4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia."

Átírás

1 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel rugalas erő ha ez a kéréssel arányos de azzal ellenées rányú: F = > Ekkor a öegpon ozgásegyenlee: = Oldjuk eg ez a ásodrendű dfferencálegyenlee az () függvényre: = Vezessük be a kövekező jelölés: ω = Ekkor az egyenle: = ω + ω = Ez egy ásodrendű hoogén lneárs állandó együhaójú és közönséges dfferencálegyenle Az álalános egoldás a ké függelen parkulárs egoldás lneárs kobnácója A parkulárs egoldások: Lneárs kobnácójuk: vagy ás alakban: = snω = cosω () = C snω + C cosω ( ω δ ) () = Asn + Az első egoldásban C és C a ásodkban pedg A és δ negrácós állandók A kérés aáls éréke az aplúdó A δ pedg a kezdőfázs ω a körfrekvenca A rezgés peródusdeje T: π T = = π ω A rezgés frekvencája: f = T A kérés dő függvény láhaó a kövekező ábrán:

2 A T A A rugalas erő konzervaív erő ekkor gaz hogy: F = V V a poencáls energa Egy denzóban: V F = a rugalas erő pedg: = F V = Így a poencáls energa: V = + C Válasszuk nullának a poencáls energá az egyensúly helyzeben így C = A rugalas poencáls energa ehá: V ( ) = Lneárs csllapío szabad rezgés: A öegponra a ár ser rugalas erő ha F = valan egy (folyadék) súrlódás vagy csllapíó erő aely ks sebesség eseén a sebességgel arányos de vele ellenées rányú: κ > csllapíás ényező Bevezeve a ké szokásos jelölés: S = κ = κ κ + + = κ α = ω = A hoogén lneárs ásodrendű dfferencálegyenle: + α + ω = A egoldás keressük az alább forában: = e λ λ λ λ λ e + αλe + ωe = de e λ így a karakerszkus egyenle: λ + αλ+ ω = p

3 Ennek a gyöke: λ = α ± α ω A háro leheséges ese: Ha α ω < akkor gyenge csllapíás ha α ω = akkor krkus csllapíás ha pedg α ω > akkor erős csllapíás esee valósul eg Aennyben a gyökök különböznek akkor a ké egyásól függelen parkulárs egoldás lneárs kobnácójá kell venn: λ λ () = Ce + Ce Gyenge csllapíás eseén vezessük be a kövekező jelölés: γ = ω α λ = α ± γ A egoldás: ( ) ( ) () Ce α + γ Ce α γ e α ( Ce γ = + = + Ce γ ) Az Euler-relácó felhasználva: ϕ e = cosϕ + snϕ α ( ) = ( cosγ + snγ ) + ( cosγ snγ ) α () = e ( C + C ) cosγ + ( C C ) snγ e C C A dfferencálegyenle álalános egoldása: α α () = e [ Acosγ + Bsnγ] = Ce sn ( γ+ δ) A folyaao a csllapodás a kvázperódkusnak nevezzük A kérés dő függvény pedg: Megjegyzés: Ha α = ω ejesül akkor a krkus csllapíásnak egfelelő egoldás: () = ( C+ C) e α Ha α > ω akkor erős csllapíás van lyenkor: ( ) β β α () = Ce + C e e ahol β = α ω Gerjesze lneárs rezgés rezonanca: Teknsünk egy olyan ozgás ahol a öegponra a ár ser ké erőn kívül egy perodkus gerjesző erő ha elynek ω a körfrekvencája F = kvázelaszkus erő A ozgásegyenle: S = κ közegellenállás F cos = F ω gerjesző erő

4 A jelölések: = κ + F cosω κ F α = ω = f = + α + ω = f cosω Ez egy ásodrendű lneárs állandó együhaós nhoogén dfferencálegyenle elynek álalános egoldása a hoogén egyenle álalános egoldásának és az nhoogén egyenle egy parkulárs egoldásának az összege: nhál = hoál + nhpar Mvel hoál dőben eponencálsan csökken ezér elegendő dő uán elhanyagolhaóvá válk Az állandósul állapoban nhál = nhpar A rezgés egndulásá köveő ranzens jelenségől eleknünk és az állandósul egoldás keressük Ez jelöljük -szel + α + ω= fcosω Vegyük fel az alább segédegyenlee elyben a kople egység: y+ α y+ ωy= fsnω a ké egyenlee összegezve és bevezeve az új kople válozó z = + y az alább egyenlee nyerhejük: z+ α z+ ωz = fe ω Az áírás során felhasználuk az Euler-relácó: ϕ e = cosϕ + snϕ Keressük ennek a kople egyenlenek a egoldásá a kövekező alakban: ( ) z = Ae ω δ ( ω δ) ( ω δ) ( ω δ) ω Aω e + αaωe + ωae = fe Egyszerűsísük az egyenlee az e ω aggal: δ Ae ω + αω+ ω = f A( cosδ snδ) ( ω ω ) αω = f Ez egy kople algebra egyenle elye ké valós egyenleel udunk kelégíen: A cosδ ( ω ω ) αωsn δ = f A snδ ( ω ω ) αωcosδ = Az egyenlerendszer ké serelenje A és δ és a egoldásuk: αω anδ = ω ω f A = ( ω ω ) + 4α ω A kerese egoldás valós része pedg: = Acos ω δ ( ) ( )

5 Az álalunk felve egoldás ehá valóban kelégí a dfferencál egyenlee ha A és δ az előbb eghaározo alakú A saconárus egoldás ehá egy egyszerű haronkus rezgés A lérejövő rezgés körfrekvencája egegyezk a gerjesző erő körfrekvencájával és az δ fázskéséssel köve A rezgés aplúdója függ a gerjesző erő aplúdójáól és körfrekvencájáól A kövekező ábra az uaja hogy a lérejövő rezgés aplúdója aáls éréke vesz fel egy bzonyos frekvencán Ez rezonanca frekvencának nevezzük A ké különböző görbe különböző csllapíásokhoz arozk Ha a csllapíás csökken a rezonancagörbe élesebbé válk A α α < α α O ω r ω Ez a egoldás a korábban alkalazunk csak a ranzens folyaa lejászódása uán írja le a rezgés Ha a ranzensre s kíváncsak vagyunk akkor ás ódszerrel kell a dfferencál egyenlee egoldan

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Folytonosidejű időinvariáns lineáris rendszerek

Folytonosidejű időinvariáns lineáris rendszerek Folyoosdejű dővarás leárs redszerek A Folyoosdejű dővarás leárs redszerek LTI (Lear Te Ivara Syses) öbbféleképp bevezeheők. Vegyük egy ódosío Drac függvéy: Végezzük el a kövekező közelíés: És végül: ahol

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda

Trigonometrikus egyenletek megoldása Azonosságok és 12 mintapélda Trigonometrikus egyenletek megoldása Azonosságok és 1 mintapélda Frissítve: 01. novermber 19. :07:41 1. Azonosságok 1.1. Azonosság. A sin és cos szögfüggvények derékszög háromszögben vett, majd kiterjesztett

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

y + a y + b y = r(x),

y + a y + b y = r(x), Definíció 1 A másodrendű, állandó együtthatós, lineáris differenciálegyenletek általános alakja y + a y + b y = r(x), ( ) ahol a és b valós számok, r(x) pedig adott függvény. Ha az r(x) függvény az azonosan

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:

Részletesebben

Gépelemek III képletgyűjtemény ELEMI FOGASKERÉK GEOMETRIA Modul

Gépelemek III képletgyűjtemény ELEMI FOGASKERÉK GEOMETRIA Modul Gépeleek III képlegyűjeény ELEMI OGASKERÉK GEOMERIA Moul Osókö áéő ejgsság p π Láélység ( + c ) ejkö áéő ( + ) Lákö áéő ( c ) Alpkö áéő Pol kpcsolósá Háogsá KOMPENZÁL OGAZA ε α sn Polelolás sony x + x

Részletesebben

1. A szerkezet és jármű dinamikai kölcsönhatása

1. A szerkezet és jármű dinamikai kölcsönhatása 1. A szerkeze és jármű dnamka kölcsönhaása A rezgésan egyk klasszkus feladaa a gerendaarón egyenlees sebességgel haladó erő okoza dnamkus haások számíása. Ennek során meghaározhaók a különböző dnamkus

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

A FIZIKA TANÍTÁSA. Visszapattanáskor belapuló labda függôleges irányú mozgása

A FIZIKA TANÍTÁSA. Visszapattanáskor belapuló labda függôleges irányú mozgása A FIZIKA TANÍTÁSA A TALAJÓL KÖSZÖÜLVE VISSZAPATTANÓ LABDA MECHANIKÁJA 1 ÉSZ Mikor paan föl a labda függôlegesen agy issza az eldobó kezébe? Horáh Gábor, Szferle Taás ELTE, Biológiai Fizika Tanszék Nagy-Czirok

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com

Rezgésdiagnosztika. 1. Bevezetés. PDF created with pdffactory Pro trial version www.pdffactory.com Rezgésdiagnoszika. Bevezeés rezgésdiagnoszika a űszaki diagnoszika egy eghaározo erülee. gépek állapovizsgálaánál alán a legelerjedebb vizsgálai ódszer a rezgésérés. Ebben a jegyzeben először a rezgésérés

Részletesebben

Gingl Zoltán, Szeged, :41 Elektronika - Váltófeszültségű házatok

Gingl Zoltán, Szeged, :41 Elektronika - Váltófeszültségű házatok Gngl Zolán, Szeged, 6. 6.. 3. 7:4 Elerona - Válófeszülségű házao 6.. 3. 7:4 Elerona - Válófeszülségű házao z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem

Részletesebben

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik:

Elektromos zajok. Átlagérték Időben változó jel átlagértéke alatt a jel idő szerinti integráljának és a közben eltelt időnek a hányadosát értik: Elektromos zajok Átlagérték, négyzetes átlag, effektív érték Átlagérték dőben változó jel átlagértéke alatt a jel dő szernt ntegráljának és a közben eltelt dőnek a hányadosát értk: τ τ dt Négyzetes átlag

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

Egy másik érdekes feladat. A feladat

Egy másik érdekes feladat. A feladat Egy másik érdekes feladat Az előző dolgozatban melynek címe: Egy érdekes feladat az itteninek egy speciális esetét vizsgáltuk. Az általánosabb feladat az alábbi [ 1 ]. A feladat Adott: az ABCD zárt négyszög

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből

Részletesebben

Differenciálegyenletek

Differenciálegyenletek DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

Fizikai tulajdonságok mérések

Fizikai tulajdonságok mérések Épíőanyagok II - Laborgyakorla Fizikai ulajdonságok, érések A fizikai ulajdonságok csoporjai Töegeloszlással kapcsolaos ulajdonságok és vizsgálauk Fajlagos felüle egaározása Szecseére-eloszlás egaározása

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =

Részletesebben

Mivel az erőkar mindkét oldalon ugyanakkora (t.i. a csiga sugara), az erőknek is meg kell egyezniük.

Mivel az erőkar mindkét oldalon ugyanakkora (t.i. a csiga sugara), az erőknek is meg kell egyezniük. 1. Könnyű: [1] Az alább ozgások közül elyknél használható a v=s/t képlet? A) A) szabadesés B) egyenletes körozgás C) gyorsuló körozgás B) D) ndegyknél E) egyknél se [2] Ha felfelé hajítunk egy követ és

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: -

3. Évközi ellenőrzés módja: 2 zárhelyi dolgozat íratása. 4. A tárgy előírt külső szakmai gyakorlatai: - Tantárgy neve Halmazok és függvények Tantárgy kódja MTB00 Meghrdetés féléve Kredtpont Összóraszám (elm+gyak + Számonkérés módja G Előfeltétel (tantárgy kód - Tantárgyfelelős neve Rozgony Tbor Tantárgyfelelős

Részletesebben

= 1, , = 1,6625 = 1 2 = 0,50 = 1,5 2 = 0,75 = 33, (1,6625 2) 0, (k 2) η = 48 1,6625 1,50 1,50 2 = 43,98

= 1, , = 1,6625 = 1 2 = 0,50 = 1,5 2 = 0,75 = 33, (1,6625 2) 0, (k 2) η = 48 1,6625 1,50 1,50 2 = 43,98 1. Egy vasbeton szerkezet tervezése során a beton nelineáris tervezési diagraját alkalazzuk. Kísérlettel egállapítottuk, hogy a beton nyoószilárdságának várható értéke fc = 48 /, a legnagyobb feszültséghez

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

TELJESÍTÉNYELEKTRONIKA

TELJESÍTÉNYELEKTRONIKA Szabadka Műsza Szakfőskola EJESÍÉNYEEKONKA Feladagyűjeény Mlan Adžć Fordíoa: Brány Nándor Szabadka 6. ájs. EJESÍMÉNYEEKONKA FEAAGYŰJEMÉNY EŐSZÓ E Ő S Z Ó Ez a feladagyűjeény a Szabadka Műsza Szakfőskola

Részletesebben

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást. . Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)

Részletesebben

YBCO szupravezető gyűrűk és zárt hurkok új alkalmazási lehetősége

YBCO szupravezető gyűrűk és zárt hurkok új alkalmazási lehetősége PhD érekezés YBCO szupravezeő gyűrűk és zár hurkok ú alkalazás leheősége Kósa János PhD hallgaó BME VK, Vllaos Energeka Tanszék Téavezeő: Dr. Vada sván egyee anár Budapes 0 PhD érekezés, 0 YBCO szupravezeő

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Differenciálegyenletek megoldása próbafüggvény-módszerrel Differenciálegyenletek megoldása próbafüggvény-módszerrel Ez még nem a végleges változat, utoljára módosítva: 2012. április 9.19:38. Elsőrendű egyenletek Legyen adott egy elsőrendű lineáris állandó együtthatós

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

A harmonikus rezgőmozgás

A harmonikus rezgőmozgás Esszé a rezgőozgásról A haronikus rezgőozgás A környezetünkben sok periodikus (isétlődő) jelenséggel találkozunk. Ezen jelenségek egy része a rezgések közé sorolható. Például: rezgő gitárhúr, billegő teáscsésze,

Részletesebben

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik. 6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az

Részletesebben

Hőtan részletes megoldások

Hőtan részletes megoldások Mechanika rézlee egoldáok.. A kineaika alapjai. 0,6. k. v 60 6, 7, 6, k 60 c 0, 6, v j 6. h v k v k. Feléelezve, hogy a kapu azonnal ozdíja a kezé (nulla a reakcióideje): v k k 06, 67,. 06, Figyelebe véve,

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA

Részletesebben

13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

13 Wiener folyamat és az Itô lemma. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 13 Wiener folyama és az Iô lemma Opions, Fuures, and Oher Derivaives, 8h Ediion, Copyrigh John C. Hull 01 1 Markov folyamaok Memória nélküli szochaszikus folyamaok, a kövekező lépés csak a pillananyi helyzeől

Részletesebben

Differenciál egyenletek (rövid áttekintés)

Differenciál egyenletek (rövid áttekintés) Differeniál egyenletek (rövid áttekintés) Differeniálegyenlet: olyan matematikai egyenlet, amely egy vagy több változós ismeretlen függvény és deriváltjai közötti kasolatot írja le. Fontosabb tíusok: közönséges

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középzinű éreégi feladaor Fizika Elő réz 1. Egy cónak vízhez vizonyío ebeége 12. A cónakban egy labda gurul 4 ebeéggel a cónak haladái irányával ellenéeen. A labda vízhez vizonyío ebeége: A) 8 B) 12 C)

Részletesebben

Egy idõállandós rendszer modell

Egy idõállandós rendszer modell Egy idõállandós rendszer modell Egyszerű, gyaran használ (öbb öölszabályban is eenérheő) özelíés; az áviel RC (aluláeresző) - szűrő [ τ = RC időállandó] modellezi.. ALAPÖSSZEFÜGGÉSEK A. Szinuszos, ω =

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Matematika A3 1. ZH+megoldás

Matematika A3 1. ZH+megoldás Matematika A3 1. ZH+megoldás 2008. október 17. 1. Feladat Egy 10 literes kezdetben tiszta vizet tartalmazó tartályba 2 l/min sebesséeggel 0.3 kg/l sótartalmú víz Áramlik be, amely elkeveredik a benne lévő

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses

IV. A mágneses tér alapfogalmai, alaptörvényei, mágneses V. A mágneses ér alapfogalma, alapörvénye, mágneses körök A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás,

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

Differenciálegyenletek a mindennapokban

Differenciálegyenletek a mindennapokban Differenciálegyenletek a mindennapokban Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 15 Pénz, pénz,

Részletesebben

Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö

Részletesebben

Elektronika Oszcillátorok

Elektronika Oszcillátorok 8. Az oszcillátorok periodikus jelet előállító jelforrások, generátorok. Olyan áramkörök, amelyeknek csak kimenete van, bemenete nincs. Leggyakoribb jelalakok: - négyszög - szinusz A jelgenerálás alapja

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai

Részletesebben

A mágneses tér alapfogalmai, alaptörvényei

A mágneses tér alapfogalmai, alaptörvényei A mágneses ér alapfogalma, alapörvénye A nyugvó vllamos ölések közö erőhaásoka a vllamos ér közveí (Coulomb örvénye). A mozgó ölések (vllamos áramo vvő vezeők) közö s fellép erőhaás, am a mágneses ér közveí.

Részletesebben

Typotex Kiadó. Jelölések

Typotex Kiadó. Jelölések Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály

Részletesebben

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta) 4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002.

Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002. Villamosságan II főiskolai jegyze Íra: Isza Sándor Debreceni Egyeem Kísérlei Fizika anszék Debrecen, Uolsó frissíés: 93 :5 Villamosságan II félév oldal aralom aralom emaikus árgymuaó 3 Bevezeés 4 Válóáramú

Részletesebben

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék.   [1] ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november

Részletesebben

SZENT ISTVÁN EGYETEM

SZENT ISTVÁN EGYETEM SZEN ISVÁN EGYEEM Napekoros rendszer energeikai alapú szabályozása Dokori (PhD) érekezés Kicsiny Richárd Gödöllı 2012 A dokori iskola egnevezése: Mőszaki udoányi Dokori Iskola udoányága: Agrárőszaki udoányok

Részletesebben

2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz

2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz 00. ácius 7. Megoldások /6.. jégtöb töege: kg 6 6 jég = ρ jég jég jég = 90 9000 0 0 = 8,56 0 kg. Kiszoított víz téfogata: 6 jég 8,56 0 kg Vk = = = 8, 5 0. ρ kg tengevíz 07,4 Vízszint-eelkedés: Vk 8, 5

Részletesebben

REAKCIÓKINETIKA ELEMI REAKCIÓK ÖSSZETETT REAKCIÓK. Egyszer modellek

REAKCIÓKINETIKA ELEMI REAKCIÓK ÖSSZETETT REAKCIÓK. Egyszer modellek REKIÓKINETIK ELEMI REKIÓK ÖSSZETETT REKIÓK Egyszer moelle Párhuzamos (parallel reaió Egyensúlyra veze reaió Egymás öve (sorozaos onszeuív reaió 4 Sorozaos reaió egyensúlyi lépéssel Moleuláris moelle reaiósebességi

Részletesebben

F1301 Bevezetés az elektronikába Műveleti erősítők

F1301 Bevezetés az elektronikába Műveleti erősítők F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin 080 ÉETTSÉGI VISGA 009. május. EEKTONIKAI AAPISMEETEK EMET SINTŰ ÍÁSBEI ÉETTSÉGI VISGA JAVÍTÁSI-ÉTÉKEÉSI ÚTMTATÓ OKTATÁSI ÉS KTÁIS MINISTÉIM Egyszerű, rövid feladaok

Részletesebben

Közepek Gauss-kompozíciója Gondolatok egy versenyfeladat kapcsán

Közepek Gauss-kompozíciója Gondolatok egy versenyfeladat kapcsán Gondolatok egy versenyfeladat kapcsán Debreceni Egyetem, Matematikai Intézet, Analízis Tanszék Regionális Matematika Szakkör Megnyitója Debrecen, 015. szeptember 7. AGH-egyenl tlenség Tétel Értelmezzük

Részletesebben

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák

Tartalom. Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák Tartalom Soros kompenzátor tervezése 1. Tervezési célok 2. Tervezés felnyitott hurokban 3. Elemzés zárt hurokban 4. Demonstrációs példák 215 1 Tervezési célok Szabályozó tervezés célja Stabilitás biztosítása

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 11. évfolyam 01/01 1. Ha egy kétjegyű szám számjegyeit felcseréljük, akkor a kapott kétjegyű szám értéke az eredeti szám értékénél 108 %-kal nagyobb. Melyik ez a kétjegyű szám? Jelölje a kétjegyű számot xy. 08 A feltételnek

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉG VZSG 05. okóber. ELEKTONK LPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Elekronikai alapismereek

Részletesebben

NATRII HYALURONAS. Nátrium-hialuronát

NATRII HYALURONAS. Nátrium-hialuronát Natrii hyaluronas Ph.Hg.VIII. Ph.Eur.6.0. - 1 01/2008:1472 NATRII HYALURONAS Nátriu-hialuronát (C 14 H 20 NNaO 11 ) n [9067-32-7] DEFINÍCIÓ A nátriu-hialuronát a hialuronsav nátriusója. A hialuronsav D-glükuronsav

Részletesebben