DIGITÁLIS TECHNIKA I

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DIGITÁLIS TECHNIKA I"

Átírás

1 DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS

2 Arató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, Budapest, Műegyetemi Kiadó, 5503 műegyetemi jegyzet Zsom Gyula: Digitális technika I és II, Műszaki Könyvkiadó, Budapest, (KVK /I és II) Rőmer Mária: Digitális rendszerek áramkörei, Műszaki Könyvkiadó, Budapest, (KVK ) Rőmer Mária: Digitális technika példatár, KKMF 05, Budapest Az előadás ezen könyvek megfelelő fejezetein alapszik.

3 TERVEZÉSI GYAKORLAT (3) Egy kombinációs hálózat bemenetei A, B, C, D, kimenetei X, Y, Z. A bemenetet mint 2 db 2 bites számot értelmezve (AB, A a magasabb helyérték), illetve (CD, C a magasabb helyérték), a kimenet legyen a két bemenet összege, (XYZ, X a legmagasabb helyérték), XYZ = AB + CD. Pl. 0 = + 0 (bináris összeadás). Adja meg a hálózat igazságtábláját. Adja meg a hálózat kimenetenként legegyszerűbb logikai függvényeit algebrai alakban. 3

4 TERVEZÉS (3): MEGOLDÁS A B C D X Y Z Például ha A B C D = 0 akkor X Y Z = 0 0 mivel A B + C D 0 = X Y Z 0 0 4

5 TERVEZÉS (3): MEGOLDÁS A tervezés és megoldás első lépése a feladat megfogalmazása alapján a kimeneti függvényekre vonatkozó igazságtáblázat felírása. Ebben az esetben három független kimeneti változó van, így mindhárom változóra el kell végezni a minimalizálást. 5

6 TERVEZÉS (3): IGAZSÁGTÁBLÁZAT A B C D X Y Z

7 TERVEZÉS (3): LOGIKAI FÜGGVÉNYEK Az igazságtáblázatból a három logikai függvény könnyen kiolvasható 4 X = S(7,0,,3,4,5) 4 Y = S(2,3,5,6,8,9,2,5) 4 Z = S(,3,4,6,9,,2,4) 7

8 X(A,B,C,D) MINIMALIZÁLÁSA C A minimalizált függvény A B X = A C + B C D + A B D D 8

9 TERVEZÉS (3): MINIMALIZÁLT, FÜGGVÉNYEK A Karnaugh táblából a három minimalizált függvény könnyen kiolvasható X = A C + B C D + A B D Y = A C D + A B C + A C D + A B C + A B C D + A B C D Z = B D + B D (Esetleg XOR logika?) 9

10 TERVEZÉSI PÉLDA (4) NAPTÁR KIJELZŐ Feladat: napok száma adott hónapban, karóra LCD kijelzője vezérléséhez Bemenetek: hónap, szökőév flag Kimenetek: napok száma, négy kimeneti vonal integer number_of_days ( month, leap_year_flag) { switch (month) { case : return (3); case 2: if (leap_year_flag == ) then return (29) else return (28); case 3: return (3); case 4: return (30); case 5: return (3); case 6: return (30); case 7: return (3); case 8: return (3); case 9: return (30); case 0: return (3); case : return (30); case 2: return (3); default: return (0); } } 0

11 FORMÁLIS MEGFOGALMAZÁS Kódolás: hónap: 4 bites bináris szám (m8,m4,m2,m), szökőév: bit, 4 vonal 28, 29, 30 és 3, egyszerre csak egy aktív month leap month leap

12 NAPTÁR: 3 NAPOS HÓNAP C A színkóddal jelölt lefedés szerint A D B F = A D + A D A közömbös kombinációk előnyösen kihasználhatók a függvény minimalizálásánál! 2

13 NAPTÁR: 30 NAPOS HÓNAP - C A lefedés szerint F = A D + A B D A B D 3

14 REALIZÁLÁS: DISZKRÉT KAPUK Diszkrét kapuk 28 = 29 = 30 = 3 = m8 m4 m2 m leap m8 m4 m2 m leap m8 m4 m + m8 m m8 m + m8 m month leap

15 TERVEZÉSI PÉLDA (5): BCD/7-SZEGMENSES KIJELZŐ DEKÓDOLÓ Bemenet : 4 bit BCD digit (A, B, C, D) Kimenet : 7 szegmens vezérlőjele (C0-C6) c5 c4 c0 c6 c c2 c3 c0 c c2 c3 c4 c5 c6 BCD to 7 segment control signal decoder A B C D (MSI változat: 7446, 7447, 7447, 7449) 5

16 Igazságtábla don't care termek Megvalósítási technika megválasztása Ha ROM, akkor kész Don't care termek PAL/PLA előnyös lehet A kiválasztott technikától függően minimalizálás Karnaugh táblákon A FELADAT ANALÍZISE A B C D C0 C C2 C3 C4 C5 C

17 MINIMALIZÁLÁSI PÉLDA (C0) C C0 0 A B C0 = A + C + B D + B D - - D 7

18 HÉT KIMENET FÜGGETLEN MINIMALIZÁLÁSA 5 term ha a kimeneteket külön-külön kezeljük A A A A A 0 X X X 0 X 0 X C 0 X X X X X D C 0 X X X 0 X X D C X X X 0 X X D C 0 X 0 0 X X X X D C 0 0 X X X X X D B B B B B A A C X 0 X 0 0 X X 0 X X B D C 0 X 0 X 0 X X X X B D C0 = A + B D + C + B' D' C = C' D' + C D + B' C2 = B + C' + D C3 = B' D' + C D' + B C' D + B' C C4 = B' D' + C D' C5 = A + C' D' + B D' + B C' C6 = A + C D' + B C' + B' C Don t care termek: erős egyszerűsítések adódnak! 8

19 MINIMALIZÁLÁS KÖZÖS TERMEKKEL Jobb megoldás is van! 9 különböző szorzat tag (5 helyett) Közös termek Az egyes kimenetek nem szükségképen minimális C2 A X C2 A X C X X X 0 X X D C X X X 0 X X D B B C0 = A + B D + C + B' D' C = C' D' + C D + B' C2 = B + C' + D C3 = B' D' + C D' + B C' D + B' C C4 = B' D' + C D' C5 = A + C' D' + B D' + B C' C6 = A + C D' + B C' + B' C C0 = B C' D + C D + B' D' + B C D' + A C = B' D + C' D' + C D + B' D' C2 = B' D + B C' D + C' D' + C D + B C D' C3 = B C' D + B' D + B' D' + B C D' C4 = B' D' + B C D' C5 = B C' D + C' D' + A + B C D' C6 = B' C + B C' + B C D' + A 9

20 PLA REALIZÁLÁS A B C D BC' B'C B'D BC'D C'D' CD B'D' A BCD' C0 C C2 C3 C4 C5 C6 C7 20

21 A SZÁMJEGYES MINIMALIZÁLÁS ALAPJAI Quine-McCluskey módszer Algoritimizálható, programozható. Logikai függvényegyszerűsítéshez a Karnaugh-táblák használata korlátozott: <5 változós függvények Egyszerre egyetlen kimeneti függvény Szubjektív megközelítés, különböző eredmények Mintermek: alsó indexek egyértelműen megadják. Csupán ezek ismeretén alapuló minimalizálási eljárás: a végrehajthatóság nem függ a változók számától. 2

22 MINTERMEK SZOMSZÉDOSSÁGA A minimalizálás alapja a szomszédos mintermek megkeresése, egyszerűsítése, míg el nem jutunk a prímimplikánsokig. Két minterm szomszédosságának szükséges és elégséges feltétele három állítással adható meg, melyeknek egyszerre kell, hogy teljesülniük. Lényeges, hogy e feltételek megfogalmazhatók kizárólag a mintermek alsó indexei értékeire alapozva. 22

23 KÉT MINTERM SZOMSZÉDOSSÁGÁNAK FELTÉTELE () Két minterm szomszédos, ha decimális indexeik különbsége 2 egész számú hatványa A B C D + A B C D A C D Ez szükséges de nem elégséges feltétel, mivel pl. a 2 és 4 indexű mintermekre is teljesül, de ezek nem szomszédosak. 23

24 KÉT MINTERM SZOMSZÉDOSSÁGÁNAK FELTÉTELE (2) Két minterm szomszédos, ha bináris súlyaik (-esek száma) különbsége. _ 6 00 (2) A B C D + A B C D A C D () 4 () Egyikük egyel és csakis egyel több -est tartalmaz bináris formájában. Ez is szükséges de nem elégséges feltétel, mivel pl. a 2 és 4 indexű mintermekre, bár a decimális különbség 2 hatványa, éppen ez a feltétel mely nem teljesül. 24

25 KÉT MINTERM SZOMSZÉDOSSÁGÁNAK FELTÉTELE (3) A két minterm szomszédos, ha a nagyobb bináris súlyú mintermnek a decimális indexe is nagyobb a másikénál. _ 6 00 (2) A B C D + A B C D A C D () 4 () 6 > 2 és 2 > Ez is szükséges de önmagában nem elégséges feltétel, mivel pl. a 7 és 9 indexű mintermekre, melyekre az első két feltétel áll, éppen ez nem teljesül, persze ezek nem szomszédosak. 25

26 QUINE-MCCLUSKEY ALGORITMUS Bizonyítható azonban, hogy ezen három feltétel egyidejű teljesülése már nemcsak szükséges hanem elégséges feltétele a két term szomszédosságának. Ezen alapul a Quine-McCluskey algoritmus. 26

27 QUINE-MCCLUSKEY ALGORITMUS A számjegyes minimalizálás Quine-McCluskey féle algoritmusa ezen három feltétel alapján, kizárólag a mintermek indexeit vizsgálva válogatja párba a mintermeket, majd egyszerűsítés után a folyamatot addig ismétli míg el nem jut a prímimplikánsokig. Az algoritmus az összes prímimplikánst eredményezi így a második lépés az, hogy ki kell választani közülük a lényeges prímimplikánsokat. Az algoritmus gyakorlati alkalmazását egy példa mutatja be. 27

28 QUINE-MCCLUSKEY MINIMALIZÁLÁS Minimalizálandó függvény: f ( A,B,C,D)= Sm( 0, 2, 3, 5, 7, 8,0,3,5) minterms = 0 Þ 0 = Þ 2, 8 = 2 Þ 3, 5,0 = 3 Þ 7,3 = 4 Þ 5 A mintermeket az indexeik bináris vagy Hamming súlya szerint csoportosítjuk 28

29 MINTERM TÁBLA Súly 0 Minterm

30 SZOMSZÉDOK MEGKERESÉSE Súly Minterm Párok Két minterm szomszédos, ha decimális indexeik különbsége 2 egész számú hatványa ü0 0,2 (2) ü2 ü ,8 (8) Összevonás szomszédos csoportok között, ha az indexek különbsége, 2, 4, 8, stb. Felhasznált termek megjelölendők. Egy term több párban is szerepelhet

31 AZ ÖSSZES SZOMSZÉDPÁR Súly Minterm Pár 0 2 ü0 0,2 (2) 0,8 (8) ü2 2,3 () ü8 2,0 (8) 8,0 (2) ü3 3,7 (4) ü5 5,7 (2) ü0 5,3 (8) 3 ü7 ü3 7,5 (8) 3,5 (2) 4 ü5 Ezután a párokat kell párosítani: 4-es csoportok 3

32 NÉGYES CSOPORTOK Súly Minterm Pár Négyes Két minterm szomszédos, ha bináris súlyaik (-esek száma) különbsége. Kék csillag * : prímimplikáns Ezek a tagok nem lettek összevonva * * 4 ü5 ü0 ü0,2 (2) ü0,8 (8) ü2 2,3 () ü8 ü2,0 (8) ü8,0 (2) ü3 3,7 (4) ü5 ü5,7 (2) ü0 ü5,3 (8) ü7 ü7,5 (8) ü3 ü3,5 (2) 0,2,8,0 (2,8) 5,7,3,5 (2,8) 32

33 PRÍMIMPLIKÁNS TÁBLA Prímimplikánsok 0,2,8,0 (2,8) 5,7,3,5 (2,8) Mintermek ,3 () 3,7 (4) 33

34 PRÍMIMPLIKÁNS TÁBLA Prímimplikánsok 0,2,8,0 (2,8) 5,7,3,5 (2,8) Mintermek X X X X X X X X 2,3 () 3,7 (4) X X X X Az m0 minterm csak egy sorban fordul elő, valamint, m8 és m0 is, ezért m(0,2,8,0) lényeges prímimplikáns. Ez lefedi majd az m2 mintermet is. 34

35 PRÍMIMPLIKÁNS TÁBLA Prímimplikánsok «0,2,8,0 (2,8) «5,7,3,5 (2,8) Mintermek X X X X X X X X 2,3 () 3,7 (4) X X X X 35

36 MINTERMEK LEFEDÉSE Primimplikánsok «0,2,8,0 (2,8) «5,7,3,5 (2,8) X X X X X X X X 2,3 () 3,7 (4) X X X X A két négyes prímimplikáns az m3 kivételével már lefedi az összes mintermet. 36

37 MINIMALIZÁLÁS EREDMÉNYE f A,B,C,D ( )= 0,2,8,0(2,8) + 5,7,3,5(2,8) + 2,3() = X0X0 + XX + 00X = B D + BD + A B C X 0 X X X X 37

38 MEGOLDÁS A KARNAUGH TÁBLÁN A C D Lényeges prímimplikánsok Redundás (nem lényeges) prímimplikáns) F(A,B,C,D) = B D + B D + A B C B

39 QUINE-MCCLUSKEY ALGORITMUS PROGRAM Példa: 64 változós függvény 64 mintermet tartalmazó alakjának minimalizálása 39

40 Kombinációs hálózatok megvalósítása memóriaelemek felhasználásával 40

41 MEMÓRIAELEMEK TULAJDONSÁGAI Állandó tartalmú memóriák: Read Only Memory (ROM), tulajdonságaik alapján alkalmasak kombinációs hálózatok megvalósítására. A memóriaelemben tárolt adat egy bináris kombináció (D, D 2,... D m ), mely a cím megadásával, mely szintén bináris kombináció (C, C 2,... C n ), válik hozzáférhetővé. 4

42 MEMÓRIAELEM ELVI VÁZLATA C D C 2 D C n E D m C címbemenet D adatkimenet E - (enable, engedélyező) A C bemenetre érkező n-bites kombináció hatására a D kimeneten megjelenik a megfelelő cellában tárolt m-bites kombináció. Az E (enable, engedélyező) bemenetre adott jel letiltja vagy engedélyezi az adatkimenetet. Ennek révén, és a memória-elem áramköri kialakítása miatt több memóriaelem kimenetei huzalozott VAGY kapcsolat szerint közösíthetők. 42

43 MEMÓRIAELEM MINT KOMBINÁCIÓS HÁLÓZAT X X 2 C D C 2 D F F 2 A memóriaelem egy n-változós és m kimeneti függvénnyel bíró kombinációs hálózatot valósít meg. X n M-elem C n E D m F m Az adatbeírás közvetlenül az igazságtáblázat alapján végezhető el, nem szükséges a minimalizálás. Kombinációs hálózat 43

44 ROM MINT UNIVERZÁLIS KOMBINÁCIÓS HÁLÓZAT f = + + ABC ABC ABC f = 2 AB + AC = ABC + ABC + ABC + ABC Mintermek: f : 2, 4, 7, illetve f 2 : 0,, 5, 7 44

45 ROM MINT KOMBINÁCIÓS HÁLÓZAT A két 3-változós függvényhez egy 8x2 bites ROM elegendő, ilyen nincs forgalomban, 6x4 bitest alkalmazunk. A2, A, A0 cím A, B, C változók D0, D kimenet f, f2 függvény Igazságtábla előállítása és beprogramozása: A3 címbemenet fixen 0-ra kötve (csak a ROM alsó 8 szavát használjuk, a többi terület közömbös) D3, D2 közömbös CS, OE fixen aktív szintre kötve, folyamatos engedélyezés 45

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint 6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 11. ELŐADÁS 1 PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ A B C E 1 E 2 3/8 O 0 O 1

Részletesebben

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési

Részletesebben

Digitális Rendszerek (BSc)

Digitális Rendszerek (BSc) Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (BSc) 2. előadás: Logikai egyenletek leírása II: Függvény-egyszerűsítési eljárások Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA 206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,

Részletesebben

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti

Részletesebben

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3 Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet

Részletesebben

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104. Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.

Részletesebben

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3) DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés

Részletesebben

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások

DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások DIGITÁLIS TECHNIKA GYAKORLÓ FELADATOK 2. Megoldások III. Kombinációs hálózatok 1. Tervezzen kétbemenetű programozható kaput! A hálózatnak két adatbenemete (a, b) és két funkcióbemenete (f, g) van. A kapu

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT

Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 2. EA Fehér Béla BME MIT Digitális Technika

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS:

1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: 1. Az adott kapcsolást rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. MEGOLDÁS: A legegyszerűbb alak megtalálása valamilyen egyszerűsítéssel lehetséges (algebrai, Karnaugh, Quine stb.). Célszerű

Részletesebben

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1

Részletesebben

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései

Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Megoldás Digitális technika I. (vimia102) 3. gyakorlat: Kombinációs hálózatok minimalizálása, hazárdok, a realizálás kérdései Elméleti anyag: Lényegtelen kombináció (don t care) fogalma Kombinációs hálózatok

Részletesebben

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole

Részletesebben

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ)

I.5. A LOGIKAI FÜGGVÉNYEK EGYSZERŰSÍTÉSE (MINIMALIZÁCIÓ) I.5. LOGIKI FÜGGVÉNEK EGSERŰSÍTÉSE (MINIMLIÁCIÓ) Nem mindegy, hogy a logikai függvényeket mennyi erőforrás felhasználásával valósítjuk meg. Előnyös, ha kevesebb logikai kaput alkalmazunk ugyanarra a feladatra,

Részletesebben

Digitális technika - Ellenőrző feladatok

Digitális technika - Ellenőrző feladatok igitális technika - Ellenőrző feladatok 1. 2. 3. a.) Írja fel az oktális 157 számot hexadecimális alakban b.) Írja fel bináris és alakban a decimális 100-at! c.) Írja fel bináris, oktális, hexadecimális

Részletesebben

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök

4. hét: Ideális és valódi építőelemek. Steiner Henriette Egészségügyi mérnök 4. hét: Ideális és valódi építőelemek Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Digitális technika 2015/2016 Bevezetés Az ideális és valódi építőelemek Digitális technika 2015/2016

Részletesebben

Kombinációs hálózatok Adatszelektorok, multiplexer

Kombinációs hálózatok Adatszelektorok, multiplexer Adatszelektorok, multiplexer Jellemző példa multiplexer és demultiplexer alkalmazására: adó egyutas adatátvitel vevő adatvezeték cím címvezeték (opcionális) A multiplexer az adóoldali jelvezetékeken jelenlévő

Részletesebben

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.

Részletesebben

Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak.

Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest Az előadások ezen könyvek megfelelő fejezetein alapulnak. 06.0.. DIGITÁLIS TECHNIKA Dr. Lvassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikrelektrnikai és Technlógia Intézet. ELŐADÁS: LOGIKAI (BOOLE) FÜGGVÉNYEK ÉS ALKALMAZÁSAIK IRODALOM Arató Péter: Lgikai rendszerek

Részletesebben

Quine-McCluskey Módszer

Quine-McCluskey Módszer Quine-McCluskey Módszer ECE-331, Digital Design Prof. Hintz Electrical and Computer Engineering Fordította: Szikora Zsolt, 2000 11/16/00 Forrás = http://cpe.gmu.edu/courses/ece331/lectures/331_8/index.htm

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos

Részletesebben

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék

Gépészmérnöki és Informatikai Kar Automatizálási és Kommunikáció- Technológiai Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar 2019/2020. tanév I. félév Automatizálási és Kommunikáció- Technológiai Tanszék Digitális rendszerek I. c. tantárgy előadásának és gyakorlatának ütemterve

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

2. hét Kombinációs hálózatok leírási módjai

2. hét Kombinációs hálózatok leírási módjai 2. hét Kombinációs hálózatok leírási módjai 2.1. A kombinációs hálózat alapfogalmai Logikai hálózatnak nevezzük azokat a rendszereket, melyeknek bemeneti illetve kimeneti jelei logikai jelek, a kimeneti

Részletesebben

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2) DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés

Részletesebben

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK 5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István

Kombinációs áramkörök modelezése Laborgyakorlat. Dr. Oniga István Kombinációs áramkörök modelezése Laborgyakorlat Dr. Oniga István Funkcionális kombinációs egységek A következő funkcionális egységek logikai felépítésével, és működésével foglalkozunk: kódolók, dekódolók,

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Multiplexer (MPX) A multiplexer egy olyan áramkör, amely több bemeneti adat közül a megcímzett bemeneti adatot továbbítja a kimenetére.

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGIÁLIS ECHNIA II r Lovassy Rita r Pődör Bálint Óbudai Egyetem V Mikroelektronikai és echnológia Intézet 3 ELŐAÁS 3 ELŐAÁS ELEMI SORRENI HÁLÓZAO: FLIP-FLOPO (2 RÉSZ) 2 AZ ELŐAÁS ÉS A ANANYAG Az előadások

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNYÍTÁSTECHNIKA I. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS

Részletesebben

Elektronikai műszerész Elektronikai műszerész

Elektronikai műszerész Elektronikai műszerész A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

Digitális Rendszerek (BSc)

Digitális Rendszerek (BSc) Pannon Egyetem Képfeldolgozás és Neuroszámítógépek Tanszék Digitális Rendszerek (Sc) 1. előadás: Logikai egyenletek leírása I. oole-algebra axiómái és tételei Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu

Részletesebben

DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2

DIGITÁLIS TECHNIKA I. BINÁRIS/GRAY ÁTALAKÍTÁS b3b2b1b0 g3g2g1g0 BINÁRIS/GRAY KONVERZIÓ BINÁRIS/GRAY KÓDÁTALAKÍTÓ BIN/GRAY KONVERZIÓ: G2 DIGITÁLIS THNIK I Dr. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet. LİDÁS. LİDÁS. Kódátalakítások: bináris/gray, bináris/d. Multiplexerek és demultiplexerek. Komparátorok. Kódok: hibajelzés

Részletesebben

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK

Dr. Keresztes Péter DIGITÁLIS HÁLÓZATOK Dr Keresztes Péter DIGITÁLIS HÁLÓZATOK A jegyzet a HEFOP támogatásával készült Széchenyi István Egyetem Minden jog fenntartva A dokumentum használata A dokumentum használata Tartalomjegyzék Tárgymutató

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II DIGITÁLIS TECHNIKA II Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS 1 AZ ELŐADÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját

Részletesebben

4. hét Az ideális és a valódi építőelemek

4. hét Az ideális és a valódi építőelemek 4. hét Az ideális és a valódi építőelemek 4.1. Az ideális és valódi építőelemek Most ismerkedjünk meg a rendszereket felépítő építőelemekkel. Előtte azonban célszerű néhány alapfogalmat tisztázni. 4.1.1.

Részletesebben

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok

F1301 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bevezetés az elektronikába Digitális elektronika alapjai Szekvenciális hálózatok F3 Bev. az elektronikába SZEKVENIÁLIS LOGIKAI HÁLÓZATOK A kimenetek állapota nem csak a bemenetek állapotainak kombinációjától

Részletesebben

Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla

Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Megoldás Digitális technika I. (vimia102) 4. gyakorlat: Sorrendi hálózatok alapjai, állapot gráf, állapottábla Elméleti anyag: Amikor a hazárd jó: élekből impulzus előállítás Sorrendi hálózatok alapjai,

Részletesebben

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton

Digitális technika 1. Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés. Készítette: Dudás Márton Digitális technika 1 Tantárgykód: VIIIA105 Villamosmérnöki szak, Bsc. képzés Készítette: Dudás Márton 1 Bevezető: A jegyzet a BME VIK első éves villamosmérnök hallgatóinak készült a Digitális technika

Részletesebben

Digitális elektronika gyakorlat

Digitális elektronika gyakorlat FELADATOK 1. Felhasználva az XSA 50 FPGA lapon található 100MHz-es programozható oszcillátort, tervezzetek egy olyan VHDL modult, amely 1 Hz-es órajelet állít elő. A feladat megoldható az FPGA lap órajelének

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS. Somogyi Miklós DIGITÁLIS HÁLÓZATOK

SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS. Somogyi Miklós DIGITÁLIS HÁLÓZATOK SZÉCHENYI ISTVÁN EGYETEM DUÁLIS KÉPZÉS Somogyi Miklós DIGITÁLIS HÁLÓZATOK A tantárgy célja: a kapu szintű digitális hálózatok tervezési elveinek bemutatása és az elvek gyakorlati alkalmazásának elsajátítatása

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a

Részletesebben

D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3.

D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Szinkron hálózatok D I G I T Á L I S T E C H N I K A Gyakorló feladatok 3. Irodalom: Arató Péter: Logikai rendszerek. Tankönyvkiadó, Bp. 1985. J.F.Wakerley: Digital Design. Principles and Practices; Prentice

Részletesebben

Digitális Technika 2. Logikai Kapuk és Boolean Algebra

Digitális Technika 2. Logikai Kapuk és Boolean Algebra Digitális Technika 2. Logikai Kapuk és oolean lgebra Sütő József Egyetemi Tanársegéd Referenciák: [1] D.M. Harris, S.L. Harris, Digital Design and Computer rchitecture, 2nd ed., Elsevier, 213. [2] T.L.

Részletesebben

Hazárdjelenségek a kombinációs hálózatokban

Hazárdjelenségek a kombinációs hálózatokban Hazárdjelenségek a kombinációs hálózatokban enesóczky Zoltán 2004 jegyzetet a szerzői jog védi. zt a ME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb elhasználáshoz a szerző belegyezése

Részletesebben

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 2. Laboratóriumi gyakorlat gyakorlat célja: oolean algebra - sszociativitás tétel - Disztributivitás tétel - bszorpciós tétel - De

Részletesebben

DIGITÁLIS TECHNIKA I

DIGITÁLIS TECHNIKA I DIGITÁLIS TECHNIKA I Dr. Kovács Balázs Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 10. ELŐADÁS 1 PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE A 1 1

Részletesebben

Szekvenciális hálózatok és automaták

Szekvenciális hálózatok és automaták Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR

DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR Írta: MATIJEVICS ISTVÁN Szegedi Tudományegyetem DIGITÁLIS TECHNIKA INTERAKTÍV PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Matijevics István, Szegedi Tudományegyetem Természettudományi és

Részletesebben

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar

Digitális Technika. Dr. Oniga István Debreceni Egyetem, Informatikai Kar Digitális Technika Dr. Oniga István Debreceni Egyetem, Informatikai Kar 3. Laboratóriumi gyakorlat A gyakorlat célja: Négy változós AND, OR, XOR és NOR függvények realizálása Szimulátor használata ciklussal

Részletesebben

Digitális technika házi feladat III. Megoldások

Digitális technika házi feladat III. Megoldások IV. Szinkron hálózatok Digitális technika házi feladat III. Megoldások 1. Adja meg az alábbi állapottáblával megadott 3 kimenetű sorrendi hálózat minimális állapotgráfját! a b/x1x c/x0x b d/xxx e/x0x c

Részletesebben

DIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM

DIGITÁLIS TECHNIKA I FÜGGVÉNYEK KANONIKUS ALAKJAI MINTERMEK ÉS MAXTERMEK DISZJUNKTÍV KANONIKUS ALAK, MINTERM IGITÁLIS THNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 4. LİÁS 4. LİÁS. Logikai üggvények kanonikus algebrai alakjai, diszjunktív és konjunktív normálalakok 2. Logikai üggvények

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 2. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK

3.6. HAGYOMÁNYOS SZEKVENCIÁLIS FUNKCIONÁLIS EGYSÉGEK 3.6. AGYOMÁNYOS SZEKVENCIÁIS FUNKCIONÁIS EGYSÉGEK A fenti ismertető alapján elvileg tetszőleges funkciójú és összetettségű szekvenciális hálózat szerkeszthető. Vannak olyan szabványos funkciók, amelyek

Részletesebben

Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999

Az előadások anyagai letölthetők az alábbi honlapról: Rőmer Mária: Digitális technika példatár, KKMF 1105, Budapest 1999 DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS ÁLTALÁNOS BEVEETÉS A digitális technika tantárgy Ajánlott irodalom Az előadások

Részletesebben

7.hét: A sorrendi hálózatok elemei II.

7.hét: A sorrendi hálózatok elemei II. 7.hét: A sorrendi hálózatok elemei II. Tárolók Bevezetés Bevezetés Regiszterek Számlálók Memóriák Regiszter DEFINÍCIÓ Tárolóegységek összekapcsolásával, egyszerű bemeneti kombinációs hálózattal kiegészítve

Részletesebben

3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA

3. LOGIKAI FÜGGVÉNYEK GRAFIKUS EGYSZERŰSÍTÉSE ÉS REALIZÁLÁSA 3. LOGIKI FÜGGVÉNYEK GRFIKUS EGYSZERŰSÍTÉSE ÉS RELIZÁLÁS tananyag célja: a többváltzós lgikai függvények grafikus egyszerűsítési módszereinek gyakrlása. Elméleti ismeretanyag: r. jtnyi István: igitális

Részletesebben

1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök

1. hét: A Boole - algebra. Steiner Henriette Egészségügyi mérnök 1. hét: A Boole - algebra Steiner Henriette Egészségügyi mérnök Digitális technika 2015/2016 Elérhetőségek Dr. Steiner Henriette steiner.henriette@nik.uni-obuda.hu Féléves követelmények Heti óraszámok:

Részletesebben

Állapot minimalizálás

Állapot minimalizálás Állapot minimalizálás Benesóczky Zoltán 2004 A jegyzetet a szerzői jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerző belegyezése szükséges.

Részletesebben

DIGITÁLIS TECHNIKA II

DIGITÁLIS TECHNIKA II IGITÁLIS TEHNIKA II r. Lovassy Rita r. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐAÁS AZ ELŐAÁS ÉS A TANANYAG Az előadások Arató Péter: Logikai rendszerek tervezése

Részletesebben

Aszinkron sorrendi hálózatok

Aszinkron sorrendi hálózatok Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l :

Bevezetés. Forrás: http://e-oktat.pmmf.hu/digtech1. 1 O l d a l : Bevezetés Forrás: http://e-oktat.pmmf.hu/digtech1 Jelen jegyzet a Pécsi Tudományegyetem Pollack Mihály Műszaki Főiskolai Karán folyó Műszaki Informatika képzés Robotirányítási rendszerek I-II. tantárgyaihoz

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22. ) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

11. KÓDÁTALAKÍTÓ TERVEZÉSE HÉTSZEGMENSES KIJELZŐHÖZ A FEJLESZTŐLAPON

11. KÓDÁTALAKÍTÓ TERVEZÉSE HÉTSZEGMENSES KIJELZŐHÖZ A FEJLESZTŐLAPON 11. KÓDÁTALAKÍTÓ TERVEZÉSE HÉTSZEGMENSES KIJELZŐHÖZ A FEJLESZTŐLAPON 1 Számos alkalmazásban elegendő egyszerű, hétszegmenses LED vagy LCD kijelzővel megjeleníteni a bináris formában keletkező tartalmat,

Részletesebben

Digitális technika (VIMIAA02) Laboratórium 3

Digitális technika (VIMIAA02) Laboratórium 3 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika (VIMIAA02) Laboratórium 3 Fehér Béla Raikovich Tamás,

Részletesebben

2. Alapfogalmak. 1. ábra

2. Alapfogalmak. 1. ábra 1. Bevezetés A Pécsi Tudományegyetem Pollack Mihály Műszaki Karán tanuló műszaki informatikus hallgatók mindezidáig más oktatási intézmények által kiadott jegyzetekből és a kereskedelemben kapható drága

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

L O G I K A I H Á L Ó Z A T O K

L O G I K A I H Á L Ó Z A T O K ELEKTRONIKAI TECHNIKUS KÉPZÉS 2 0 1 3 L O G I K A I H Á L Ó Z A T O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Alapfogalmak...3 Digitális technikában alkalmazott számrendszerek...3

Részletesebben

Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez

Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez Kiegészítő segédlet szinkron sorrendi hálózatok tervezéséhez Benesóczky Zoltán 217 1 digitális automaták kombinációs hálózatok sorrendi hálózatok (SH) szinkron SH aszinkron SH Kombinációs automata Logikai

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 8

Dr. Oniga István DIGITÁLIS TECHNIKA 8 Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Digitális Technika I. (VEMIVI1112D)

Digitális Technika I. (VEMIVI1112D) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Technika I. (VEMIVI2D) 6. hét Hazárd jelenségek Előadó: Vörösházi Zsolt voroshazi@vision.vein.hu Kapcsolódó jegyzet, segédanyag: http://www.virt.vein.hu

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ KÖZLEKEDÉSAUTOMATIKAI ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Egyszerű, rövid feladatok Maximális pontszám: 40.) Töltse ki a táblázat üres celláit! A táblázatnak

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

Analóg és digitális mennyiségek

Analóg és digitális mennyiségek nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű

Részletesebben

5. hét A sorrendi hálózatok leírása

5. hét A sorrendi hálózatok leírása 5. hét A sorrendi hálózatok leírása 5.. Bevezető példák Először néhány bevezető példán keresztül fogjuk áttekinteni a rendszereket és bevezetni azokat a fogalmakat, melyekre a későbbiekben szükségünk lesz.

Részletesebben

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest?

Név: Logikai kapuk. Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Név: Logikai kapuk Előzetes kérdések: Mik a digitális áramkörök jellemzői az analóg áramkörökhöz képest? Ha a logikai változókat állású kapcsolókkal helyettesítené, ezek milyen módon való kapcsolásával

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN

DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 8. ELİÁS 8. ELİÁS. Kódváltók, kódoló és dekódolók 2. Egyszerő kódátalakító (kombinációs) hálózatok 3. ináris/ és /bináris

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben