6. hét: A sorrendi hálózatok elemei és tervezése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "6. hét: A sorrendi hálózatok elemei és tervezése"

Átírás

1 6. hét: A sorrendi hálózatok elemei és tervezése

2 Sorrendi hálózat A Sorrendi hálózat Y

3 Sorrendi hálózat A Sorrendi hálózat Y Belső állapot

4 Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder változó

5 Mealy - modell f y = A, Q Y f Q n+1 = A, Q Q n+1 Bemenetek A Q Kombinációs hálózat Y Qn+1 Kimenetek Szekunder változók Memória

6 Szinkron hálózatok Bemenet Kombinációs hálózat Kimenet Órajel Tárolóegység Két fő eleme Tárolóegység (Memória) A korábbi bemeneti kombinációkra vonatkozó információ tárolására Bemeneti kombinációs hálózat A kimeneti jel előállítása A tárolandó információ előállítása A bemeneti kombinációkból és az előzőleg eltárolt információk együtt határozzák meg a következő ciklusban eltárolandó információt Fontos különbség az aszinkron sorrendi hálózatokhoz képest A jelváltozások nem futnak rögtön végig a hálózaton, csak a következő ciklusban hatnak 6

7 Szinkronizáció Felfutó él Lefutó él Ciklusidő idő Minden változás az órajellel időzítve, azzal szinkronizálva megy végbe, előre pontosan definiált időpillanatban, az órajel fel- vagy lefutó élének megérkezését követően 7

8 Szinkron hálózatok Bemenet Kombinációs hálózat Kimenet Órajel Tárolóegység 8

9 A tároló egység flip - flop A tárolóegység, memóriaegység tároló elemekből épül fel Feladata: információ tárolás Egy tároló elem 1 bit információt tárol Kétállapotú (bistabil) billenő elemek (Flip-Flopok) Mindaddig megtartják előző állapotukat míg külső jel ennek megváltoztatására nem kényszeríti

10 A tároló típusai SR (Set-Reset) flip-flop D (Data) flip-flop T (toggle) flip-flop JK flip-flop

11 R-S tároló S R Q n+1 = F Q (S,R,Q n ) Q n Y n = Q n.q n+1

12 R-S tároló S R Q n+1 = F Q (S,R,Q n ) Q n Y n = Q n.q n+1 R S Q n Q n X X Változatlan Beírás Törlés Tiltott

13 A R- S Tároló Készítsünk Set-Reset tárolót Az S(Set) bemenetre adott 1 -es a kimenetet 1 - be állítja Az R(Reset) bemenetre adott 1 -es a kimenetet 0 -ba állítja R S Q n Q n X X Változatlan Beírás Törlés Tiltott S R Q n+1 = F Q (S,R,Q n ) Q n Y n = Q n.q n+1 13

14 R- S tároló Állapot gráf X0/0 01/ /0 0X/1 R S Q n Q n X X Változatlan Beírás Törlés Tiltott 14

15 Vezérlő tábla R- S tároló Nincs versenyfutás vagy oszcilláció - aszinkron működés is stabil Vannak érdektelen (Don t care állapotok) Q n+1 -re elvégezve az összevonásokat az egyszerűsített logikai függvény: R S Q n Q n X X Változatlan Beírás Törlés Tiltott R S Q n 0 1 Q n X X 0 0

16 RS tároló Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye A következő órajel megérkezésekor R S Q n Q n X X Változatlan Beírás Törlés Tiltott R S Q n Q n X Tiltott R S Q n 0 1 Állapot gráf 1 1 X X 0 0 X0/0 10/ /0 0X/1 16

17 RS tároló megvalósítása A Q n+1 -et és Q n+1 -et megvalósító kombinációs hálózat logikai _ függvénye NAND kapus megvalósítása Külön jelképi jelölés

18 RS tároló megvalósítása A Q n+1 -et és Q n+1 -et megvalósító kombinációs hálózat logikai _ függvénye NAND kapus megvalósítása Külön jelképi jelölés R S Q n Q n X Tiltott

19 RS tároló megvalósítása A Q n+1 -et és Q n+1 -et megvalósító kombinációs hálózat logikai függvénye _ NAND kapus megvalósítása Külön jelképi jelölés R S Q n Q n X Tiltott Az RS tároló ebben a formájában még aszinkron működésű

20 RS tároló megvalósítása A Q n+1 -et és Q n+1 -et megvalósító kombinációs hálózat logikai függvénye _ NAND kapus megvalósítása Külön jelképi jelölés R S Q n Q n X Tiltott Az RS tároló ebben a formájában még aszinkron működésű

21 RS tároló megvalósítása Az R és S bemenetek hatása a szinkronjel (órajel) megérkezésekor érvényesüljön (Órajel) C

22 RS tároló megvalósítása (Órajel) C Statikus vezérlés (Szint vezérlés)

23 RS tároló megvalósítása (Órajel) C Statikus vezérlés (Szint vezérlés) A flip-flop csak akkor billen át, ha az órajel 1 értékű

