XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat"

Átírás

1 XI. DIGITÁLIS RENDSZEREK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Ebben a fejezetben a digitális rendszerek analóg viselkedésével kapcsolatos témákat vesszük sorra. Elsőként arra térünk ki, hogy a logikai értékek képviselhetők áram- és feszültségértékekkel (értéktartományokkal) egyaránt. A két megközelítéstől függően merőben más módon valósíthatók meg a logikai függvények és a belőlük felépülő összetettebb digitális rendszerek 1

2 XI.1. ÁRAMLOGIKA A digitális áramkörök áramlogikás megvalósításánál a logikai állapotokat abban nyilvánulnak meg, hogy egy vezetéken folyik áram, vagy nem folyik. Az áram ki- és bekapcsolását kapcsolókkal végezzük. 2

3 Ez a megoldás elsősorban az automatizálásban jellemző, szerszámgépek és gyártóvonalak vezérlését oldják meg így. Viszonylag egyszerű kombinációs és sorrendi hálózatokról van szó, a működési sebesség rendszerint szerény. Ritkán ugyan, de a korszerű feszültséglogikára épülő digitális integrált áramkörök belső szerkezetében is előfordulnak áramlogikai elemek. 3

4 KAPCSOLÓK ÉS MÁGNESKAPCSOLÓK Az áramlogikában alkalmazott kapcsolók működtetése lehetséges mechanikai beavatkozással vagy elektromágnessel. 4

5 Az áramlogikával működő berendezéseknél a belső logikát mágneskapcsolókkal oldják meg. Itt az érintkezőt elektromágnes mozgatja. Szerkezettől függően akkor történik bekapcsolás, ha az elektromágnes áramot kap (munkaérintkező) vagy akkor, amikor nem kap (nyugvó érintkező). A kisebb mágneskapcsolókat reléknek (vagy jelfogóknak) nevezik, a nagyobbak a kontaktorok. 5

6 Az ábrán különböző mágneskapcsolókat látunk. 6

7 LOGIKAI FÜGGVÉNYEK MEGVALÓSÍTÁSA KAPCSOLÓKKAL Kapcsolók működtetésével logikai függvényeket tudunk megvalósítani. Az ábrán a fogyasztó bekapcsolása ÉS, VAGY és NEM függvény szerint történik a kapcsolók állásának függvényében. 7

8 PROGRAMOZHATÓ LOGIKAI VEZÉRLŐK (PLC) Ma az összetettebb áramlogikás kapcsolások helyett programozható logikai vezérlőkön (PLC programmable logic controller) futó szoftveres megoldásokat alkalmaznak. A PLC egy ipari felhasználásra alkalmas mikroszámítógép, a jellemző szerkezetet az ábra mutatja. 8

9 9

10 XI.2. FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak a digitális alkatrészek és rendszerek megvalósításánál. A feszültséglogikánál a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy legyen egymástól a biztonságos működés végett, így az egyiket nulla voltra állítjuk, a másikat meg a tápfeszültséggel tesszük egyenlővé. 10

11 A következő ábra kapcsolótranzisztorral és ellenállásokkal megépített egyszerű megoldást (logikai inverter) mutat a logikai szintek létrehozására. Magas bemeneti szintnél (Vin=5 V) a tranzisztor telítésben van, ez nullához közeli kimeneti feszültséget eredményez. Alacsony bemeneti szint esetén (Vin=0 V)a tranzisztor lezárásban üzemel, a kollektor árama elhanyagolható, így a kimeneti feszültség a tápfeszültség közelében van. 11

12 A kimenet 0 a kimenet 1-es állapotban van 12

13 BIPOLÁRIS TRANZISZTOROKKAL MEGVALÓSÍTOTT LOGIKAI ELEMEK Az első, széles körben elterjedt, digitális integrált áramkörcsaládokat bipoláris tranzisztorokkal építették. Az első bipoláris áramkörcsalád TTL (transistor-transistor-logic) név alatt vált ismertté. Az SN7400 típusú TTL NAND kapu belső szerkezetét az ábrán láthatjuk. A kapcsolás elsősorban bipoláris tranzisztorokat tartalmaz, de szükségesek bizonyos ellenállások és diódák is. 13

