4. Ingamozgás periodikus külső erő hatására

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "4. Ingamozgás periodikus külső erő hatására"

Átírás

1 . Ingamozgás periodikus külső erő hatására.1. Fékezetlen ingamozgás periodikus külső erő hatására Fékezetlen lineáris matematikai inga Ha az ''+k =0 egenletre valamilen periodikus külső erő hat, akkor mozgását a következő differenciálegenlet írja le: melnek rendszer alakja: ''+k = A cosnt, '= '=-k + A cosnt. (1) ahol A a külső hatás amplitúdója, n a külső hatás körfrekvenciája. Ismert, hog az inhomogén egenlet általános megoldását a homogén általános megoldása és az inhomogén eg partikuláris megoldásaként kapjuk [1]. Tudjuk, hog a homogén egenlet általános megoldása: Clear@kD; eqn = 9'@tD '@td Ha = Simplif@DSolve@eqn, tdd@@1, C@1D Cos@k td + 1 k C@D Sin@k td Az inhomogén egenlet eg partikuláris megoldása H0L=0 és H0L=0 kezdeti értékek esetén, ha k n :

2 . Ingamozgás periodikus külső erő hatására 17 νd; eqn = 9'@tD '@td + A Cos@ν 0=; IHp = Factor@Simplif@DSolve@eqn, tdd, Trig TrueD@@1, A SinB k t t ν F SinB k t + t ν F ì HHk νl Hk + νll Az inhomogén egenlet általános megoldása tehát az előző kettő összege: C@1D Cos@k td + 1 k C@D Sin@k td + A SinB k t t ν F SinB k t + t ν F ì HHk νl Hk + νll Tetszőleges kezdeti értékekből induló megoldások Hk = 1, A = 1, n = L: Az inhomogén egenlet néhán megoldása különböző kezdeti értékek esetén: H0L=0 H0L=3 H0L=0 H0L= t t ábra Ismert, hog létezik n frekvenciájú megoldás. Ez az alábbi alakú:

3 . Ingamozgás periodikus külső erő hatására 18 eqn = 9'@tD '@td + A Cos@ν A ëik ν 0=; IHp = Simplif@Simplif@DSolve@eqn, tdd, Trig TrueD@@1, HA Cos@t νdlëik ν M A Vegük észre, hog ennek a megoldásnak az amplitúdója, ami arános a k -n külső erő amplitúdójával és fordítottan arános Ik -n M-vel. A hintázás szempontjából tekintve, nagobb erő nagobb kilengést jelent, a hinta sajátfrekvenciáját megközelítő külső körfrekvencia is hasonló eredmént ad. Uganakkor ha n º k, a rezgés (lengés) veszélesen naggá válik, a lebegés, illetve a rezonancia jelenségével találkozhatunk. Az inhomogén egenlet partikuláris megoldása mutatja, hog eg gors és eg lassú rezgés összegződése során alakul ki rezonancia, illetve lebegés SimplifA '@td == + A Cos@ν 0=, tee@@1, HA H Cos@k td + Cos@t νdllëik ν M a coshk tl alakú sajátregzés, illetve a coshn tl alakú gerjesztett rezgés lassan kerül azonos fázisból ellenfázisba. A következő néhán ábra a lebegés jelenségét szemlélteti azokban az esetekben, ha a n konstanst változtatjuk k = 1 körül. Az ábra jól mutatja a rezgések összegződését. A felső ábrákon látható rezgések összegeként létrejövő rezgéseket mutatják az alsó ábrák különböző körfrekvenciájú külső erők esetében (k = 1 körüli frekvenciák). Rezgések összegzése különböző körfrekvenciájú külső erők esetében :

4 . Ingamozgás periodikus külső erő hatására n= t n= t n= t t t t Ha k = n, azaz a gerjesztés körfrekvenciája azonos a rendszer sajátfrekvenciájával, akkor a megoldások nem korlátosak. Ezt a jelenséget nevezzük rezonanciának. Az egensúli helzetből induló megoldás a következő alakú: Clear@A, kd; eqn = 9'@tD '@td + A Cos@k 0=; Simplif@DSolve@eqn, tdd@@1, HA t Sin@k tdlêh kl Ezt mutatja a következő ábra: k=n=1, A= t ábra A rezonancia komol katasztrófát okozhat. A legismertebb szerencsétlenség az Amerikai Egesült Államokban következett be 190. november 7-én. Az újonnan épített Tachoma-híd eg több napig tartó erős szélben leszakadt. A szél által a hídra gakorolt periodikus lökések körfrekvenciája megegezett a híd lengéseinek sajátfrekvenciájával. A kialakult rezonancia miatt a több méter amplitúdójú, és több órán át tartó rezgések a híd leszakadásához vezettek [3]. Interaktív illusztráció

5 . Ingamozgás periodikus külső erő hatására 0 A következő interaktív vizsgálat az inhomogén egenlet tetszőleges partikuláris megoldásának a külső hatás amplitúdójától való függését szemlélteti. á Javasolt beállítások: Ha a kezdeti értékeket 0-ra, a külső erő körfrekvenciáját és a rugalmassági egütthatót 1-re, az amplitúdót tetszőlegesre állítva a kitérés a végtelenbe tart (rezonancia). Ha most a külső erő körfrekvenciáját 1-hez közeli értékre állítjuk, akkor a lebegés jelensége figelhető meg. Ha csupán a külső hatás amplitúdóját változtatjuk interaktívan láthatjuk, hog a megoldások viselkedését nem befolásolja az amplitúdóváltozás. A függvéngrafikonok aránosan nőnek, ahogan az amplitúdó nő t Külső hatás körfrekvenciája 1 Külső hatás amplitúdója 1 Rugalmasságiegüttható Hk L 1 Kezdeti kitérés 0 Kezdeti sebesség 1 Kicsinítés 3.6 Idő 8. Interaktív illusztráció Ha a különböző frekvenciákat az emberi fül által hallható frekvenciatartománból választjuk, akkor az inhomogén egenlet partikuláris megoldása hallhatóvá válik. Az alábbi animáció két rezgés összegeként létrejövő rezgéseket szemlélteti. Minél nagobbra állítjuk a frekvenciaértékeket, annál magasabb hangot hallhatunk.

6 . Ingamozgás periodikus külső erő hatására 1 Figeljük meg a lebegés jelenségét. A hang ereje fokozatosan erősödik illetve elhalkul. Minél közelebbi értékeket választunk, annál jobban megfigelhető a jelenség a kibocsájtott hang segítségével. VIGYÁZAT! Ha a két frekvenciaértéket egformának választjuk, az inhomogén egenlet partikuláris megoldása a végtelenbe tart, melet az illusztráció nem képes megjeleníteni. á Javasolt beállítások: A=1, k = 130, n értékét pedig változtatjuk k körül t t Amplitúdó 1. Természetes körfrekvencia 000 Külső hatás körfrekvenciája 00 Idő 6. Lejátszás

7 . Ingamozgás periodikus külső erő hatására ã Fékezetlen nemlineáris matematikai inga A nemlineáris matematikai inga esetében az egenlet a következő alakú: '= '=-k sin + A cosnt. () ahol A a külső erő amplitúdója, n a külső erő körfrekvenciája. A Melléklet 6. tétele alapján tudjuk, hog kis kezdő értékek esetén, ha a homogén, lineáris, periodikus ''=-k egenletnek nincs nemtriviális, n körfrekvenciájú periodikus megoldása, akkor az (.)-nek létezik pontosan eg. Ez az origó körnezetében akkor teljesül, ha n k. Mivel a homogén egenlet megoldásainak rezgése amplitúdó növelkedésével lassul, ezért nem túl nag gerjesző amplitúdó (az átfordulást elkerülendő) és adott n > k körfrekvencia mellett létezik n körfrekvenciájú periodikus megoldás. Interaktív illusztráció A következő interaktív vizsgálat az inhomogén egenlet tetszőleges partikuláris megoldásának különböző paraméterektől való függését szemlélteti. á Javasolt beállítások: Érdemes megfigelni azt a speciális esetet, amikor minden értéket 1-nek választunk, és a kezdeti kitérést pedig interaktívan változtatjuk, illetve ha a külső hatás körfrekvenciáját változtatjuk, ahol H0L=0, minden más érték pedig 1. Az első esetben a kezdeti kitérés megváltoztatásával a mozgás jelentős mértékben változik, az utóbbiban pedig megközelítőleg az 1.3-es értékig a kitérés nag, utánna pedig adott korlátok között mozog. Ha a külső hatás amplitúdóját változtatjuk, látható, hog a matematikai ingától eltérően a megoldások viselkedése nag mértékben változik.

8 . Ingamozgás periodikus külső erő hatására t - - Külső hatás körfrekvenciája 1.33 Külső hatás amplitúdója 1 Rugalmasságiegüttható Hk L 1 Kezdeti kitérés 0 Kezdeti sebesség 1 Kicsinítés 1. Idő 76. A következő ábrán a javasolt beállítások szerint minden értéket 1-nek választunk, és a kezdeti kitérést változtatjuk H0L= t H0L= t. ábra H0L= t Szintén a javasolt beállítások szerint a kezdeti kitérést 0-nak választva, minden más értéket pedig 1-nek, a megoldásoknak a külsö hatás körfrekveniájától való függését a következő ábra mutatja: n= t - -. ábra n= t

9 . Ingamozgás periodikus külső erő hatására Az inhomogén egenlet megoldásának változása különböző amplitúdójú külső erők esetén: A=3.07 A=3.1 A= t t t.. Fékezett ingamozgás periodikus külső erő hatására Fékezett matematikai inga Ha a csillapítást is hozzávesszük (.1)-hez akkor kapjuk a következő egenletet '= '=-a -k + A cosnt, (3) ahol A a külső erő amplitúdója, n a külső erő körfrekvenciája. Határozzuk meg az inhomogén egenlet általános megoldását! A 3. fejezetből tudjuk, hog a homogén egenlet általános megoldása, ha feltesszük, hog a csillapítás kicsi, és alkalmazva a m = a - k helettesítést: Clear@a, kd; eqn = 9'@tD '@td k 0=; Ha = SimplifADSolve@eqn, td@@1, 1DD ê. 9, Ia k M µ, 1ë, Ia k M µ= ê. u_ CompleEpand@ u a t µ 0 µ CosB t µ F + Ha 0 + 0L SinB t µ F Láthatjuk, hog a megoldások nem periodikusak, ezért a Melléklet 6. tétele szerint inhomogén egenletnek lesz periodikus megoldása periodikus külső hatás esetén. Az inhomogén egenlet eg partikuláris megoldása H0L=0 és H0L=0 kezdeti értékek esetén: eqn = 9'@tD '@td + A Cos@ν 0=;

10 . Ingamozgás periodikus külső erő hatására IHp = CollectBSimplifACompleEpandA DSolve@eqn, td@@1, 1DD ê. 9, Ia k M µ, 1ë, Ia k M µ=e, Ha RealsL && Hk RealsL && Hµ RealsLE, a t A a t µ k µ CosB t µ F µ ν CosB t µ F + a k SinB t µ F + a ν SinB t µ F ì Ik + a ν k ν + ν M IA µ I k µ Cos@t νd + µ ν Cos@t νd a µ ν Sin@t νdmmë Ik + a ν k ν + ν M Itt a második tag n körfrekvenciájú, míg az első a homogén egenlet eg megoldása. A rezonancia jelensége itt is megfigelhető, ha a gerjesztés körfrekvenciája azonos a rendszer sajátkörfrekvenciájával, azaz mê = n. Az inhomogén egenlet megoldásai adott kezdeti értékekre Hk = 1, A=1, n = L : 3 H0L=0 H0L=3 6 H0L=0 H0L= t t 80, 3< 80, 6< ábra Az inhomogén egenlet általános megoldása itt is a homogén egenlet általános és az inhomogén egenlet eg partikuláris megoldásának összege. Az inhomogén egenlet partikuláris megoldása függ a külső hatás amplitúdójától

11 . Ingamozgás periodikus külső erő hatására 6 a csillapítatlan esethez hasonló módon Ha = 0., k = 1, H0L = H0L = 0L. A= t - - A= t - 8. ábra A= t A hintázással kapcsolatosan megállapíthatjuk hog mivel mindig fennáll csillapítás, bármilen periodikus kis amlitúdójú hintáztatás esetén a hinta periodikusan mozog. Rezonancia lép fel, ha m/ = n, de ez nem veszéles (kis amplitúdó mellett, mivel a lengés korlátos marad), csupán a leghatékonabb hintázást biztosítja. Interaktív illusztráció A következő interaktív vizsgálat az inhomogén egenlet tetszőleges partikuláris megoldásának különböző paraméterektől való függését szemlélteti. á Javasolt beállítások m ê = n rezonancia körül: a = 0.1, n = , k = 1, a többi értéket tetszés szerint változtatjuk.

12 . Ingamozgás periodikus külső erő hatására t - - Csillapítás 0. Külső hatás körfrekvenciája Külső hatás amplitúdója 3 Rugalmasságiegüttható Hk L 1 Kezdeti kitérés 0 Kezdeti sebesség 1 Kicsinítés. Idő 198.

13 . Ingamozgás periodikus külső erő hatására 8 ã Fékezett nemlineáris matematikai inga A nemlineáris, csillapított nemlineáris matematikai inga egenletét egészítsük ki eg a rendszerre ható, külső periodikus erővel: '= '=-a -k sin + A cosnt. () Kis kezdeti értékek esetén a mozgás a megfelelő matematikai ingáénak a perturbációja és a Melléklet 6. tétele szerint létezik n körfrekvenciájú periodikus mozgás. Ennek következméne a hintázásra hasonló ahhoz, amit a matematikai inga esetén mondtunk. A m/ = n esetben rezonancia, a mê ºn körüli értékek esetén pedig a lebegés figelhető meg. Túl nag kezdeti értékek esetén az inga mozgása kaotikussá válik [11] és [1]. Ezt a jelenséget Hatvani László vizsgálta az alábbi rendszeren: '= '= sinhl+ coshtl. A külső hatás túl nag amplitúdója, szintén ellenőrizhetetlen mozgást (átfordulásokat) eredménezhet. Interaktív illusztráció A lineáris és nemlineáris inga mozgásának összehasonlítása érdekében nézzük a következő animációt, mel mind a csillapított, mind a csillapítatlan esetet szemlélteti. Az animáció segítségével a fenti példát is megvizsgálhatjuk. A kezdeti kitérést zérusnak tekintve, a kezdeti sebességet pedig kis körnezetében változtatva a megoldás aszimpotikusan periodikus p-vel (a külső erő periódusával). A kezdeti értékek változtatásával megszámlálhatatlanul sok megjósolhatatlan viselkedésű, kaotikus megoldás létezik. Az animáció segítségével azt is láthajuk, hog a kitérés nemcsak a kezdeti értékektől, hanem a külső hatás körfrekvenciájától és amplitúdójától is függ. A nemlineáris matematikai inga kaotikus mozgását a barna színű grafikonok szemléltetik megfelelő paraméterek esetén. á Javasolt beállítások: a = 0.1, k = 1, n = Ebben az esetben m/ = n. Figeljük meg mi lesz, ha a n értéket változtatjuk m/ körül! a = 0.1, k = 1, A=1, n = 1, H0L=0, és H0L-ot változtassuk kis körnezetében. Ekkor Hatvani László katotikus ingájának vizualizációját

14 . Ingamozgás periodikus külső erő hatására 9 kapjuk. Lineáris inga Nemlineáris inga t Csillapítás 0.1 Rugalmasságiegüttható Hk L 1 Külső hatás amplitúdója 1 Külső hatás körfrekvenciája 1 Kezdeti kitérés 0 Kezdeti sebesség Kicsinítés 9 Idő 9.

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések . REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

Mechanikai rezgések = 1 (1)

Mechanikai rezgések = 1 (1) 1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ Oktatási Hivatal A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA II. KATEGÓRIA MEGOLDÁSI ÚTMUTATÓ 1./ Bevezetés Ha egy rezgésre képes rugalmas testet például ütéssel rezgésbe

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

Á ú ú ű ű ú ú Í ú ú Ö ű Ö ű Ö Ö ű ű ú ÍÍ Í ú Í Í Í Í Í ú ú

Á ú ú ű ű ú ú Í ú ú Ö ű Ö ű Ö Ö ű ű ú ÍÍ Í ú Í Í Í Í Í ú ú ú Á ú ű ú ú ű ú ű ű Ö Í ű ű Í ú Í ú Á Í ú ú ú Á ú ú ű ű ú ú Í ú ú Ö ű Ö ű Ö Ö ű ű ú ÍÍ Í ú Í Í Í Í Í ú ú Ö Í ű ű Í ű Ö Í Í Í ű Í ű Í ú ű ú Í Í ú ú ú ú Í ú Ü Á ú ű ú ű ű Í Í Í ű ú Ö ú ű ű Í Í Í Í ű ű Í

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.

Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29. Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések

2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések 58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket

Részletesebben

ő ű í ő ú í í Á ű í ő ő ő ő í É í í ő Ö Ö Ö Á Í Á ő ő ő ő É ő ő ú ú ú í ő Á Ö ő ő

ő ű í ő ú í í Á ű í ő ő ő ő í É í í ő Ö Ö Ö Á Í Á ő ő ő ő É ő ő ú ú ú í ő Á Ö ő ő Á ő ő ű í ú ő ő ő ő í í í ő ő ő ő í ő ő ő ű í ő ú í í Á ű í ő ő ő ő í É í í ő Ö Ö Ö Á Í Á ő ő ő ő É ő ő ú ú ú í ő Á Ö ő ő í ő ő ű í ú í í ű í ő ő ő ő í ő ő ő ő í ő ő ő ő í É í í í í ű ő í í ő ú ű í ú í

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) . Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban

Részletesebben

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató!

Tudnivalók. Dr. Horváth András. 0.1-es változat. Kedves Hallgató! Kérdések és feladatok rezgőmozgásokból Dr. Horváth András 0.1-es változat Tudnivalók Kedves Hallgató! Az alábbiakban egy válogatást közlünk az elmúlt évek vizsga- és ZH-feladataiból. Időnk és energiánk

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Ingák Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés A harmonikus oszcillátor

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű

ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ú É Á Á ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ű í ü í í ü ű í ü ű ü í ü í í í ü í ű ü í ú í ü ü ú í ü ü ű ü í í í ü ü ü í ü Ü ü ü ü ü ü í í í ü í í ü í í ü ű ü ú í ü í ü í ű í

Részletesebben

KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium

KÁOSZ EGY TÁLBAN Tóthné Juhász Tünde Karinthy Frigyes Gimnázium (Budapest) Gócz Éva Lónyai Utcai Református Gimnázium válaszolására iránuló, még folamatban lévô (a dekoherencia és a hullámcsomag kollapszusa tárgkörökbe esô) elméleti próbálkozások ismertetésétôl. Ehelett inkább a kísérletek elôfeltételét képezô kvantumhûtés

Részletesebben

Statika gyakorló teszt II.

Statika gyakorló teszt II. Statika gakorló teszt II. Készítette: Gönczi Dávid Témakörök: (I) Egszerű szerkezetek síkbeli statikai feladatai (II) Megoszló terhelésekkel kapcsolatos számítások (III) Összetett szerkezetek síkbeli statikai

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC 016.03.1. BSC MATEMATIKA II. ELSŐ ÉS MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC AZ ELSŐRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLET FOGALMA Az elsőrendű közönséges differenciálegyenletet

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö Á Á É é ö ö é ő ő ő é ö é é ő é é é é ő í é é é ó é é é ü ő ő ó é ő é ű ö ö ú é ü ö é é é é ó é é ü ő ö é ő é ő ü ő ő ö ö í é ő ó ó ő é ő é ó é é ő é ó é ű é é ü ö é Í ö é í é ő ó ö é ő é ú í ö é é é ö

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú

ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú ó ó ó ó É ő ó ő ö ú ó ö ú ó ő ó ő ó ó ó ö ü ő ö ó ú ő ó ö ó ó ő ü ő ó ő ü ö ő ő ó ó ő ó ö ö ú ó ő ö ó ő ő ó É ó ő ü ö ú ű ü ő ő ú ó ö ú ó ó ó ó ő ó ö ú Á ő ő ő Á ó ó ü É ö ú ő ü ó ü ő ó Á ő ő ó ő ó Íő

Részletesebben

Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü

Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü É Á í É Á Á ü Ú ű í Í Í Ü ü ú ü Í ü ü ü ü Í ü Í í ü ü ü ü ü ü ü ü ü í Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü Í Ó Í Ó ü ü ü Í ü ü É ü ü ü ü ü É ü ü Í ü ü ü Í Ó Í Ó í Á í É ü í Í ü í Í í í ü ü É ü ü

Részletesebben

ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö

ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö Ü É ű ü ü ö Í ü ö ö ü ű Í Í ü ű ö Ö ö ö ö Í ü ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö ü ü ü Í ü ö ö ö ö ö ö ö ü Í Í ű ö ö ö ü ü ö ü ö ö ö ü ö ö ö ö ü ü ű ü ö ö ö ü ö ü ű ö ü ö ö ű Í ü ü ű Í ö ü ö

Részletesebben

É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í

É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í Í É Í Á Á É Ü Ó É É É É Í Ó Ó Ő Á Á É Á É É É É Á É É Á Á É É Á É Í É Á É Í Í É É Í Í Í Á Í Á Á ö ó ö ö ő ő ő ö ö ó ő ű ö ö ö ö ü ö ö ö ü ü ó ö Á ó ó ö ö ő ő ő ő ö ó ü ó ó ó ó ó ó ö ü ü ó ö Ó Í Í É É

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

Ü

Ü Ó Á ú Á É Ü Ö Ö Ö É É É Ö É Ü Ö É É É É É Ó Ö Ó Í Ö Ö Ö Ö Í Ö Ö É É É Í Ö Ö É Ö Í Á Ó Í Á É É Ó É Ú Á Í É É É Ö Ö Ó Ö Ö Ö Ö Ó Ó Ó Í Ü Ö É É Ö Ó Ö Ó ö Ö Ö Ö Ö Ö Ó Ü Ö Ó É ű É É É É É É É É Í Ö Ó Ö É Ö Ö

Részletesebben

ö á á ö á ü á í á ö ü í ö ö ő ö á á ó ö á á á í ó á á á ő ő ú ú á á ó ó ó ő ö ü ö ö ü ö Ö á ő á á Ö á Í á ó á ő ü á ö á á ü ö ö á ö á á ö ó ü ú ő á í

ö á á ö á ü á í á ö ü í ö ö ő ö á á ó ö á á á í ó á á á ő ő ú ú á á ó ó ó ő ö ü ö ö ü ö Ö á ő á á Ö á Í á ó á ő ü á ö á á ü ö ö á ö á á ö ó ü ú ő á í ö á ő ü ó ü ö á á ó ö Ö á á ő ü á ö á ó ó ó ö á í ö á ó ő ó ö á ü í á í á á á ó ó ó á á á ó ó ő ő ö ő ő á ó Á á ü ö á á ö á ü ó á ü ő á á á ő ő á á á ö Ö á Í á Ö á ö á á Í ü á ű á í á á ó ö ő á á í ó ö

Részletesebben

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö

Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö ö ú ö ö ú ö ú Ü ő ú ő ö ő ő ő ö ö Í Ú É ő ő ú ö Ö ú ú ú ö ö ú ö ö ű ö ő ö ö ú ö ő ő ö ö ö ő ő ú ő ú ö ö ö ú ö ö ú ő ö ú ö ű ö ő Ó ő Á ö ő ö ö Ú ő ö ő ő ő ö ú ú ú ő ö ő ö ő ő ő ö ö ö ö ő ő ö ő ú ő ö ú ö

Részletesebben

ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü

ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü ü ü ü ü Ó í Ó Éü í ú ű ű É ü ű ü ű ű í ü í ő í Ü ő ő ü ú Í ő ő í ú ü ü ő ü ű ű ű í ü ő ű ü ü ő ú ú ő ü ő ő ő ü ú ű ú ú ú ő ő ú ő ő í ú í Ó ú ü ő ú ú ú ű ú ú Ű ű ő ű ű ő Á ü í ü ú ü í ú ő ú ő ű ő í ő ő

Részletesebben

í í ü

í í ü í í ü ü űú í Á Ú ö Ó Ő ű ö ö í í í Á ű í ü ő í ő íú íá ü í ö í ú ő ö ő Ó ü í í í ű í É ő ö ü ő ö ő í ű ü ő ű í ú ö ü ú ő ú ö ő ű ö í ő ü ö ő ö ő í í ö ö ű ő ü ü ö ő ü ő ö ő ö ő í í ü ü í ü ö ö ú í ő ö

Részletesebben

ű Á ü ő ö í ö ö ő ő ő ő ö

ű Á ü ő ö í ö ö ő ő ő ő ö Á É í ü í í í ü í í ö í ű í í í í í í í í í ü ő ö ö ö ű ő ö ű Á ü ő ö í ö ö ő ő ő ő ö ö ő ő ő ö ö Ű ú Á ö ú ú ö ü í ő ő ú É í í ő ö í ö ú í ő ü í í í í í ö í ű í í í í í í í í í ü ő ö ö ö ű ű ő ű ü í Ö

Részletesebben

ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö

ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í ó ű Ü ó í ú í ö í ö í Í ó ó í í ö ü ö ö í ö í ö ö ö ü ó í ö ö ó í ú ü ó ö Á Ö É Á É Ő Ü Ü ü ö Ö ü ú ö í ü ü ó ó Á ö ó ö ö ö Ö í ü ü ü í í ü ü ö ü ü ü ü ö í ó ó Ő ó ó ö ó ö í ü í Í ó í ó ö í ó ó ö ó ó ö ó ó É ó í ó ó í í ö í ó í ö ö ö ü ö ó ó ó ü ú ö ü ó ó ö ö ü ü ü ö ö ó ö í

Részletesebben

Ü ű ö Á Ü ü ö ö

Ü ű ö Á Ü ü ö ö Í Í Ü Ú ö ú Ö Ü ű ö Á Ü ü ö ö ú ü ü ö ü ö ö ö ö Ü Ü ö ö ö ö ö ü ü ö ü Ü ö ú ü ö ü ö ű ö ű Ü ü ö É ö ü ü ö ö ö ö ö ö ö ö Ó ö Ü ü Ü ü ü ö ö ö ö ö ö ö ú ü ö ű ü ö ú ű Ü ö ö ö ü Ü Ü Ü ú ö ö ü ű ö ű ö Á Á Í

Részletesebben

í Ó ó ó í ó ó ó ő í ó ó ó ó

í Ó ó ó í ó ó ó ő í ó ó ó ó í Ú Á Í í Ó ó ó í ó ó ó ő í ó ó ó ó í Ó Ó í ő ó Í í í í Ó í ó í í Ő É Ú Ű Í É Á ó Á É É ó ó í É Ü Í ő í ó í ó í Ő Ő Á Ó Ó Á É É Á Á É É Ő Á Ú É í ó Á í Á í í ő í í Ő Ő É Ú Ű Í É Á ó Á É Ö Í Í É ó ó í Ú

Részletesebben

Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö

Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö Ö É Ö Í Í Í Ü Ó Ó Ö Á Ü Ü Ó Ü Ü Ó Ö Í É Ö Ü Ü Á É Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ú Í É Ó Á Ü Á É Á Ü Í Í Í Í Ü Í Í Í Í Í É Ö Á Í Á Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Í Í É Í Í É É Í Í Í É Í Ü Í Ü Á Ü Ü

Részletesebben

í ö Á ö ö ö Á í ö ű ü í í ű ö ú ü íí ö ű ö ü ú ü ö í ü ű í ö ö ü ü í ö ü ö ű ö í ű ü í ö í í ü í Á Á í í ü ö ö ü ű í í ö ö ü í ű ü ö í ö ű ü í í ű ö í í í ö ö í ö ö ö ö ö ö í í ű Á Á Á Á Á í í ú í ö ö

Részletesebben

ü ő ő ü ü ő ő ű í í ű ő ő ő ü ő ő í í ő ő ő ő ő ő ü ü í ő Ö ő ü í ő ü í í ő ü ő í ő ő í í ő ü ü í ő ü í ő í ő í ő ü í ő í ü í í ő

ü ő ő ü ü ő ő ű í í ű ő ő ő ü ő ő í í ő ő ő ő ő ő ü ü í ő Ö ő ü í ő ü í í ő ü ő í ő ő í í ő ü ü í ő ü í ő í ő í ő ü í ő í ü í í ő ő Á Á Á Ű Ö É Á Ö ő ő ő ű Ö ű ú ő ü ű ü ü ő ü ő ő ú í ü í í ü ő í ő ő í ő ő í ő ő í ü ő í ű ő ü ű ő ü í ü ü ő ü ü í ü í ü ü Ú í Ő Í ü ő ü ü í Ö í í ü ő ő ü ü ő ő ű í í ű ő ő ő ü ő ő í í ő ő ő ő ő ő ü ü

Részletesebben

Í ö ö ű ú ö ö Í ö ü ö ü

Í ö ö ű ú ö ö Í ö ü ö ü Í Í ö ú ö ö ö ö ű ö ö ö ö Í ű ű ö ü ú ö ú ú ű Í ö ö ű ú ö ö Í ö ü ö ü ö ú ü ü ö ú ö ű ö Í ű ú ú ö ú ú ű Á É Á ö ű ú Í ö ö ü Í ú ö ú ö ö Í ű ö Í ú ö ö ö Í ö ö ö ö ö Í ö ö ö Í ö ö ö ö Í ű ö Í ú ö Í ö ö ű

Részletesebben

ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő

ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő ő ő ű ú ő ü ü ü ü ü ő ő ü ü ü ü ü ü ü ü ü ő Ö ő ő ő ő ő Ű ü ú ú Ú ü ű ő ő ő ő Á Á Í ü É ő ő ő ő ő É ő ú ú ú ő Á Ö ő ő ű ő ú ü ú ő ő ő ő ő ő ő ő ő ő ő É ü ű ő ü Á ő ú ű ű ő ő ő É ü ű ő ő ő ű ú ü ú ő ő ő

Részletesebben

í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő

í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő É Á Á ő ü í ü ü í ü ő ü ő ü ü ü í í í í í ü í í ő í í ü í í í í í Ó ő ő í í í Ú ü Ú í í Ú ő ü Ú ü ő ő í ő í ű ű í í ü í í ő í í í í í ű í ő í í í í ü í ő í ő í ü í ű ő ű ü í ü ü í ő ő ü ő í í Ö ü í ü ü

Részletesebben

í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó

í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó Á Á Ó Ö Á í í É í ó ó É ö í ó í ó í ó ó í ó í í ó ó ó í ö ö ö ö í í í ó ó ö ó ó í í ó ó ű ű ö ű ú í ö ó ó í ó ó ö ö Ü ú ó Ü ö ö í ö í ó ó ó ű í ó ö ö í í ö ö í ö Í ó ö í ö ö ó ó ö ö í ó ö ö í í ö í ú Í

Részletesebben

ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő

ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő ő ő ő ü ő ő ő ő ő ő ő ú ő ü Á ü ü ő ő ő ő ő ő ő ő ő ő Ö Ó ő ő ő Ö ő ő ő ő ü ő ő ű ü ő ű ő ő ő ő ü ő ő ő ü ő ű ő ő ő ü ő ü ő ő ü ű ő ő ü ü Á ő Á ű ű ü Á ő ű ű ő ű ű ü ű ő ő ő ü ő ű Ó ü Í Á ő ű ő ő ő ő ü

Részletesebben

ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű

ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű É Á É É Ó Á ű Á ű ú ú ű ű ú ű ű ú Á ú ű ú ű ú ű ú ű Á ű ú ű ű Ö Ú Á ű ű Á ű ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű ű ú ű ű ű ű ű ú ű ű ű ű ű ű Á ú ű ű ú ú ű ű ű ű ű ú ű Á ű ű ű ű ű ű ú ű ú ű ú ű Ö ú ű Ö

Részletesebben

É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű

É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű ő ő ű ú Á ő ű ő ő ő ő Ö Ö Í Á É Á ő Ö Ö Í ő ő ő ő É ő ő ú ú ú ő Á Ö É ő ő ű ú Á ő Á ő ű ő ő ő ő ő ő ő ő ű ú ű ű ő ő ő ű ő ű ő ú Á ő ű ő ő ő ő ő ő Ö ő ú ú Ö ő ő ű ú Á ő ú Ó ű Ó ú ú ú ő ő ú ú ő ő ú ő Ú ú

Részletesebben

í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é

í ó ő í é ö ő é í ó é é ó é í é é í é í íí é é é í é ö é ő é ó ő ő é ö é Ö ü é ó ö ü ö ö é é é ő í ő í ő ö é ő ú é ö é é é í é é í é é ü é é ö é ó í é ű ű ö é ő ó í ö ő ü é ő é ü ő ö ő ö é é í ö ő ö ó ő é ó í ö ő ü é é é é é ő é é é é í ő ö é é ő ű ő ö í ö é é é Ö ű ú ő é é ű ő í ü ö é é ő ó ö ö ő é é é é é é é é é é ő ü í í é ú í í í Ú í é ú é ő ó ó

Részletesebben

é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü

é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü é í ü é ö é é ő ü é é é ú é ó Í é é ő Í é ó ö í é ö é Ö é é ő í ó í é ő ö ú é ó é ő ü ü é ó ö é é ó é é ö é ő í é é ő é é ö é ű ö é í ó é é í ö í ó í ó é é ö ó í ó ó í ó é é ö ő í ó ó í ó ü é í ü é ö ő

Részletesebben

É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő

É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő ő Ü É Í ü ú É ü ő ő ő ő ú ő ú ü ü ő ü ú ü ű ú ú ü ü Í ü ű ő ő É ő ő ő ú ő ő ő ú ő ü ú ű ő ű É Í ő É Ü Í ő ü ő ő ő ő ő ő ú ü ű ő ú ő ű ő ő ő ű ő ű ő É Í Ú Ö Á Á É Á Á Á Ő Á É Á Ö Á Ö É É É ü ő Á ő ú ü ő

Részletesebben

ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö

ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö Í Í Ő Ó Ü Ö Ő ő ö ő ű ó ö ó ű Í Ö Ö Á Í Ó Ö Ü É Ö Ö Ö Á Á Ö É Á Ö ő ö ő Í ó ö ó ú Í Ö Í ÍÍ É Ó Ü Ü Ó Ó Ö É Ö ő ö ő ű ó ö ú Í Ö Í Ö Í Ö Ó Ó Ó Ó Ü Ö Ü Ü É Ú Ö Ó Ó Í Í ő ö ő ű ó ö ó ú É Ö Í Í ÍÍ Í Í Í É Í

Részletesebben

ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü

ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü ü ü ü ú ú ü ű ü ű ü ü ű ü ü ü Í ú ú ü ü Á ú ú ü ű ű ú ü ü ü ü ú ü ü Á ű ü ü ü ü ü ü ü ú ü ü Í ú ü É Ö Ö ú Ö Ö Ö ú ú ü ú Á Ö Á ú É ü ú ú É ú ú ú Ü ü ű ú ű É ú ű ü ü Á ú É ü ű ü ú Á É É ú ü Ö Ö Ö ú ú Á Ö

Részletesebben

ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö

ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö Í Á Ö Ú Á Á Ó Á ö ú ú ö ú ú ö ü ü ű ü ű ö ö ü ű ö ü ö ú ö ü ú ö ö ü ü ö ü ű ö ö ü ű ö ö ú ö ö ú ú ü ö ú ö ú ü ö ü Á Ó ö ö ö ö ú ü ú ü ü ú ú ö ö ü ü ú ü ü ö ö ű ö ü ü ü ü ö ö ü ö ü ö ö ü ö ö ú ö ü ű ö ü

Részletesebben

ű í ú ü ü ü ü ü Ó í ü í í í É Á

ű í ú ü ü ü ü ü Ó í ü í í í É Á ü ű ü ú ű í ú í ű í ú ú ú ú ű í ú ü ü ü ü ü Ó í ü í í í É Á ű í í í Á ü É í í Ö Ö Á í Á É Á ú ú ú í ű í ú ű í í í É í í É í ű í ü í ú ű í ű í É í Ú í í í ű í ú ű í í í ü í í ú í ú í Ö ű í í í ü ü Ő í í

Részletesebben

Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú

Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú ű É Í Á Á Á Ó É Á Á Ó Í Ö Á Á Á Ö ü Í Ó Í ű ű ü ú Í Í Ó ű Ü Ó Ó Ü ü Ö Í Ü Í Í ú Ö Ó Í ú ú Ö Ó É Í ű ú ü Í ú Ü Ű Ó Ó Í ú Í ú Ö Ó ü Ü ü ű Ó ú Í ü É Í Í Á Á Ó Í Á ú Ö Í Ó ú ú ú Í ú ú ű ú Ü ü ü Í Á ü ú Í ú

Részletesebben

Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő

Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő ű É ű ű É Ö Ö Ú Ó Ö ű Ő Ő ű ű Ü Ő Ó Ő É Ó Ó É ű Ö ű Ö ű ű ű Ú Ú Ö ű ű ű Ö ű ű ű ű ű ű ű ű Ú É É É É Ö Ö Ú Ö É ű ű ű ű ű ű ű Ó ű Ö Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű ű ű ű ű Ö ű ű ű Ü ű ű ű ű Ö ű

Részletesebben

ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü

ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő É ő ő ő ő É Ü Ö Ö Ö Í Ö Ö Ö ő Ó Ó Ö Ö Á É É É ő Á É Á Á Ú Á Ú Ö Ö Á Ú Ö Á ű Á ú ő ő ü ü Ó ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő ő ő ő Á ü ú ú

Részletesebben

ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü

ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü ű ü ü ú ü ú ú ű ü ú ú ü ü Ó Ö Í ü ú ú ű Ö ú ú ú ü ü ú ÍÍ ú ü ü ú Ö ú ü ü ü ü ü ú ü ú ü ű Í ü ü ű ü ű Ó ü Ü ű ú ú Á ü ű ű ü ü Ö ü ű ü Í ü ü ü Ü ü ü ú ü ű ü ü ü Ü ú ú ü ü ü ü Í ü ü ú ű ü ü ü ü ü ü Í Í ü

Részletesebben

ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó

ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó ü ö ö Ö ü ü ö ö Ö ö ó ö ú ó ü ö ö ö Ö í ó ü í í ü ö í í ó ó ü ö ü ö ö ü í ó ö ö Ö ó ó ö ó ó ó ü ö í ü ú ó ó í ö ö ö ó ö ü ú ó ü ö ü ö ö Ö ü ö ö Ö ó ö ö Ö ü í ö Ö ö ö ó ü í ö ó ó ü ö ó í ü ü ü ö ö ü í ü

Részletesebben

í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö ö ú ő ő ú í ő í ő ö ö í ő ü ü í ő ö ü ü ú í í ü ő í ü Í í í í ö ő ö ü ő í ő ő ü ű ő ő í ő í í ő ő

í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö ö ú ő ő ú í ő í ő ö ö í ő ü ü í ő ö ü ü ú í í ü ő í ü Í í í í ö ő ö ü ő í ő ő ü ű ő ő í ő í í ő ő ö Ö ő ü ü ő Á ü ö ö ő ő ű ő ü ő Ö ö ő í ő ö í ö ö ő ő ö í ú Á Á Á í Á í ü Á ő í í ő Á í ő ő ú ő ö ö ő Í í ő ő í í ö í ő Ó ő ő í ö ő ő ü ö ö ő ö í ö ő í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó

ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó ü ű ú ü ű ú ú Ö ó Ö ó ó ó Ö ű ó ű ű ü Á ó ó ó ó ü ó ü Ö ó ó ó Ö ű ű ü Ö ű Á ú ú ú ó ű í í Ő ú Á É Ö í ó ü ű í ó ű ó Ö ú Ő ú ó í ú ó ü í í í í ó ü ó Ö ó ü Ö í ó ű ó ó ó Ö Ö ó ó í í Ö Ö ó ó í Ö ó ű í í ü

Részletesebben

ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó

ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó ö Ö ó ü Ú ú ű ó ú ü ö Ö ü ó ü ü ó ó ö ö ó ó ö Ú ö í ó ö ö ö í í ú ü ó ö ü ü ú ó í ó ü ú ö ó ű ö ó ö í ó ö í ö ű ö ó Ú ú ö ü É ó í ö Ó Á í ó í í Ú ö ú ö ű ü ó ó ó Ó Ú ö ú ó í í ú ó ö ü ü Ö ó ü ü í Ö Ö ú

Részletesebben

ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü

ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü Á Ó ö ü ü ü ú ú ü ü ö ü Ő ö ö ö ü ú ü Á ö ö ö ö ö ö ö ö ü ö ü ö ű ö ú ü ű ö ü Í ö ú ü ü ű ö ú ü Á ü ö ö ü ü ö ü ö Ó ö ö ü ü ö ü ö ú ö ú ü ö ü É É Á ü ű Ö ű ú ö ö ú ö ú ö ú ö ű ü Ö ö ű ü ú ö ü ú ű ö ű ú

Részletesebben

ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö

ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö ü ú ö ú ö ű ú ú ü ö ó ö ö ö ö Ő Ö ü ö Ö ü ü ü ó ö ö ö ü ö ú ü ü ö ö ú ú ö ú ó ú ó ü ú ú ú ú ó ú ö ú Á ö ö ö ó ú ö ö ú ü ó ö ö Í ö ö ö ü ó ö ö ú ú ö ü ó ü ó ü ö ú ü ó ü ö ó Á Á ö ü ú ó ö ü ü ö ó ü ü Á ü ö ü ö ü ö ö ö ü ö ú ö ö ö

Részletesebben

ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü

ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü ú Ö Ú ú ú ó Ő Ö ü Ú ú ö Ö Í ó í ü ü ó ó ó Í ö ö ö ö í ü ó ö ü ü ú í ű ö ó ó ö ö ö ű ö ó ó ö ö Ó ű ö ó í ó ü ö Ó ó í ö ö ó Ö ó ö í ó í ó Á í ó Á Á Ő ú ü ó Í ü ú ü ü ö ö ó ó Í ü ö ó ú ü ü ö ó ö ö Í í ó ó

Részletesebben

ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü ö ö í Ö ö ö í ö í Ő í ű ű í Ö Ó í ö ö ö ö Ö Ö ö í ü ö ö Ö í ü Ö ö í ö ö ö ö ö Ö ö í

ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü ö ö í Ö ö ö í ö í Ő í ű ű í Ö Ó í ö ö ö ö Ö Ö ö í ü ö ö Ö í ü Ö ö í ö ö ö ö ö Ö ö í Á ö Á Á É Ö í ö Ö Á Ó Ű ú ű Ü ö ö ú ö ú í ö í ö ö ö í Ö ö í ö Ő ü ö ö í Á Ö Ú ű Ö í Ö ö ö Ö ü ű ö ű ö Ö ü ö Ö Ö Ö ö í ö ö Ö ö í Ö ö Ú ö ö ö ö Ö ö ú Ö í Ö ű ö í Ö í ö ü ö í ú Ö Ö ö í ű ö ö í ö ö Ő ö í ü

Részletesebben

é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é

é ú é é é é é é é é é é é é ú é ö é é é ö Ő é é é ú é é é é é é é é ö é é é ö é Ö é é ö é ö é é é ű é ö ö é ö é é ö ö é é ö ö é ö é Ö é ú é é é é é é é ű ö Ö é é ö ú é é é é ö ö é ö é é é ö ö é é é ö ö é ű é é ö é é é é é é é é é é ö é ö é é é ű ö ű ö é é é Ö Ú Í é ö é é Ő ö ö ú é é é é é é é é é é ű é é é ú é é é ű ú é é é é é ö é ö é ö é é ö é é é

Részletesebben

ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó

ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó ö ú Á ő ű ü ő ó ö ö ú ö ú ü ó ó ű ö ú ó ó ó ő ö ö ő ú ó ö ö ő ő ő ő ö ű ü ü ü ő ü ü ő ő ü ó ő ő ö ő ú ő ö ö ő ó ő ö ü ú ö ö ó ő ö ü ó ó ó ó ő ő ő ó ó ú ő ü ő ö ö ó ü ö ö ő ű ö ö ő ú ú ó ö ő ű ö ó ó ü ű

Részletesebben

ú ú ö ö ü ü ü ü ű ü ü

ú ú ö ö ü ü ü ü ű ü ü Ü ú ű ű ú ű ú ú ö ö ü ü ü ü ű ü ü ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ü ü ü Ú ú ü ű ü ú ű ö ű ú ö ö ö ö Á ú ú ű Á ú Á Á Á ü ö ö Á ö ö ü Á ú Á ú Á Á Ö Á Á ö ű ö ö ü ú ü ú ö ú ű ú ú ü ü ü ü ű ű Ő ú ö ű ú ú ű

Részletesebben