24 RS tároló megvalósítása (Órajel) C Statikus vezérlés (Szint vezérlés) A flip-flop csak akkor billen át, ha az órajel 1 értékű Ez a megoldás nem használható szinkron hálózat építésére átlátszó

25 RS tároló megvalósítása (Órajel) C Statikus vezérlés (Szint vezérlés) A flip-flop csak akkor billen át, ha az órajel 1 értékű Ez a megoldás nem használható szinkron hálózat építésére átlátszó Az órajel 1 értékénél az esetleges többszöri változás a bemeneten a kimenetet is többször átbillentheti, és ez tovább is terjed a flip-flopon keresztül

26 RS tároló megvalósítása (Órajel) C Statikus vezérlés (Szint vezérlés) A flip-flop csak akkor billen át, ha az órajel 1 értékű Ez a megoldás nem használható szinkron hálózat építésére átlátszó Az órajel 1 értékénél az esetleges többszöri változás a bemeneten a kimenetet is többször átbillentheti, és ez tovább is terjed a flip-flopon keresztül Ez idő alatt az ilyen elemekből felépített hálózat teljes egésze aszinkron módon viselkedne

27 RS tároló megvalósítása (Órajel) C Statikus vezérlés (Szint vezérlés) A flip-flop csak akkor billen át, ha az órajel 1 értékű Ez a megoldás nem használható szinkron hálózat építésére átlátszó Az órajel 1 értékénél az esetleges többszöri változás a bemeneten a kimenetet is többször átbillentheti, és ez tovább is terjed a flip-flopon keresztül Ez idő alatt az ilyen elemekből felépített hálózat teljes egésze aszinkron módon viselkedne Ez szinkron hálózatban nem megengedhető egy szinkron jel, egy változás

28 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) C t pd A B Y tpd A B Y 28

29 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) Nem engedjük folyamatosan az órajel 1 értéke alatt hatni a bemeneteket A C t pd A B Y tpd B Y 29

30 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) Nem engedjük folyamatosan az órajel 1 értéke alatt hatni a bemeneteket Csak egy rövid időre, amíg a tároló át tud billeni, ez után elvesszük a beíró (óra) jelet A C t pd A B Y tpd B Y 30

31 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) Nem engedjük folyamatosan az órajel 1 értéke alatt hatni a bemeneteket Csak egy rövid időre, amíg a tároló át tud billeni, ez után elvesszük a beíró (óra) jelet Lerövidítjük az órajel 1 értékét A C t pd A B Y tpd B Y 31

32 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) Nem engedjük folyamatosan az órajel 1 értéke alatt hatni a bemeneteket Csak egy rövid időre, amíg a tároló át tud billeni, ez után elvesszük a beíró (óra) jelet Lerövidítjük az órajel 1 értékét Szándékosan hazárdos órajel formáló hálózatot csinálunk C t pd A B Y tpd A B Y 32

33 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) Nem engedjük folyamatosan az órajel 1 értéke alatt hatni a bemeneteket Csak egy rövid időre, amíg a tároló át tud billeni, ez után elvesszük a beíró (óra) jelet Lerövidítjük az órajel 1 értékét Szándékosan hazárdos órajel formáló hálózatot csinálunk C t pd A B Y tpd A B Y 33

34 RS tároló megvalósítása Élvezérlés (Dinamikus vezérlés) Nem engedjük folyamatosan az órajel 1 értéke alatt hatni a bemeneteket Csak egy rövid időre, amíg a tároló át tud billeni, ez után elvesszük a beíró (óra) jelet Lerövidítjük az órajel 1 értékét Szándékosan hazárdos órajel formáló hálózatot csinálunk A C t pd A B Y tpd B Y 34

35 RS tároló megvalósítása Master Slave megoldás C 35

36 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Master Slave C 36

37 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Beíró kapuk Master Átíró kapuk Slave C 37

38 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Beíró kapuk Master Átíró kapuk Slave C 38

39 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Az órajel 1 értékénél a beíró kapuk engedélyezik a Master-t, ezalatt a Slave letiltva Beíró kapuk Master Átíró kapuk Slave C 39

40 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Az órajel 1 értékénél a beíró kapuk engedélyezik a Master-t, ezalatt a Slave letiltva Az órajel 0 értékénél az átíró kapuk engedélyezik a Slave-et, ezalatt a Master letiltva Beíró kapuk Master Átíró kapuk Slave C 40

41 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Az órajel 1 értékénél a beíró kapuk engedélyezik a Master-t, ezalatt a Slave letiltva Az órajel 0 értékénél az átíró kapuk engedélyezik a Slave-et, ezalatt a Master letiltva A bemeneten lévő esetleges zavaró tranziensek nem jutnak át a letiltott Slave-en Beíró kapuk Master Átíró kapuk Slave C 41