14 14

15 A TTL sorozat kifejlesztését megelőzően voltak különböző próbálkozások logikai funkciók félvezetős megoldására. Egy ilyen próbálkozás diódák, ellenállások és tápfeszültség segítségével valósítanak meg ÉS (a ábra) és VAGY kaput (b ábra). Az a ábrán, ha egyik vagy mindkét dióda katódját (A és B bemeneti változók) lehúzzuk a földpontra, a kimeneten (C pont) néhány száz mv feszültséget kapunk, ez tekinthető logikai nullának. Ha mindkét bemenetet felemeljük a tápfeszültségre (5 V), a kimeneten is kb. ez az érték alakul ki. 15

16 A b ábrán, ha egyik vagy mindkét dióda anódját magas szintre emeljük (5 V), a kimeneti jel (C pont) ennél néhány száz mv-tal alacsonyabb lesz ugyan, de ez elfogadható magas logikai szintnek. 16

17 NMOS ÉS CMOS LOGIKAI ELEMEK Logikai elemek építhetők csak N csatornás-, vagy csak P csatornás MOSFET-ek és ellenállások felhasználásával. Pl. az alábbi ábra NMOS NOR kapcsolást mutat: egyik vagy mindkét MOSFET bemenetére magas logikai szintet vezetve a kimenet alacsony szintre esik. 17

18 A CMOS kapcsolások ugyanazon a szilícium lapon P csatornás és N csatornás MOSFET-eket kombinálnak a logikai kapuk és illesztők-, valamint a belőlük kialakítandó bonyolultabb áramkörök megvalósítására. Az ábra CMOS NAND kapu kapcsolási rajzát mutatja. 18

19 A kapcsolás működését az alábbi ábrák szemléltetik. Az egyes MOSFET-ek kapcsolóknak tekinthetők. Az alsó ágban elhelyezkedő N csatornás MOSFET-ek magas bemeneti logikai szintnél vezetnek, a felső ágban a P csatornás MOSFET-ek alacsony bemeneti szintnél vezetnek. 19

20 A 20

21 XI.3. IDŐBENI VISELKEDÉS LEÍRÁSA A digitális áramkörök időbeli viselkedését idődiagramokkal adjuk meg. Ezek a diagramok egyrészt az áramkör belső jelei közötti összefüggéseket mutatják, másrészt definiálják a külső jelekkel kapcsolatos elvárásokat. A mai digitális rendszerek többsége szinkron szekvenciális hálózat, amely órajel vezérlése alatt, lépésről-lépésre végzi a műveleteket. Az órajel maximális frekvenciáját a megfelelő fokozatok késései korlátozzák. 21

22 Az a ábrán megadott kombinációs hálózat időbeni viselkedését a b vagy a c ábrán megadott módon szokásos ábrázolni. A görbenyilak a rajzon ok-okozati összefüggést mutatnak. A GO jel kezdeményezi a READY és a DAT jelek logikai szintjének megváltozását. A várható késéseket trdy-nal és tdat-tal jelöltük. Ha valamilyen gyártott alkatrészről van szó, ezeket a késéseket az alkatrész adatlapján táblázat formájában adják meg. 22

23 A 23

24 Az egyes késésekre rendszerint nem csak egy, hanem három értéket adnak meg: minimális, tipikus és maximális késés, mivel a gyártási és az alkalmazási különbségek miatt a késések változóak. Szokásos a c ábrán látható módon is ábrázolni az időbeni viselkedést: megrajzoljuk a jelet a legkisebb és a legnagyobb késés esetére, a köztes részt pedig bevonalkázzuk. 24

25 XI.4. LOGIKAI HAZÁRDJELENSÉGEK A digitális áramkörök késései nem csak egyszerűen késleltetik a kimeneti jelek létrejöttét, hanem komoly működési zavarokat is okozhatnak, ezeket nevezzük logikai hazárdoknak. Minden olyan jelenséget ide sorolunk, amely hosszabb vagy rövidebb ideig nem a várt logikai értéket (hanem az ellenkezőjét) adja, vagy egyáltalán nem logikai értéket ad, hanem valamilyen köztes állapotot. Az alábbi pontokban megtárgyaljuk a különböző típusú hazárdjelenségeket. 25

26 STATIKUS HAZÁRD Statikus hazárd alatt olyan eseteket értünk, amikor a hálózat adott pontjában, a szemlélt időben, folyamatosan logikai nullát vagy logikai egyest várunk (a logikai egyenletek vagy a működési táblázat alapján), de rövid időre az ellenkező érték jelenik meg. Nevezhetjük az ilyen jelenséget megcsuklásnak is, de használatos az angol glitch kifejezés is. 26

27 Legegyszerűbb példaként szemléljük az alábbi egyszerű kapcsolást. A viselkedés a következő egyenlettel írható le: Ha figyelembe vesszük a logikai inverter késését, a bemeneti jel felfutó élét követően egy rövid logikai egyest kapunk a kimeneten. 27

28 DINAMIKUS HAZÁRD Dinamikus hazárd alatt azt értjük, hogy a hálózat adott pontjában változik a logikai érték a logikai egyenleteknek megfelelően, de ez a változás nem szabályosan történik, hanem többszöri odavissza ugrás jelentkezik (ábra). Ennek oka rendszerint az, hogy a szemlélt bemeneti állapotváltozás több változás kezdeményez a hálózaton belül és ezek a változások különböző késések után hatnak a kimenetre. 28

29 Példaként tekintsük az alábbi hálózatot. Az X bemenet változása három útvonalon is terjed a kimenet felé. Bejelöltük a közbenső logikai elemek kimeneteinek változásait. Csak a két VAGY kapu késéseit vesszük figyelembe, a felső kapu késése kisebb, az alsóé nagyobb. 29

30 A 30

31 Amikor az X bemenet nulláról egyesre vált, a két VAGY kapuhoz kötött ÉS kapu statikus hazárdot (0 1 0) generál a késések különbözősége miatt. Ez, kombinálva az alsó ágban jelentkező állapotváltozással, létrehozza a kimeneten a dinamikus hazárdnak nevezett többszörös változást ( ). Dinamikus hazárd nem szokott fellépni a szabályosan megszerkesztett, kétfokozatú ÉS- VAGY ill. VAGY-ÉS hálózatokban. 31

11.2. A FESZÜLTSÉGLOGIKA

11.2. A FESZÜLTSÉGLOGIKA 11.2. A FESZÜLTSÉGLOGIKA Ma a feszültséglogika számít az uralkodó megoldásnak. Itt a logikai változó két lehetséges állapotát két feszültségérték képviseli. Elvileg a két érték minél távolabb kell, hogy

Részletesebben

Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor

Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor Tantárgy: DIGITÁLIS ELEKTRONIKA Tanár: Dr. Burány Nándor 4. félév Óraszám: 2+2 1 I. RÉSZ A DIGITÁLIS ÁRAMKÖRÖK FIZIKAI MEGVALÓSÍTÁSÁNAK KÉRDÉSEI Általános témák, amelyek vonatkoznak az SSI, MSI, LSI és

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Tantárgy: Szakmai gyakorlat Szakmai alapozó évfolyamok számára Összeállította: Farkas Viktor Bevezetés Az irányítástechnika felosztása Visszatekintés TTL CMOS integrált áramkörök

Részletesebben

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.

Részletesebben

IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK

IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK IRÁNYÍTÁSTECHNIKAI ALAPFOGALMAK, VEZÉRLŐBERENDEZÉSEK FEJLŐDÉSE, PLC-GENERÁCIÓK Irányítástechnika Az irányítás olyan művelet, mely beavatkozik valamely műszaki folyamatba annak: létrehozása (elindítása)

Részletesebben

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0

Feszültségszintek. a) Ha egy esemény bekövetkezik akkor az értéke 1 b) Ha nem következik be akkor az értéke 0 Logikai áramkörök Feszültségszintek A logikai rendszerekben az állapotokat 0 ill. 1 vagy H ill. L jelzéssel jelöljük, amelyek konkrét feszültségszinteket jelentenek. A logikai algebrában a változókat nagy

Részletesebben

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

10.1. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ 101 ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel történik A feldolgozás előtt az analóg jeleket digitalizálni kell Rendszerint az

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ

X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.

Részletesebben

DIGITÁLIS TECHNIKA 11. Előadás

DIGITÁLIS TECHNIKA 11. Előadás DIGITÁLIS TECHNIKA 11. Előadás Előadó: Dr. Oniga István Egyetemi docens 2010/2011 II félév Digitális integrált áramkörök technológiája A logikai áramkörök megépítéséhez elıször is ki kell választanunk

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

Irányítástechnika Elıadás. A logikai hálózatok építıelemei

Irányítástechnika Elıadás. A logikai hálózatok építıelemei Irányítástechnika 1 6. Elıadás A logikai hálózatok építıelemei Irodalom - Kovács Csongor: Digitális elektronika, 2003 - Zalotay Péter: Digitális technika, 2004 - U. Tiecze, Ch. Schenk: Analóg és digitális

Részletesebben

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK 3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek

Részletesebben

A PC vagyis a személyi számítógép. VII. rész

A PC vagyis a személyi számítógép. VII. rész ismerd meg! A PC vagyis a személyi számítógép MOS logikai integrált áramkörök II. rész A MOS logikai áramkörök kapcsolástechnikai megvalósítását és mûködését egy egyszerû, diszkrét alkatrészekbõl felépített

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Hazárdjelenségek a kombinációs hálózatokban

Hazárdjelenségek a kombinációs hálózatokban Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor

Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Integrált áramkörök/3 Digitális áramkörök/2 CMOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák A CMOS inverter, alapfogalmak működés, számitások, layout CMOS kapu áramkörök

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök

Hobbi Elektronika. Bevezetés az elektronikába: Logikai kapuáramkörök Hobbi Elektronika Bevezetés az elektronikába: Logikai kapuáramkörök 1 Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja BME FKE: Logikai áramkörök Colin Mitchell: 200 Transistor

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:

Részletesebben

1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD)

1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1. DIGITÁLIS TERVEZÉS PROGRAMOZHATÓ LOGIKAI ÁRAMKÖRÖKKEL (PLD) 1 1.1. AZ INTEGRÁLT ÁRAMKÖRÖK GYÁRTÁSTECHNOLÓGIÁI A digitális berendezések tervezésekor számos technológia szerint gyártott áramkörök közül

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 8. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

5. Hét Sorrendi hálózatok

5. Hét Sorrendi hálózatok 5. Hét Sorrendi hálózatok Digitális technika 2015/2016 Bevezető példák Példa 1: Italautomata Legyen az általunk vizsgált rendszer egy italautomata, amelyről az alábbi dolgokat tudjuk: 150 Ft egy üdítő

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

MIKROELEKTRONIKA, VIEEA306

MIKROELEKTRONIKA, VIEEA306 Budapesti Műszaki és Gazdaságtudományi Egyetem MIKROELEKTRONIKA, VIEEA306 A MOS inverterek http://www.eet.bme.hu/~poppe/miel/hu/13-mosfet2.ppt http://www.eet.bme.hu Vizsgált absztrakciós szint RENDSZER

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 200. május 4. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 200. május 4. 8:00 Az írásbeli vizsga időtartama: 80 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Diszkrét aktív alkatrészek és egyszerû alkalmazásaik. Elmélet A diszkrét aktív elektronikai alkatrészek (dióda, különbözõ tranzisztorok, tirisztor) elméleti

Részletesebben

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet 2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész Hobbi Elektronika A digitális elektronika alapjai: Sorrendi logikai áramkörök 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog HDL,

Részletesebben

DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint IGIÁIS ENIK II r. ovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és echnológia Intézet 0. EŐÁS OGIKI ÁRMKÖRÖK II MOS ÉS MOS Z EŐÁS ÉS NNG z előadások Rőmer Mária: igitális rendszerek áramkörei

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGITÁLIS TEHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 8. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk egyenáramú jellemzése és alkalmazásai. Elmélet Az erõsítõ fogalmát valamint az integrált mûveleti erõsítõk szerkezetét és viselkedését

Részletesebben

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István

PAL és GAL áramkörök. Programozható logikai áramkörök. Előadó: Nagy István Programozható logikai áramkörök PAL és GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE

1. EGY- ÉS KÉTVÁLTOZÓS LOGIKAI ELEMEK KAPCSOLÁSTECHNIKÁJA ÉS JELÖLŐRENDSZERE . EGY- ÉS KÉTVÁLTOZÓS LOGIKI ELEMEK KPCSOLÁSTECHNIKÁJ ÉS JELÖLŐRENDSZERE tananyag célja: z egy- és kétváltozós logikai függvények Boole algebrai szabályainak, kapcsolástechnikájának és jelölésrendszerének

Részletesebben

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás

FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás FÉLVEZETŐ ESZKÖZÖK II. Elektrotechnika 5. előadás A tranzisztor felfedezése A tranzisztor kifejlesztését a Lucent Technologies kutatóintézetében, a Bell Laboratóriumban végezték el. A laboratóriumban három

Részletesebben

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK 28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök

Részletesebben

PAL és s GAL áramkörök

PAL és s GAL áramkörök Programozható logikai áramkörök PAL és s GAL áramkörök Előadó: Nagy István Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó,

Részletesebben

29.B 29.B. Kombinációs logikai hálózatok

29.B 29.B. Kombinációs logikai hálózatok 29.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a kombinációs hálózatok jellemzıit! Ismertesse az alapfüggvényeket megvalósító TTL és CMOS kapuáramkörök jellemzıit és kimeneti megoldásait!

Részletesebben

6. hét: A sorrendi hálózatok elemei és tervezése

6. hét: A sorrendi hálózatok elemei és tervezése 6. hét: A sorrendi hálózatok elemei és tervezése Sorrendi hálózat A Sorrendi hálózat Y Sorrendi hálózat A Sorrendi hálózat Y Belső állapot Sorrendi hálózat Primer változó A Sorrendi hálózat Y Szekunder

Részletesebben

3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA

3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA 3. A DIGILENT BASYS 2 FEJLESZTŐLAP LEÍRÁSA Az FPGA tervezésben való jártasság megszerzésének célszerű módja, hogy gyári fejlesztőlapot alkalmazzunk. Ezek kiválóan alkalmasak tanulásra, de egyes ipari tervezésekhez

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 01 Automatikai technikus

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

Műveleti erősítők - Bevezetés

Műveleti erősítők - Bevezetés Analóg és digitális rsz-ek megvalósítása prog. mikroák-kel BMEVIEEM371 Budapesti Műszaki és Gazdaságtudományi Egyetem Műveleti erősítők - Bevezetés Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2014.

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. október 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2008. május 26. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 26. 8:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával

Részletesebben

MUNKAANYAG. Mádai László. Logikai alapáramkörök. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Mádai László. Logikai alapáramkörök. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Mádai László Logikai alapáramkörök A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja: SzT-017-50

Részletesebben

1. Visszacsatolás nélküli kapcsolások

1. Visszacsatolás nélküli kapcsolások 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

Billenőkörök. Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: 1 1 1 nem megen

Billenőkörök. Mindezeket összefoglalva a bistabil multivibrátor az alábbi igazságtáblázattal jellemezhető: 1 1 1 nem megen Billenőkörök A billenőkörök, vagy más néven multivibrátorok pozitívan visszacsatolt, kétállapotú áramkörök. Kimeneteik szigorúan két feszültségszint (LOW és HIGH) között változnak. Rendszerint két kimenettel

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Elektronikai

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű

Részletesebben

ÁRAMKÖRÖK SZIMULÁCIÓJA

ÁRAMKÖRÖK SZIMULÁCIÓJA ÁRAMKÖRÖK SZIMULÁCIÓJA Az áramkörök szimulációja révén betekintést nyerünk azok működésébe. Meg tudjuk határozni az áramkörök válaszát különböző gerjesztésekre, különböző üzemmódokra. Végezhetők analóg

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 3. rész egyetemi docens - 1 - DC motorvezérlés H-híd: +V r Motor mozgatás előre Motor mozgatás hátra Fékezés Szabadonfutás a vezérlés függvényében UL LL + Ø - UR LR

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 523 02 Elektronikai technikus

Részletesebben

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, áramköri, tervezési feladatok

Részletesebben

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István

DIGITÁLIS TECHNIKA 7. Előadó: Dr. Oniga István IGITÁLIS TECHNIKA 7 Előadó: r. Oniga István Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók S tárolók JK tárolók T és típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

8.3. AZ ASIC TESZTELÉSE

8.3. AZ ASIC TESZTELÉSE 8.3. AZ ASIC ELÉSE Az eddigiekben a terv helyességének vizsgálatára szimulációkat javasoltunk. A VLSI eszközök (közöttük az ASIC) tesztelése egy sokrétűbb feladat. Az ASIC modellezése és a terv vizsgálata

Részletesebben

Digitális Technika 2. Logikai Kapuk és Boolean Algebra

Digitális Technika 2. Logikai Kapuk és Boolean Algebra Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.

Részletesebben

Magyar nyelvű szakelőadások a 2000-2001-es tanévben

Magyar nyelvű szakelőadások a 2000-2001-es tanévben Erdélyi Magyar Műszaki Tudományos Társaság Magyar nyelvű szakelőadások a 2000-2001-es tanévben Kolozsvári Műszaki Egyetem Számítástechnika Kar Szerzők dr. Baruch Zoltán Bíró Botond dr. Buzás Gábor dr.

Részletesebben

Mikroelektronikai tervezés tantermi gyakorlat

Mikroelektronikai tervezés tantermi gyakorlat Mikroelektronikai tervezés tantermi gyakorlat Gärtner Péter, Ress Sándor 2010 április 1 Az átcsúszó selejt Előadáson levezetve az átcsúszó selejtre: Y = yield, kihozatal C = fault coverage, hibalefedés

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

Tájékoztató. Használható segédeszköz: számológép

Tájékoztató. Használható segédeszköz: számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) és a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított szakmai és vizsgakövetelménye

Részletesebben

Laptop: a fekete doboz

Laptop: a fekete doboz Laptop: a fekete doboz Dankházi Zoltán ELTE Anyagfizikai Tanszék Lássuk a fekete doboz -t NÉZZÜK MEG! És hány GB-os??? SZEDJÜK SZÉT!!!.2.2. AtomCsill 2 ... hát akkor... SZEDJÜK SZÉT!!!.2.2. AtomCsill 3

Részletesebben

Digitális technika házi feladat III. Megoldások

Digitális technika házi feladat III. Megoldások IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c

Részletesebben

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA

ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA ELEKTROTECHNIKA-ELEKTRONIKA ELEKTROTECHNIKA 1. Egyenáramú körök Követelmények, matematikai alapok, prefixumok Töltés, áramerősség Feszültség Ellenállás és vezetés. Vezetők, szigetelők Áramkör fogalma Áramköri

Részletesebben

Tájékoztató. Használható segédeszköz: számológép

Tájékoztató. Használható segédeszköz: számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított), a 27/2012 (VIII. 27.) NGM rendelet a 29/2016 (III.26.) NMG rendelet által módosított, a 27/2012 (VIII. 27.) NGM rendelet

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

Alapvető információk a vezetékezéssel kapcsolatban

Alapvető információk a vezetékezéssel kapcsolatban Alapvető információk a vezetékezéssel kapcsolatban Néhány tipp és tanács a gyors és problémamentes bekötés érdekében: Eszközeink 24 V DC tápellátást igényelnek. A Loxone link maximum 500 m hosszan vezethető

Részletesebben

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.

Részletesebben

Billenőkörök. Billenő körök

Billenőkörök. Billenő körök Billenő körök A billenőkörök, vagy más néven multivibrátorok pozitívan visszacsatolt, kétállapotú áramkörök. Kimeneteik szigorúan két feszültségszint (LOW és HIGH) között változnak. A billenőkörök rendszerint

Részletesebben

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások

Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Hálózati egyenirányítók, feszültségsokszorozók Egyenirányító kapcsolások Egyenirányítás: egyenáramú komponenst nem tartalmazó jelből egyenáramú összetevő előállítása. Nemlineáris áramköri elemet tartalmazó

Részletesebben

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem

Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! Óbudai Egyetem Elektronika laboratóriumi mérőpanel elab panel NEM VÉGLEGES VÁLTOZAT! 1 Óbudai Egyetem 2 TARTALOMJEGYZÉK I. Bevezetés 3 I-A. Beüzemelés.................................. 4 I-B. Változtatható ellenállások...........................

Részletesebben

Analóg elektronika - laboratóriumi gyakorlatok

Analóg elektronika - laboratóriumi gyakorlatok Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)

Részletesebben

Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék

Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök. Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Integrált áramkörök/2 Digitális áramkörök/1 MOS alapáramkörök Rencz Márta Ress Sándor Elektronikus Eszközök Tanszék Mai témák Az inverter, alapfogalmak Kiürítéses típusú MOS inverter Kapuáramkörök kialakítása

Részletesebben

Elektronika 1. 4. Előadás

Elektronika 1. 4. Előadás Elektronika 1 4. Előadás Bipoláris tranzisztorok felépítése és karakterisztikái, alapkapcsolások, munkapont-beállítás Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch.

Részletesebben

Koincidencia áramkörök

Koincidencia áramkörök Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van

Részletesebben

Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.

Versenyző kódja: 28 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. 54 523 02-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 523 02 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/áramköri/tervezési

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

AUTOMATIKAI ÉS ELEKTRONIKAI ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ ATOMATKA ÉS ELEKTONKA SMEETEK KÖZÉPSZNTŰ ÍÁSBEL VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ A MNTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40. Egy A=,5 mm keresztmetszetű alumínium (ρ= 0,08 Ω mm /m)

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET)

Hobbi Elektronika. Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) Hobbi Elektronika Bevezetés az elektronikába: Térvezérlésű tranzisztorok (FET) 1 Felhasznált irodalom Sulinet Tudásbázis: Unipoláris tranzisztorok Electronics Tutorials: The MOSFET CONRAD Elektronik: Elektronikai

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben