Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em szoba

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein."

Átírás

1 Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: Tel: 88/64-783

2 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete Kadó 003. Budó Ágoston: Kísérlet fzka I. Tankönyvkadó Budapest Feynan: Ma fzka, Műszak Könyvkadó, Budapest TÉTELSOR. Koordnátarendszerek, helyvektor, út, elozdulás, sebesség, gyorsulás.. Egyenes vonalú ozgások, hajítás. 3. Körozgás, haronkus rezgőozgás. 4. Dnaka, Newton törvénye. 5. Töeg, pulzus, erő, erőtörvények. Mozgásegyenlet. 6. Kényszerozgások, lejtő, súrlódás. 7. A gravtácó. Bolygók ozgása, Kepler törvénye. Az általános töegvonzás törvénye. 8. Munka, energa, teljesítény. A knetkus energa tétele. Konzervatív erőterek. A echanka energa egaradása. 9. Haronkus rezgőozgás dnakája 0. Pontrendszerek echankája, töegközéppont és pulzustétel.. Ütközések. Ipulzusoentu, pulzusoentu-tétel.. A erev test echankája. Tehetetlenség nyoaték, a forgó ozgás alapegyenlete

3 Vzsgadőpontok : : : : : :00

4 A FIZIKA tárgya: - állandóan változk felosztása: echanka, hangtan, hőtan, fénytan, elektroosság.. (pl. régebben az érzékszervekre gyakorolt hatás alapján történt) A egfgyelések a tudatos kísérletezéseken keresztül olyan eléletek felállításához vezettek, aelyek a terészet jelenségeket ellentondásentesen írják le. Az eléletekben nagy ennységű kísérlet tapasztalat összegződk! Egy elélet ne bztos, hogy egyetees gazságot fejez k, bárkor előkerülhet egy olyan kísérlet elynek eredénye ellentond az eléletnek. Ilyenkor fnoítan, ódosítan kell az eléletet, vagy gyökeresen új elélet kerül a rég helyére.

5 Mechanka Kneatka Az anyag pont, vagy részecske ozgásának leírása a kneatka tárgyköre. A kneatka a hol? és a kor? kérdésekre keres a választ. A fzka jelenségek térben és dőben játszódnak le. A kneatka leírásokhoz a Newton féle tér és dő fogalát használjuk, a ndennap tapasztalatankból fokozatosan fejlődött k. A teret hoogénnek (a tér tulajdonsága ne függnek a helytől) és zotropnak tekntjük (a tér tulajdonsága ne függnek az ránytól). Mnden test a tér egy adott helyén tartózkodk, és az dő úlásával változtatja helyzetét. Egy kválasztott test helyzetét a térben egy rögzített vonatkoztatás rendszerhez képest adhatjuk eg. Az dő Newton szernt szntén abszolút, abban az érteleben, hogy egyenletesen telk.

6 A teret és az dőt érhetjük: Mérés: összehasonlítan egy egységgel A hosszúság alapegysége a éter (). A éter az a hosszúság, aelyet a vákuuban terjedő fény / ásodperc alatt egtesz. Az dőtarta alapegysége a szekundu vagy ásodperc(s). A ásodperc defnícó szernt a cézu 33-as zotópjának két eghatározott energaszntje között elektronátenet során kbocsátott sugárzás peródusdejének szerese.

7 F Dnaka Elsősorban Galle korább eredényere alapozva Newton foglalta rendszerbe a dnaka alaptörvényet, aelyeket Newton axóáknak nevezünk:. Mnden test egarad a nyugalo vagy az egyenes vonalú egyenletes ozgás állapotában, íg ás testek hatása állapotának egváltoztatására ne kényszerítk. (A tehetetlenség törvénye ). Egy testre ható erő a test töegének és gyorsulásának szorzatával egyenlő. (A dnaka alaptörvénye) F = a 3. Ha egy A testre a B test F AB erőt gyakorol, akkor az A test s hat B-re ugyanolyan nagyságú, de ellentétes rányú erővel. (A hatás-ellenhatás törvénye) F AB = - F BA 4. Ha az anyag pontra egydejűleg több erő hat (F, F, ), akkor ezek együttes hatása egyenértékű vektor eredőjük hatásával. (Az erőhatások függetlenségének elve) a = F =

8 Kepler törvénye I. törvény: A bolygók olyan ellpszs alakú pályákon kerngenek, aelyek egyk fókuszpontjában (gyújtópont) van a Nap. II. törvény: A Naptól a bolygóhoz húzott vezérsugár egyenlő dőközök alatt egyenlő területeket súrol III. törvény: A bolygók kerngés dőnek négyzete úgy aránylanak egyáshoz, nt a fél nagytengelyek köbe

9 Az általános töegvonzás törvénye Két tetszőleges test között ndg fellép egy vonzóerő, aely pontszerű testek esetén arányos azok töegével, s fordítottan arányos távolságuk négyzetével. Az erő ránya a két töegpontot összekötő egyenes rányába utat. F = γ r r r

10 Munka, energa, teljesítény Munka Ha egy pontszerű test, aelyre állandó F erő hat, az F rányában s távolságot elozdul, akkor az F erő s úton végzett unkája: W = Fs Ha az állandó F erő α szöget zár be az elozdulással: W = Fscos α = F s (vekt. skalár szorzata) Az F erőnek egy tetszőleges görbe AB szakaszán végzett unkája az erő út szernt ntegrálja. W A B N = l F Δr = N = B A F dr

11 Energa Egy eghatározott A állapotban levő test (vagy rendszer) energával rendelkezk, ha egfelelő körülények között unkavégzésre képes. Energáját azzal a unkával érjük, aelyet a test végez, íg egy A állapotból a egállapodás szernt választott A 0 állapotba jut, vagy azzal a unkával, aelyet a testre ható erők ellenében végeznünk kell, íg A 0 -ból A-ba juttatjuk.

12 Helyzet energa eelés unka E pot = W e = g h Knetkus energa gyorsítás unka E kn = W gy = F s = a s= a ½at = ½ v Rugóban tárolt energa (F rug = Dx) E r = W B x0 A B = d = F r Dx dx = A 0 Dx 0 A echanka energa a helyzet és ozgás energák összege

13 A knetkus energa tétele (unkatétel) Egy töegpont ozgás energájának egváltozása egegyezk a ráható erők eredője által végzett unkával. W AB = v B v A

14 A echanka energa egaradásának tétele Mnden olyan dőben állandó erőteret, aelyben két tetszőleges pontot összekötő görbe entén az erőtér ellenében végzett unka ne függ a görbétől, csak a két pont helyzetétől konzervatív erőtérnek nevezzük. Egy konzervatív erőtérben ozgó töegpont knetkus és potencáls energájának összege a ozgás folyaán állandó: E kn + E pot = áll.

15 Teljesítény Teljesítény unkavégzés sebessége P = dw dt J = s W ( LE = 0,736 kw )

16 Haronkus rezgőozgás dnakája Egy denzóban F = Dx = a d x Dx = dt D d x x = dt Keressük azt az x(t) függvényt aelyk kelégít az egyenletet (dfferencál egyenlet):

17 Haronkus rezgőozgás dnakája Legyen: ekkor: D = ω ω x = d x dt Lehetséges egoldások: sn cos ( ωt) ω sn( ωt) ( ωt) ω cos( ωt) Általános egoldás: x( t) = a sn + ( ωt) b cos( ωt) x ( t = 0) = x0 b = x0 aω cos( ωt) bω sn( ωt) v ( t = 0) = v0 aω = v0 dx v( t) = = dt

18 a és b értéket vsszahelyettesítve: v0 x( t) = sn + 0 ω ( ωt) x cos( ωt) v Legyen : = Acosα és x0 ω = 0 A ekkor : x( t) = Acosα sn + ( t a) x ( t) = Asn ω + snα ( ωt) Asnα cos( ωt)

19 Pontrendszerek echankája Pontrendszerek: egyással kölcsönhatásban lévő töegpontok (pl. Nap, Hold, Föld) Legyen n db töegpontból álló rendszer:. töegpont töege: helyvektora: r sebességvektora: v pulzusvektora: I = v ráható eredő erő: F

20 A dnaka alapegyenlete szernt d r dt = F ( =,,3,..., n) egyenletrendszer egoldása adja a pontrendszer ozgását. 3n db ásodrendű dfferencál egyenlet, nehéz egoldan. Erők osztályozásával általános tételek a rendszerről fontos nforácók, bár a ozgást teljesen ne írják le.

21 Pontrendszerre ható erők: külső erők a rendszerhez ne tartozó testektől belső erők a rendszer tagja között fellépő erők Jelölés: F az -edk pontra ható külső erők eredője F k az -edk pontra a k-adk részéről gyakorolt belső erő. F = 0, ert a töegpont önagára ne hat.

22 Pontrendszerek echankája, pulzustétel, töegközéppont. Egy pontrendszer pulzusának dő szernt. dfferencálhányadosa egyenlő a rendszerre ható összes külső erők eredőjével. (Ipulzustétel) Spec.: Ha a rendszerre külső erők ne hatnak ( zárt rendszer ) vagy ha ezek eredője 0, akkor a rendszer pulzusa állandó. (pulzus egaradásának tétele) Egy pontrendszer töegközéppontja úgy ozog, ntha a rendszer teljes töege ebben a pontban lenne egyesítve, és rá hatna a külső erők eredője. Ez a töegközéppont tétele.

23 Ipulzusoentu-tétel. Forgatónyoaték M = r F Ipulzusoentu N = r I Ha a belső erők centrálsak, akkor egy pontrendszer teljes pulzusoentuának dő szernt dfferencálhányadosa egegyezk a külső erők forgatónyoatékanak összegével. Ez az pulzusoentu tétele. M = dn dt

24 Spec.:ha a külső erők eredő forgatónyoatéka zérus (pl. egy zárt rendszer esetén), úgy egy pontrendszer teljes pulzusoentua dőben állandó. Ez az pulzusoentu egaradás tétele.

25 Ütközések két (v. több) test kerül nagyon rövd deg tartó kontaktusba ütközés során a belső erők játszanak eghatározó szerepet, ezek azonban ne változtatják eg a rendszer teljes pulzusát ha közvetlenül az ütközés előtt és után dőpllanatokat hasonlítjuk össze akkor a külső erők (hacsak ne kvételesen erősek) az ütközés nagyon rövd dőtartaa alatt ne képesek száottevően egváltoztatn a rendszer pulzusát Az ütközések tárgyalása során tehát általában érvényesnek tételezzük fel az pulzus egaradás törvényét I + I = I + I

26 Az ütközés során a találkozó testek deforálódnak, ajd az ütközés után vagy vsszanyerk eredet forájukat (rugalas ütközés), vagy a deforácó tartós arad (rugalatlan ütközés).

27 Tökéletesen rugalatlan ütközés deforácó tartósan egarad, a testek az ütközés után összetapadva egy közös sebességgel együtt ennek tovább: u = u = u, ezért I = + I I ' u v + v = ( + )u u = v + + v

28 Tökéletesen rugalas ütközés A testek az ütközés után vsszanyerk eredet alakjukat, a rendszer a teljes ozgás energája az ütközés előtt és utána azonos: v + v = u + u Itt s használható az pulzus egaradás s: + = + v v u u

29 Egydenzós esetben: v v u = v v u =

30 A erev test echankája Merev test - olyan pontrendszer, ahol a töegpontok közt távolságok a ozgás folyaán ne változnak: d ( ) ( ) ( ) x x + y y + z z áll. AB = A B A B A B = Egy erev test helyzetét 6 független adat határozza eg, azaz egy erev test szabadság fokanak száa s =6. A erev test alapvető ozgása: transzlácó: a test nden pontja egydejűleg egyással párhuzaos, egyenes vonalú pályán ozog (s t =3) rotácó (tengely körül forgás): a forgástengely pontja helyzetüket egtartják, a test több pontjának pályá pedg a forgástengelyre erőleges síkban fekvő körívek (s r =3)

31 Merev test = pontrendszer transzlácós ozgásra pulzus v. töegközéppont tétel F = a ö rotácós ozgásra pulzusoentu tétel tkp M = dn dt

32 Tehetetlenség nyoaték, N = r v Z ω N, z = r v cosϕ l = r cosϕ v = ω l l v ϕ, z l ω N = N z = N, z = l ω = Θ = l Θω tehetetlenség nyoaték N N z r ϕ

33 Forgó ozgás alapegyenlete M z = dn dt z = dθω = Θ dt dω = Θβ dt M = Θβ ( F = a)

34 Merev test knetkus energája E Forgás energa = kn v = l ω = ( l ) ω = Θω A transzlácós (haladó) és rotácós (forgó) ozgást végző erev test összes knetkus energája: E kn = vtkp + Θω

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

Speciális mozgásfajták

Speciális mozgásfajták DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális

Részletesebben

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek.

A test tömegének és sebességének szorzatát nevezzük impulzusnak, lendületnek, mozgásmennyiségnek. Mozgások dinamikai leírása A dinamika azzal foglalkozik, hogy mi a testek mozgásának oka, mitől mozognak úgy, ahogy mozognak? Ennek a kérdésnek a megválaszolása Isaac NEWTON (1642 1727) nevéhez fűződik.

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

A mozgás elemi tulajdonságai... 2. Dinamika... 3. Súlyos és tehetetlen tömeg... 3. Kényszermozgás... 4. Bolygó mozgás... 5. d Alembert...

A mozgás elemi tulajdonságai... 2. Dinamika... 3. Súlyos és tehetetlen tömeg... 3. Kényszermozgás... 4. Bolygó mozgás... 5. d Alembert... Fzka kegészítő Vázlat Tartalojegyzék A ozgás ele tulajdonsága... Dnaka... 3 Súlyos és tehetetlen töeg... 3 Kényszerozgás... 4 Bolygó ozgás... 5 d Alebert... 5 Ipulzus, ozgásennység... 6 Munka... 6 Konzervatív

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

1. Kinematika feladatok

1. Kinematika feladatok 1. Kineatika feladatok 1.1. Egyenes vonalú, egyenletes ozgások 1. A kézilabdacsapat átlövője 60 k/h sebességgel lövi kapura a labdát a hatéteresvonal előtt állva. Mennyi ideje van a kapusnak a labda elkapására?

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény 4. október 6., : A ai óráoz szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J F szakaszokra bontás,

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Mérnöki alapok 1. előadás

Mérnöki alapok 1. előadás Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók

Részletesebben

A mágneses kölcsönhatás

A mágneses kölcsönhatás TÓTH A.: Mágneses erőtér/1 (kibővített óravázlat) 1 A ágneses kölcsönhatás Azt a kölcsönhatást, aelyet később ágnesesnek neveztek el, először bizonyos ásványok darabjai között fellépő a gravitációs és

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

Elméleti kérdések és válaszok

Elméleti kérdések és válaszok Elméleti kérdések és válaszok Folyamatosan bővül 9. évfolyam Tartalom 1. Értelmezd a következő fogalmakat: megfigyelés, kísérlet, modell!... 3 2. Mit nevezünk koordináta rendszernek és mit vonatkoztatási

Részletesebben

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat

NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat NT-17105 Fizika 9. (Fedezd fel a világot!) Tanmenetjavaslat A fizika tankönyvcsalád és a tankönyv célja A Fedezd fel a világot! című természettudományos tankönyvcsalád fizika sorozatának első köteteként

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

A harmonikus rezgőmozgás

A harmonikus rezgőmozgás Esszé a rezgőozgásról A haronikus rezgőozgás A környezetünkben sok periodikus (isétlődő) jelenséggel találkozunk. Ezen jelenségek egy része a rezgések közé sorolható. Például: rezgő gitárhúr, billegő teáscsésze,

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük.

Mágneses mező tesztek. d) Egy mágnesrúd északi pólusához egy másik mágnesrúd déli pólusát közelítjük. Mágneses mező tesztek 1. Melyik esetben nem tapasztalunk vonzóerőt? a) A mágnesrúd északi pólusához vasdarabot közelítünk. b) A mágnesrúd közepéhez vasdarabot közelítünk. c) A mágnesrúd déli pólusához

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Mivel az erőkar mindkét oldalon ugyanakkora (t.i. a csiga sugara), az erőknek is meg kell egyezniük.

Mivel az erőkar mindkét oldalon ugyanakkora (t.i. a csiga sugara), az erőknek is meg kell egyezniük. 1. Könnyű: [1] Az alább ozgások közül elyknél használható a v=s/t képlet? A) A) szabadesés B) egyenletes körozgás C) gyorsuló körozgás B) D) ndegyknél E) egyknél se [2] Ha felfelé hajítunk egy követ és

Részletesebben

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola 5 Mikola Sándor Országos Tehetségkutató Fizikaerseny III forduló 06 ájus Gyöngyös, 9 éfolya Szakközépiskola feladat Soa, aikor a d = 50 széles folyón a partra erőlegesen eez, akkor d/ táolsággal sodródik

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek

Részletesebben

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v - III. 1- ALAKÍTÁSTECHNIKA Előadásjegyzet Prof Ziaja György III.rész. ALAKÍTÓ GÉPEK Az alakítási folyaatokhoz szükséges erőt és energiát az alakító gépek szolgáltatják. Az alakképzés többnyire az alakító

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

MECHANIKA. Mechanika összefoglaló BalaTom 1

MECHANIKA. Mechanika összefoglaló BalaTom 1 MECHANIKA 1. Egyenes vonalú mozgások 1.1. Fizikai mennyiségek, mérés, mértékegységek 1.2. Helymeghatározás 1.3. Egyenes vonalú mozgás 1.4. Átlagsebesség, sebesség-idő grafikon, megtett út kiszámítása 1.5.

Részletesebben

A testek tehetetlensége

A testek tehetetlensége DINAMIKA - ERŐTAN 1 A testek tehetetlensége Mozgásállapot változás: Egy test mozgásállapota akkor változik meg, ha a sebesség nagysága, iránya, vagy egyszerre mindkettő megváltozik. Testek tehetetlensége:

Részletesebben

Vályogos homoktalaj terepprofil mérése

Vályogos homoktalaj terepprofil mérése Vályogos hooktalaj terepprofl érése Pllnger György Szent István Egyete, Gépészérnök Kar Folyaatérnök Intézet, Járűtechnka Tanszék PhD hallgató, pllnger.gyorgy@gek.sze.hu Összefoglalás A terepen haladó

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Fizika mérnököknek I. levelező tagozat

Fizika mérnököknek I. levelező tagozat Fizika mérnököknek I. levelező tagozat Dr. Czirjákné Csete Mária Dr. Kovács Attila a.p.kovacs@physx.u-szeged.hu Követelmények Részvétel az előadáson: nem kötelező Vizsgára bocsáthatóság feltétele: elégtelentől

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik:

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik: Elektromos zajok Átlagérték, négyzetes átlag, effektív érték Átlagérték dőben változó jel átlagértéke alatt a jel dő szernt ntegráljának és a közben eltelt dőnek a hányadosát értk: τ τ dt Négyzetes átlag

Részletesebben

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június

A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június A FIZIKA KÖZÉPSZINTŰ SZÓBELI VIZSGA TÉMAKÖREI 2015. június I. Mechanika Newton törvényei Egyenes vonalú mozgások Munka, mechanikai energia Pontszerű és merev test egyensúlya, egyszerű gépek Periodikus

Részletesebben

Körmozgás és forgómozgás (Vázlat)

Körmozgás és forgómozgás (Vázlat) Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

DR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST

DR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST DR. BUDO ÁGOSTON ' # i akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST 1991 TARTALOMJEGYZÉK Bevezette 1.. A klasszikus mechanika feladata, érvényességi határai

Részletesebben

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig

Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

Elméleti kérdések és válaszok

Elméleti kérdések és válaszok Elméleti kérdések és válaszok Folyamatosan bővül 9. évfolyam Tartalom 1. Értelmezd a következő fogalmakat: megfigyelés, kísérlet, modell!... 4 2. Mit nevezünk koordináta rendszernek és mit vonatkoztatási

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul.

MUNKA, ENERGIA. Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő hatására elmozdul. MUNKA, NRGIA izikai érteleben unkavégzéről akkor bezélünk, ha egy tet erő hatáára elozdul. Munkavégzé történik ha: feleelek egy könyvet kihúzo az expandert gyorítok egy otort húzok egy zánkót özenyoo az

Részletesebben

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA 1. A kinematika és a dinamika tárgya. Egyenes onalú egyenletes mozgás a) Kísérlet és a belőle leont köetkeztetés b) A mozgás jellemző grafikonjai

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK Vegyipari alapiseretek eelt szint 08 ÉRETTSÉGI VIZSGA 008. ájus 6. VEGYIPARI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

Merev testek mechanikája. Szécsi László

Merev testek mechanikája. Szécsi László Merev testek mechanikája Szécsi László Animáció időfüggés a virtuális világmodellünkben bármely érték lehet időben változó legjellemzőbb: a modell transzformáció időfüggése mozgó tárgyak módszerek az időfüggés

Részletesebben

19. Alakítsuk át az energiát!

19. Alakítsuk át az energiát! Függ-e a unkavégzés az úttól? Ugyanazt az töegű testet lassan, egyenletesen ozgassuk először az ábrán látható ABC törött szakaszon, ajd közvetlenül az AC szakaszon. Mindkét alkaloal a ozgatott test h-val

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

FIZIKA VIZSGATEMATIKA

FIZIKA VIZSGATEMATIKA FIZIKA VIZSGATEMATIKA osztályozó vizsga írásbeli szóbeli időtartam 60p 10p arány az értékelésnél 60% 40% A vizsga értékelése jeles (5) 80%-tól jó (4) 65%-tól közepes (3) 50%-tól elégséges (2) 35%-tól Ha

Részletesebben

Gimnázium 9. évfolyam

Gimnázium 9. évfolyam 4 MIKOLA SÁNDOR FIZIKAVERSENY ásodik fordulójának egoldása 5 árcius 7 Gináziu 9 éfolya ) Egy test ízszintes talajon csúszik A test és a talaj közötti csúszási súrlódási együttható µ Egy ásik test α o -os

Részletesebben

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,

Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia, Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus

Részletesebben

Feladatok a zárthelyi előtt

Feladatok a zárthelyi előtt Feladatok a zárthelyi előtt 05. október 6. Tartalojegyzék. ineatika Utolsó ódosítás 05. október 6. 0:46. ineatika.. Egyenes vonalú ozgások.......... Egyenletes ozgás.......... Gyorsuló ozgás..........

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor

TestLine - 7. Fizika Témazáró Erő, munka, forgatónyomaték Minta feladatsor gészítsd ki a mondatot! egyenes vonalú egyensúlyban erő hatások mozgást 1. 2:57 Normál Ha a testet érő... kiegyenlítik egymást, azt mondjuk, hogy a test... van. z egyensúlyban lévő test vagy nyugalomban

Részletesebben

Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás?

Milyen erőtörvénnyel vehető figyelembe a folyadék belsejében a súrlódás? VALÓDI FOLYADÉKOK A alódi folyadékokban a belső súrlódás ne hanyagolható el. Kísérleti tapasztalat: állandó áralási keresztetszet esetén is áltozik a nyoás p csökken Az áralási sebesség az anyagegaradás

Részletesebben

Bevezető fizika informatikusoknak

Bevezető fizika informatikusoknak Fs F g Fr 3 g Fr Fs g Bevezető fizika inforatikusoknak k F Utolsó ódosítás 05. február 3. 3:05 α Fsúrl K l Nagyfalusi Balázs Vida György József g h g + + + + + + Q + + + + + + 3 0 Ω A Ω 0 30 Ω É D D É

Részletesebben

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI

Kvantumszimulátorok. Szirmai Gergely MTA SZFKI. Graphics: Harald Ritsch / Rainer Blatt, IQOQI Kvantumszimulátorok Szirmai Gergely MTA SZFKI Graphics: Harald Ritsch / Rainer Blatt, IQOQI A kvantummechanika körülvesz tranzisztor számítógép, mobiltelefon A kvantummechanika körülvesz tranzisztor számítógép,

Részletesebben

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév)

DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) DINAMIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2004/2005 tavaszi félév) Dinamika Pontszám 1. A mechanikai mozgás fogalma (1) 2. Az anyagi pont pályája (1) 3. A mozgástörvény

Részletesebben

Rugós mechanikai rendszerek modellezése

Rugós mechanikai rendszerek modellezése Rugós ehanikai rendszerek odellezése. feladat Adott két sorba kapsolt rugó és erevséggel valaint l és l terheletlen hosszal. A rugókat egnyújtjuk úgy, hogy együttes hosszuk l legyen >l +l ). l l? l? l

Részletesebben

Termodinamika. Belső energia

Termodinamika. Belső energia Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben