPROJEKT 1..1. Öniseretet táogató ódszerek - Pályaoritációs ódszertani eszköztár - - vitaanyag- Készítette: Dr. Dávid Mária Dr. Hatvani Andrea Dr. Taskó Tünde

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Zalotay Péter DIGITÁLIS TECHNIKA

Zalotay Péter DIGITÁLIS TECHNIKA Zalotay Péter DIGITÁLIS TECHNIKA 3oldal BEVEZETÉS 5 DIGITÁLISTECHNIKA ALAPJAI 7 LOGIKAI ALAPISMERETEK 7 2 A LOGIKAI ALGEBRA 8 2 Logikai változók, és értékük 8 22 A Boole algebra axiómái 9 23 Logikai műveletek

Részletesebben

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és

Részletesebben

Védőrelék AUX RON PTC 1 CO VDC

Védőrelék AUX RON PTC 1 CO VDC J/15 Védőrelék RELÉK Feszültségfigyelő relé 3 fázisra, beállítható aszietriával és túlelegedés elleni védeleel Ie (C 1, 230 V) 5 UX RON ROFF Piktograok VDC U Uh VC ha % (L1,L2,L3) TFKV-04 3 230/400 V C

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési

Részletesebben

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza.

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza. Logikai függvények osztályai A függvényosztály a függvények egy halmaza. A logikai fügvények egy osztálya logikai függvények valamely halmaza. Megadható felsorolással, vagy a tulajdonságainak leírásával.

Részletesebben

Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny

Versenyző kódja: 31 15/2008. (VIII. 13) SZMM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny 54 523 01 0000 00 00-2014 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 01 0000 00 00 SZVK rendelet száma: 15/2008 (VIII. 13.) SZMM

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2011. október 17. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 17. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Kombinációs hálózatok egyszerűsítése

Kombinációs hálózatok egyszerűsítése Komináiós hálóztok egyszerűsítése enesózky Zoltán 24 jegyzetet szerzői jog véi. zt ME hllgtói hsználhtják, nyomtthtják tnulás éljáól. Minen egyé felhsználáshoz szerző elegyezése szükséges. él: speifikáióvl

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. október 13. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 13. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Zalotay Péter Digitális technika

Zalotay Péter Digitális technika Zalotay Péter Digitális technika Elektronikus jegyzet Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...3 1. A DIGITÁLIS TECHNIKA ELMÉLETI ALAPJAI...7 1.1. Logikai alapismeretek...7 1.2. Halmazelméleti

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á

Részletesebben