42 RS tároló megvalósítása Master Slave megoldás Az élvezérlésnél bonyolultabb megoldás Az órajel 1 értékénél a beíró kapuk engedélyezik a Master-t, ezalatt a Slave letiltva Az órajel 0 értékénél az átíró kapuk engedélyezik a Slave-et, ezalatt a Master letiltva A bemeneten lévő esetleges zavaró tranziensek nem jutnak át a letiltott Slave-en Bár aszinkron működésű, de nem átlátszó Beíró kapuk Master Átíró kapuk Slave C 42

43 RS tároló megvalósítása Kétfokozatú tároló (Master-Slave flip-flop) A Master-be írás alatt lehet tranziens De az átírás előtt már lecseng Átírás alatt Master kimenete állandó 1 Beíró kapuk nyitnak Átíró kapuk zárnak Beírás Masterba Átírás Slave-be Master kimenete már nem változhat 0 Átíró kapuk nyitnak Beíró kapuk zárnak

44 A tárolóelemek Tároló elemek Szinkron hálózatokban csak nem átlátszó tároló elemek használhatók Dinamikus vezérlésű (élvezérelt) Kétfokozatú (Master-Slave) Nincsenek instabil állapotok A legfontosabb alap tároló elemek a bemenetek számában és a bemeneti jel hatására történő kimeneti jelváltozásban térnek el RS tároló JK tároló T tároló D tároló

45 JK Tároló

46 JK Tároló Kiküszöböli az RS tároló hátrányát Nincs tiltott bemeneti kombináció K J Q n Q n _ 1 1 Q n

47 JK Tároló Kiküszöböli az RS tároló hátrányát Nincs tiltott bemeneti kombináció K J Q n Q n Változatlan Beírás Törlés K J Q n Q n _ Q n Billentés

48 JK Tároló Kiküszöböli az RS tároló hátrányát Nincs tiltott bemeneti kombináció Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye K J Q n Q n Változatlan Beírás Törlés Billentés K J Q n Q n _ Q n

49 JK Tároló Kiküszöböli az RS tároló hátrányát Nincs tiltott bemeneti kombináció Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye K J Q n Q n Változatlan Beírás Törlés Billentés K J Q n Q n _ Q n Állapot gráf 11/1 10/0 01/1 01/1 00/ /0 11/0 00/1

50 JK Tároló Kiküszöböli az RS tároló hátrányát Nincs tiltott bemeneti kombináció Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye K J Q n Q n Változatlan Beírás Törlés Billentés K J Q n Q n _ Q n Q n KJ Állapot gráf 11/1 10/0 01/1 01/1 00/ /0 11/0 00/1

51 JK tároló megvalósítás Kétfokozatú (Master-Slave) megvalósítás RS tárolóból külön visszacsatolásokkal A Master-ba írást az előző állapot is vezérli A visszacsatoláson keresztül K J Q n Q n _ 1 1 Q n J Q K Q _ C 51

52 T tároló

53 Csak egy bemenet T tároló T Q n+1 0 Q n _ 1 Q n

54 T tároló Csak egy bemenet T Q n Q n Változatlan Billentés T Q n+1 0 Q _ n 1 Q n

55 T tároló Csak egy bemenet Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye T Q n Q n Változatlan Billentés T Q n+1 0 Q _ n 1 Q n Állapot gráf 1/1 0/ /0 0/1

56 T tároló Csak egy bemenet Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye T Q n Q n Változatlan Billentés T Q n+1 0 Q _ n 1 Q n Állapot gráf T Q n / / /0 0/1

57 T tároló megvalósítása T tároló megvalósítása JK tárolóval T Q n+1 0 Q n 1 Q n K J Q n Q n Q n

58 D tároló

59 D tároló Csak egy bemenet Átmeneti információtárolásra D Q n

60 Csak egy bemenet D tároló Átmeneti információtárolásra Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye D Q n Q n+1 D Q n Törlés Beírás

61 D tároló Csak egy bemenet Átmeneti információtárolásra Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 D Q n Q n Törlés Beírás D Q n Állapottábla Felírható a kimenet logikai függvénye 1/ /0 1/1 0/0

62 D tároló Csak egy bemenet Átmeneti információtárolásra Működést leíró táblázat Az aktuális órajel előtti kimenet Q n Az aktuális órajel utáni kimenet Q n+1 Állapottábla Felírható a kimenet logikai függvénye D Q n Q n Törlés Beírás D Q n D Q n / /0 1/1 0/0

63 D tároló megvalósítása JK tárolóval K J Q n Q n Q n D Q n

64 Alapállapotba állítás A berendezések bekapcsolásakor biztosítani kell a stabil, ismert alapállapot Preset J Q K Clear Q _ C 64

65 Alapállapotba állítás A berendezések bekapcsolásakor biztosítani kell a stabil, ismert alapállapot Általában aszinkron bemenetek A tároló kiindulási állapota lehet 0 vagy 1 Preset J Q K Clear Q _ C 65

66 Alapállapotba állítás A berendezések bekapcsolásakor biztosítani kell a stabil, ismert alapállapot Általában aszinkron bemenetek A tároló kiindulási állapota lehet 0 vagy 1 1) Clear (Reset) bemenet - A tároló törlése, 0 -ába állítása 2) Preset (Set) bemenet - A tároló beállítása, 1 -be állítása Preset J Q K Clear Q _ C 66

67 Szinkron sorrendi hálózat működése Bemenet Kombinációs hálózat Kimenet Órajel Tárolóegység A szinkron sorrendi hálózat állapotai Minden tároló elem két állapotot vehet fel: 0 vagy 1 Ha n tárolóelem van, a teljes hálózatnak 2 n állapota lehet Működés közben ezek közül nem feltétlenül valósul meg mindegyik (tiltott állapotok) Egyik állapotból a másikba csak egy újabb órajel hatására kerülhet a rendszer A bemeneti jelek és a tároló elemek tartalma együttesen határozzák meg a következő (Q n+1 ) állapotot A tároló elemek az előző órajel hatására létrejött belső (Q n ) állapotot tárolják

68 Szinkron sorrendi hálózat működése Bemenet Kombinációs hálózat Kimenet Órajel Tárolóegység A szinkron sorrendi hálózat állapotai Minden tároló elem két állapotot vehet fel: 0 vagy 1

69 Szinkron sorrendi hálózat működése Bemenet Kombinációs hálózat Kimenet Órajel Tárolóegység A szinkron sorrendi hálózat állapotai Minden tároló elem két állapotot vehet fel: 0 vagy 1 Ha n tárolóelem van, a teljes hálózatnak 2 n állapota lehet Működés közben ezek közül nem feltétlenül valósul meg mindegyik (tiltott állapotok)

70 Szinkron sorrendi hálózat működése Bemenet Kombinációs hálózat Kimenet Órajel Tárolóegység A szinkron sorrendi hálózat állapotai Minden tároló elem két állapotot vehet fel: 0 vagy 1 Ha n tárolóelem van, a teljes hálózatnak 2 n állapota lehet Működés közben ezek közül nem feltétlenül valósul meg mindegyik (tiltott állapotok) Egyik állapotból a másikba csak egy újabb órajel hatására kerülhet a rendszer A bemeneti jelek és a tároló elemek tartalma együttesen határozzák meg a következő (Q n+1 ) állapotot A tároló elemek az előző órajel hatására létrejött belső (Q n ) állapotot tárolják

71 A hálózat működése kapcsolási rajz Q 1 Q 1 Két tároló elem (T tárolók) Bemeneti és kimeneti kombinációs hálózat Sorrendi hálózatoknál a tároló elemek és visszacsatolások nehezítik a megértést Még ennél a viszonylag egyszerű hálózatnál is Bonyolultabb esetben átláthatatlanná válhat a kapcsolási rajz Az összeköttetéseket gyakran összekötő vonalak helyett azonos elnevezéssel helyettesítik

72 A hálózat működése Állapotgráf Szemléletes, könnyen áttekinthető Két (belső) szekunder változó Négy lehetséges állapot A lehetséges állapotokat a tároló elemek kimeneti jelével kódoljuk Q 2 Q 1 = 00, 01, 10, 11 Egyik sem tiltott Ha X = 1 állapotváltozás következik be X Y Q 2 Q 1 Q 2 Q 1 1/0 0/0 0/ /0 1/0 0/1 11 1/1 10 0/0

73 A hálózat működése Állapottáblázat Az állapot gráfból könnyen felírható 1/0 0/0 0/0 0/ /0 1/0 11 1/1 10 0/0 Q n 2 Q n 1 X Q n+1 2 Q n+1 1 Y

74 A hálózat működése Állapotegyenletek Egy sorrendi hálózat elvi működése két logikai függvénnyel írható le Állapotegyenlet (szekunder változók függvénye) Kimeneti függvény (függő változók függvénye) Q n+1 = F Q (X n,q n ) Y n = F Y (X n,q n ) Annyi állapotegyenlet ahány szekunder változó (ahány tároló elem) Annyi kimeneti egyenlet, ahány kimenet A hálózat tényleges felépítésére nem ad információt JK, T vagy D tárolóval, NAND, NOR? Q n 2 Q n 1 X Q n+1 2 Q n+1 1 Y X Q 2n Q 1 n Q 2 n+1 X Q 2n Q 1 n Q 1 n

75 A hálózat működése VHDL VHDL (VHSIC Hardware Description Language) VHSIC : very-high-speed integrated circuits Hardver leíró nyelv Logikai áramkörök egyszerű szöveges leírására fejlesztették ki (USA 1987) A logikai áramkörökre jellemző párhuzamosság kezelésére, leírására Konkurens Szekvenciális utasítások Logikai hálózatok Modellezésére Szimulációjára (testbench) Szintetizálására (hardver megvalósítás) IEEE szabvány IEEE Std IEEE Std A programozási nyelvekhez hasonló felépítés Automatizálható feldolgozás (text) Integrált áramkörök gyártásánál Programozható logikai áramkörök (CPLD, FPGA) fejlsztéséhez

76 A hálózat működése VHDL Szinkron sorrendi hálózat működése Be- kimenetek definíciója (portok) VHDL Használt könyvtárak (hasonló: #include) Belső jelek, konstansok stb.. definíciója, inicializálása in0 in1 inbus clk logic out0 out1 outbu s Működést leíró utasítások

77 A hálózat működése VHDL signal a : STD_LOGIC; signal b : STD_LOGIC; signal c : STD_LOGIC; signal d : STD_LOGIC; begin a <= 0 ; b <= 1 ; c <= a and b; d <= c or b when a = 1 else a nor b when a = 0 ; end Behavioral a b c d Konkurens utasítások Az utasítások egyszerre hajtódnak végre, a leírás sorrendjétől függetlenül Általában kombinációs hálózatot ír le

78 A hálózat működése VHDL Értékadás signal d : STD_LOGIC; signal q : STD_LOGIC; signal qn : STD_LOGIC; signal reset : STD_LOGIC; signal clk : STD_LOGIC; begin qn <= not q; process begin if (reset = 1 ) then q <= 0 ; elsif (clk`event and clk = 1 ) then q <= d; end if; end process; end Behavioral; Szekvenciális utasítások A leírás sorrendjében hajtódnak végre Szekvenciális hálózatot lehet leírni

79 Példa T tárolók és ÉS VAGY kombinációs hálózat segítségével tervezze meg és rajzolja fel egy 3 bites szinkron számláló MEALY - MODELL szerinti logikai kapcsolási rajzát, amely a következő sorrendben számlál: 0, 1, 2, 3, 5. Ezután ismétlődik. A belső állapotokat Q0, Q1, Q2, a tároló bemeneteket pedig T0, T1, T2 szimbólumokkal jelölje.

80 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T

81 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3,5

82 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x

83 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x

84 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

85 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

86 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

87 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

88 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

89 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

90 T0 Q Q2 x 1 x x Q0

91 T0 Q Q2 x 1 x x Q0 T 0 = Q 0 + Q 1

92 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 2 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

93 T1 Q1 1 1 Q2 x x x Q0

94 T1 Q1 1 1 Q2 x x x Q0 T 1 = Q 2 Q 0

95 Állapottábla i n n+1 T Tárolók Q 2 Q 1 Q 0 Q 2 Q 1 Q 0 T 0 T 1 T ,1,2,3, x x x x x x x x x x x x x x x x x x

96 T2 Q1 Q2 x 1 x x 1 Q0

97 T2 Q1 Q2 x 1 x x 1 Q0 T 2 = Q 2 + Q 1 Q 0

6. hét Szinkron hálózatok tervezése és viszgálata

6. hét Szinkron hálózatok tervezése és viszgálata 6. hét Szinkron hálózatok tervezése és viszgálata 6.1. Bevezetés A szinkron sorrendi hálózatok kapcsán a korábbiakban leszögeztük, hogy a hálózat az alábbi módon épül fel: Bemenetek A Kombinációs hálózat

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Digitális technika házi feladat III. Megoldások

Digitális technika házi feladat III. Megoldások IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c

Részletesebben

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,

Részletesebben

Szekvenciális hálózatok Állapotdiagram

Szekvenciális hálózatok Állapotdiagram Szekvenciális hálózatok Állapotdiagram A kombinatorikus hálózatokra jellemző: A kimeneti paramétereket kizárólag a mindenkori bemeneti paraméterek határozzák meg, a hálózat jellegének, felépítésének megfelelően

Részletesebben

D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3.

D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Szinkron hálózatok D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Irodalom: Arató Péter: Logikai rendszerek. Tankönyvkiadó, Bp. 1985. J.F.Wakerley: Digital Design. Principles and Practices; Prentice

Részletesebben

Irányítástechnika Elıadás. A logikai hálózatok építıelemei

Irányítástechnika Elıadás. A logikai hálózatok építıelemei Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális

Részletesebben

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok) 30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök

Részletesebben

Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez

Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez Benesóczky Zoltán 217 1 digitális automaták kombinációs hálózatok sorrendi hálózatok (SH) szinkron SH aszinkron SH Kombinációs automata Logikai

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

Digitális elektronika gyakorlat

Digitális elektronika gyakorlat FELADATOK 1. Felhasználva az XSA 50 FPGA lapon található 100MHz-es programozható oszcillátort, tervezzetek egy olyan VHDL modult, amely 1 Hz-es órajelet állít elő. A feladat megoldható az FPGA lap órajelének

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

7. hét Sorrendi hálózatok építőelemei II.

7. hét Sorrendi hálózatok építőelemei II. 7. hét Sorrendi hálózatok építőelemei II. 7.1. Bevezetés Tulajdonképpen a szinkron sorrendi hálózatok építése és felhasználása nagyon elterjedt a gyakorlatban. Több minden más mellett ilyen egységekből

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.

Részletesebben

Számítógép architektúrák 2. tétel

Számítógép architektúrák 2. tétel Számítógép architektúrák 2. tétel Elemi sorrendi hálózatok: RS flip-flop, JK flip-flop, T flip-flop, D flip-flop, regiszterek. Szinkron és aszinkron számlálók, Léptető regiszterek. Adatcímzési eljárások

Részletesebben

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.

Részletesebben

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját

Részletesebben

Kombinációs hálózat. sorrendi hálózat. 1. ábra

Kombinációs hálózat. sorrendi hálózat. 1. ábra 1 SORRENDI (SZEKVENCIÁLIS) HÁLÓZATOK Vannak olyan hálózatok, melyeknél - a kombinációs hálózatokkal ellentétben - a kimenet pillanatnyi állapota (kimeneti kombináció) nem csak a bemenet adott pillanatbeli

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla

Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos

Részletesebben

Aszinkron sorrendi hálózatok

Aszinkron sorrendi hálózatok Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016

Programozás és digitális technika II. Logikai áramkörök. Pógár István Debrecen, 2016 Programozás és digitális technika II. Logikai áramkörök Pógár István pogari@eng.unideb.hu Debrecen, 2016 Gyakorlatok célja 1. Digitális tervezés alapfogalmainak megismerése 2. A legelterjedtebb FPGA-k

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGITÁLIS TEHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben

Digitális technika - Ellenőrző feladatok

Digitális technika - Ellenőrző feladatok igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

DIGITÁLIS TECHNIKA 7-ik előadás

DIGITÁLIS TECHNIKA 7-ik előadás IGITÁLI TECHNIKA 7-ik előadás Előadó: r. Oniga István Egyetemi docens 2/2 II félév zekvenciális (sorrendi) hálózatok zekvenciális hálózatok fogalma Tárolók tárolók JK tárolók T és típusú tárolók zámlálók

Részletesebben

Digitális Technika II. jegyzet

Digitális Technika II. jegyzet Digitális Technika II. jegyzet Javított változat: 2018. október Digitális Technika II. Dr. Holczinger Tibor Dr. Göllei Attila Dr. Vörösházi Zsolt Egyetemi tankönyv TypoTex Budapest, 2013 Dr. Holczinger

Részletesebben

Tartalom Tervezési egység felépítése Utasítások csoportosítása Értékadás... 38

Tartalom Tervezési egység felépítése Utasítások csoportosítása Értékadás... 38 Bevezetés... 11 1. A VHDL mint rendszertervező eszköz... 13 1.1. A gépi tervezés... 13 1.2. A VHDL általános jellemzése... 14 1.3. Tervezési eljárás VHDL-lel... 15 2. A VHDL nyelv alapszabályai... 19 2.1.

Részletesebben

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Sorrendi hálózatok Az eddigiekben

Részletesebben

Hardver leíró nyelvek (HDL)

Hardver leíró nyelvek (HDL) Hardver leíró nyelvek (HDL) Benesóczky Zoltán 2004 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGITÁLIS TECHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 4. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató P.: Logikai rendszerek tervezése (171-189

Részletesebben

1. A VHDL mint rendszertervező eszköz

1. A VHDL mint rendszertervező eszköz 1.1. A gépi tervezés A gépi leíró nyelvek (HDL) célja az egyes termékek egységesítése, logikai szimulációhoz leíró nyelv biztosítása, a terv hierarchikus felépítésének tükrözése és a nagy tervek áttekinthetővé

Részletesebben

A feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...minta VIZSGA...

A feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...minta VIZSGA... feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg. Olvasható aláírás:...mint VIZSG... NÉV:...tk.:... Kiegészítő és szegedi képzés IGITÁLIS TCHNIK VIZSG ZÁTHLYI Kedves

Részletesebben

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK 3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek

Részletesebben

XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat

XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Számlálók és frekvenciaosztók Szinkron, aszinkron számlálók

Számlálók és frekvenciaosztók Szinkron, aszinkron számlálók Szinkron, aszinkron számlálók szekvenciális hálózatok egyik legfontosabb csoportja a számlálók. Hasonlóan az 1 és 0 jelölésekhez a számlálók kimenetei sem interpretálandók mindig számként, pl. a kimeneteikkel

Részletesebben

Nyolcbites számláló mintaprojekt

Nyolcbites számláló mintaprojekt Nyolcbites számláló mintaprojekt 1. Bevezető A leírás egy nyolcbites számláló elkészítésének és tesztelésének lépéseit ismerteti. A számláló értéke az órajel felfutó élének hatására növekszik. A törlőgombbal

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 9

Dr. Oniga István DIGITÁLIS TECHNIKA 9 r. Oniga István IGITÁLIS TEHNIKA 9 Regiszterek A regiszterek több bites tárolók hálózata S-R, J-K,, vagy kapuzott tárolókból készülnek Fontosabb alkalmazások: adatok tárolása és adatmozgatás Funkcióik:

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

Digitális technika (VIMIAA01) Laboratórium 4

Digitális technika (VIMIAA01) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA01) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Tervezési módszerek programozható logikai eszközökkel

Tervezési módszerek programozható logikai eszközökkel Pannon Egyetem, MIK-VIRT, Veszprém Dr. VörösháziZsolt voroshazi.zsolt@virt.uni-pannon.hu Tervezési módszerek programozható logikai eszközökkel 7. VHDL FELADATOK: Speciális nyelvi szerkezetek. Sorrendi

Részletesebben

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A digitális tervezésben gyakran szükséges a logikai jelek változását érzékelni és jelezni. A változásdetektorok készülhetnek csak egy típusú változás (0 1, vagy

Részletesebben

A feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:...

A feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás:... 2 év hó nap NÉV:MEGOÁSneptun kód: feladatokat önállóan, meg nem engedett segédeszközök használata nélkül oldottam meg: Olvasható aláírás: Kedves Kolléga! kitöltést a dátum, név és aláírás rovatokkal kezdje!

Részletesebben

Digitális elektronika gyakorlat. A VHDL leírástípusok

Digitális elektronika gyakorlat. A VHDL leírástípusok A VHDL leírástípusok 1. A funkcionális leírásmód Company: SAPIENTIA EMTE Engineer: Domokos József Create Date: 08:48:48 03/21/06 Design Name: Module Name: Logikai es kapuk funkcionalis leirasa- Behavioral

Részletesebben

Hazárdjelenségek a kombinációs hálózatokban

Hazárdjelenségek a kombinációs hálózatokban Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése

Részletesebben

EB134 Komplex digitális áramkörök vizsgálata

EB134 Komplex digitális áramkörök vizsgálata EB34 Komplex digitális áramkörök vizsgálata BINÁRIS ASZINKRON SZÁMLÁLÓK A méréshez szükséges műszerek, eszközök: - EB34 oktatókártya - db oszcilloszkóp (6 csatornás) - db függvénygenerátor Célkitűzés A

Részletesebben

DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint 27.2.3. IGITÁLI TECHNIK II r. Lovassy ita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet. ELŐÁ 2. félév TEMTIK É IMEETNYG (). orrendi (szekvenciális) hálózatok, általános tulajdonságok.

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén

10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok esetén Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 10-11. hét Sorrendi hálózatok tervezési lépései: szinkron aszinkron sorrendi hálózatok

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve

Részletesebben

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: 1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű

Részletesebben

5. hét A sorrendi hálózatok leírása

5. hét A sorrendi hálózatok leírása 5. hét A sorrendi hálózatok leírása 5.. Bevezető példák Először néhány bevezető példán keresztül fogjuk áttekinteni a rendszereket és bevezetni azokat a fogalmakat, melyekre a későbbiekben szükségünk lesz.

Részletesebben

Mérési jegyzőkönyv. az ötödik méréshez

Mérési jegyzőkönyv. az ötödik méréshez Mérési jegyzőkönyv az ötödik méréshez A mérés időpontja: 2007-10-30 A mérést végezték: Nyíri Gábor kdu012 mérőcsoport A mérést vezető oktató neve: Szántó Péter A jegyzőkönyvet tartalmazó fájl neve: ikdu0125.doc

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 4

Digitális technika (VIMIAA02) Laboratórium 4 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 4 Fehér Béla Raikovich Tamás,

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta

Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Integrált áramkörök/4 Digitális áramkörök/3 CMOS megvalósítások Rencz Márta Elektronikus Eszközök Tanszék Mai témák Transzfer kapu Kombinációs logikai elemek különböző CMOS megvalósításokkal Meghajtó áramkörök

Részletesebben

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.

Részletesebben

Kombinációs hálózatok Adatszelektorok, multiplexer

Kombinációs hálózatok Adatszelektorok, multiplexer Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 3. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 523 02-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési

Részletesebben

MUNKAANYAG. Mádai László. Sorrendi hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Mádai László. Sorrendi hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Mádai László Sorrendi hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja: SzT-044-50

Részletesebben

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104. Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.

Részletesebben

Digitális Rendszerek (BSc)

Digitális Rendszerek (BSc) Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 5. előadás: Szekvenciális hálózatok I. Szinkron és aszinkron tárolók, regiszterek Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

funkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb...

funkcionális elemek regiszter latch számláló shiftregiszter multiplexer dekóder komparátor összeadó ALU BCD/7szegmenses dekóder stb... Funkcionális elemek Benesóczky Zoltán 24 A jegyzetet a szerzői jog védi. Azt a BM hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges. funkcionális

Részletesebben

Újrakonfigurálható eszközök

Újrakonfigurálható eszközök Újrakonfigurálható eszközök 5. A Verilog sűrűjében: véges állapotgépek Hobbielektronika csoport 2017/2018 1 Debreceni Megtestesülés Plébánia Felhasznált irodalom és segédanyagok Icarus Verilog Simulator:

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

2. Digitális hálózatok...60

2. Digitális hálózatok...60 2 60 21 Kombinációs hálózatok61 Kombinációs feladatok logikai leírása62 Kombinációs hálózatok logikai tervezése62 22 Összetett műveletek használata66 z univerzális műveletek alkalmazása66 kizáró-vagy kapuk

Részletesebben

Széchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK ÉS RENDSZEREK

Széchenyi István Egyetem. dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK ÉS RENDSZEREK Széchenyi István Egyetem dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK ÉS RENDSZEREK 41 TARTALOMJEGYZÉK 1. rész. Kombinációs hálózatok tervezése 8 1.1. LOGIKAI ÉRTÉKEK ÉS ALAPMŰVELETEK 8 1.1.1 A logikai változók

Részletesebben

Foglalkozási napló a 20 /20. tanévre

Foglalkozási napló a 20 /20. tanévre Foglalkozási napló a 20 /20. tanévre Elektronikai műszerész szakma gyakorlati oktatásához OKJ száma: 34 522 03 A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának dátuma: Tanulók

Részletesebben

Digitális elektronika gyakorlat

Digitális elektronika gyakorlat FELADATOK 1. Tervezzetek egy félösszeadó VHDL modult 2. Tervezzetek egy teljes összeadó VHDL modult 3. Schematic Editor segítségével tervezzetek egy 4 bit-es öszeadó áramkört. A két bemeneti számot a logikai

Részletesebben

A VHDL kódtól az FPGA-ba való ágyazásig From the VHDL Code to the Implementation to FPGA-s

A VHDL kódtól az FPGA-ba való ágyazásig From the VHDL Code to the Implementation to FPGA-s A VHDL kódtól az FPGA-ba való ágyazásig From the VHDL Code to the Implementation to FPGA-s KIREI Botond Sándor Kolozsvár Abstract The purpose of the VHDL hardvare describing language is to descibe the

Részletesebben

Digitális eszközök típusai

Digitális eszközök típusai Digitális eszközök típusai A digitális eszközök típusai Digitális rendszer fogalma Több minden lehet digitális rendszer Jelen esetben digitális integrált áramköröket értünk a digitális rendszerek alatt

Részletesebben

1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)

1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül

Részletesebben

VHDL alapú tervezés. (nem a teljes változat) Írta : Dr. Hidvégi Timót egyetemi docens

VHDL alapú tervezés. (nem a teljes változat) Írta : Dr. Hidvégi Timót egyetemi docens VHDL alapú tervezés (nem a teljes változat) Írta : Dr. Hidvégi Timót egyetemi docens BEVEZETÉS... 4 A VHDL NYELV MEGADÁSA... 5 A VHDL NYELV ELEMEI... 5 Kommentek... 5 Fentartott szavak... 5 Adattípusok...

Részletesebben

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Irányítástechnika 1. 9. Elıadás. PLC-k programozása

Irányítástechnika 1. 9. Elıadás. PLC-k programozása Irányítástechnika 1 9. Elıadás PLC-k programozása Irodalom - Helmich József: Irányítástechnika I, 2005 - Zalotay Péter: PLC tanfolyam - Jancskárné Anweiler Ildikó: PLC programozás az IEC 1131-3 szabvány

Részletesebben

Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István

Laborgyakorlat 3 A modul ellenőrzése szimulációval. Dr. Oniga István Laborgyakorlat 3 A modul ellenőrzése szimulációval Dr. Oniga István Szimuláció és verifikáció Szimulációs lehetőségek Start Ellenőrzés után Viselkedési Funkcionális Fordítás után Leképezés után Időzítési

Részletesebben

VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC)

VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) VIII. BERENDEZÉSORIENTÁLT DIGITÁLIS INTEGRÁLT ÁRAMKÖRÖK (ASIC) 1 A korszerű digitális tervezés itt ismertetendő (harmadik) irányára az a jellemző, hogy az adott alkalmazásra céleszközt (ASIC - application

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 7. ELŐADÁS AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben