KALKULUS II. PÉLDATÁR

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KALKULUS II. PÉLDATÁR"

Átírás

1 Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár

2

3 Lajkó Károly KALKULUS II. PÉLDATÁR

4 mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István

5 Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez matematikus hallgatóknak mobidiák könyvtár Debreceni Egyetem Informatikai Intézet

6 Lektor Dr. Fazekas István Dr. Losonczi László Copyright c Lajkó Károly, 4 Copyright c elektronikus közlés mobidiák könyvtár, 4 mobidiák könyvtár Debreceni Egyetem Informatikai Intézet 4 Debrecen, Pf. A m egyéni tanulmányozás céljára szabadon letölthet. Minden egyéb felhasználás csak a szerz el zetes írásbeli engedélyével történhet. A m A mobidiák önszervez mobil portál (IKTA, OMFB-7/) és a GNU Iterátor, a legújabb generációs portál szoftver (ITEM, 5/) projektek keretében készült.

7 Tartalomjegyzék I. Integrálszámítás Primitív függvény, határozatlan integrál Riemann-integrál... 5 Gyakorló feladatok II. Vektorterek, Euklideszi terek, metrikus terek Alapfogalmak Az R n euklideszi tér R n és metrikus tér topológiája További lineáris algebrai el ismeretek Gyakorló feladatok III. Sorozatok R k -ban Gyakorló feladatok... 5 IV. Többváltozós és vektorérték függvények folytonossága, határértéke... 7 Gyakorló feladatok... 5 V. A Riemann-integrál általánosítása és alkalmazása Korlátos változású függvények Riemann-Stieltjes integrál.... Görbék, görbementi integrál... 5 Gyakorló feladatok... VI. Többváltozós függvények dierenciálszámítása... Gyakorló feladatok

8

9 I. fejezet Integrálszámítás. Primitív függvény, határozatlan integrál Alapintegrálok.. feladat. Bizonyítsa be a Kalkulus II. jegyzet I. fejezete. paragrafusában az úgynevezett alapintegráloknak nevezett alábbi képleteket (formulákat): a) b) c) d) e) f) g) h) i) d { ln() + C ( > ) ln( ) + C ( < ) µ d µ+ µ + + C ( R +, µ ) a d a + C ( R, a >, a ) ln a sin() d cos() + C ( R) cos() d sin() + C ( R) d arcsin() + C ( (, )) d arctg() + C ( R) + sh() d ch() + C ( R) ch() d sh() + C ( R) 9

10 I. INTEGRÁLSZÁMÍTÁS j) + d arsh() + C ln( + + ) + C ( R) k) d arch() + C ln( + ) + C ( (, )) l) sin () d ctg() + C k ( (kπ, (k + )π), k Z) m) cos () d tg() + C k ( (kπ π, kπ + π ), k Z) ( n) ) a n n n+ d a n n + + C ( ( ϱ, ϱ)) n n Megoldás. A bizonyítások minden esetben a határozatlan integrál (primitív függvény) denícióján (a F : a, b R dierenciálható függvényt a f : a, b R függvény határozatlan integráljának nevezzük, ha F f teljesül) és az elemi függvények (Kalkulus I. VIII. fejezetében vizsgált) differenciálási szabályainak ismeretén alapulnak. Belátjuk, hogy az a)... n) képletek jobb oldalán szerepl F függvények deriváltjai a baloldali integrálokban szerepl f függvények. a) (ln() + C ), ha >, míg (ln( ) + C ) ( ), ha <, így az F () F () { ln() + C ( > ) ln( ) + C ( < ) függvényre ( ), ami (az integrál deníciója miatt) adja az állítást. b) A F () µ + µ + + C ( R +, µ ) függvényre létezik így igaz az állítás. c) A F () a ln a + C F () µ + (µ + )µ µ R + ra, ( R, a >, a ) függvényre R esetén, ami adja az állítást. d) F () cos() + C ( R)-re F () ( )( sin()) sin() ( R), tehát igaz az állítás. F () ln a a ln a a

11 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL e),..., i) az el bbiekhez hasonlóan bizonyítható. j) (arsh() + C) ( R) és + (ln( + ( ) + )) ( R), + ami adja az állítást. k) j)-hez hasonlóan bizonyítjuk. l) és m) is azonnal jön a ctg és tg függvények dierenciálási szabályainak ismeretében. n) A hatványsorok dierenciálására vonatkozó tétel miatt az F () n függvény dierenciálható és F () n s ez adja az állítást. n+ a n + C ( ] ϱ, ϱ [) n + a n n + (n + )n a n n ( ] ϱ, ϱ [), n Alapintegrálokra visszavezethet feladatok.. feladat. Számítsa ki a következ határozatlan integrálokat: ( ) d ; d ; ( ) d ; tg () d ; + d ; + a d ; Megoldás. Használjuk az alapintegrálokat és a Kalkulus II. jegyzet I/. fejezet. tételét (illetve annak általánosítását több függvényre), miután az integrál jele mögötti f függvényekre egyszer azonosságokat használunk.

12 I. INTEGRÁLSZÁMÍTÁS. ( ) ( R) miatt ( ) d ( ) d 7 d 7 d d 6 d + C C ( R) ; 7 ( ) ( ) + ( ) miatt ( ) ( d ) + d d d + d + C ln() + + C ( > ) ln( ) + + C ( < ). + ( + ) + ( + d ) + d + ( R) miatt d arctg() + C ( R) ; (( ) ) miatt d 7 8 ( ) ( > ) 7 8 d C + d + C C C ( > ).

13 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5. tg () sin () cos () cos () cos ( ] () kπ π tg () d cos (), kπ + π [, k Z ) felhasználásával ( ) cos () d cos () d + C tg() + C k ( ] kπ π, kπ + π [, k Z ) a + a + a ( > ) miatt + a ( ) d + a d d + a d + C + a + C + a + C ( > ). Egy egyszer helyettesítés.. feladat. Határozza meg az alábbi integrálokat: cos ( 5) d ; + d ; + 9 d ; d ; d ; (e + e ) d ; Megoldás. Egyszer számolás adja, hogy ha f() d F () + C, akkor f(a+b) d F (a+b)+c. Azaz, ha ismerjük f() határozatlan a integrálját, akkor egyszer en kapjuk az f(a+b) függvény határozatlan integrálját. Az f() cos () ( ] kπ π, kπ + π [ ), k Z függvényre F () tg() (lásd alapintegrálok), így az f( 5) cos ( 5) ( 5 ] kπ π, kπ + π [, k Z)

14 4 I. INTEGRÁLSZÁMÍTÁS függvény határozatlan integráljára kapjuk, hogy cos ( 5) d tg( 5) + C k ( 5 ] kπ π, kπ + π [, k Z). Tudjuk, hogy + d arsh() + C ( R). Ha -et el állíthatjuk, mint valamilyen (lineáris) transzformáltja, úgy módszerünk alkalmazható De így miatt ( + 9 d + 9 ( ), + ) + d ( ) arsh + C ( R) ( ) d + ( ) arsh + C ( R). ( ( ) ) arsh + C Az ( R) függvényt az f() ( R) függvényb l az ( R) változó transzformációval kapjuk. Másrészt d így d C C ( R), d ( ) C ( ) C ( R).

15 Az. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL egyenl ség és az Az + + d ( ) ( R) d arctg() + C alapintegrál miatt 6 arctg ( ) d + arctg ( ) + C ( ) + C ( R). ) ( egyenl ség és az a módszer) adja, hogy d arch() + C ) d ( ( ) arch + C arch ( ) ( > ) ( > ) alapintegrál (és + C ( > ).

16 6 I. INTEGRÁLSZÁMÍTÁS A c) alapintegrál a e választással adja, hogy ezért és e d e + C ( R), e d e + C e + C ( R) ezek szerint (e + e ) d e d e + C ( R), e d + e d + C e e + C ( R). Néhány speciális integrandus.4. feladat. Határozzuk meg az alábbi határozatlan integrálokat: + d ; d ; sin 5 cos d ; tg() d ; sin d ; sin cos d ; d ; e + e d ; Megoldás. Egyszer en belátható, hogy ha f : a, b R dierenciálható, akkor és f α ()f () d f α+ () α + f () f() + C (α ) d ln(f()) + C (f() > ). Továbbá (lásd helyettesítéses integrálás tétele), f : a, b R, g : c, d a, b olyanok, hogy g c, d R és f, akkor létezik (f g)g és c R, hogy (( f(g())g () d ) ) f g () + C Az egyes integrálok ezen tételek valamelyikével számolhatók. f(t)dt tg() + C

17 Az. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 7 + d + d ( + ) d ( R) egyenl ség mutatja, hogy f() + -re f (), így α mellett alkalmazható az els formula, ezért Mivel + d ( + ) 4 4 tg sin sin cos cos így f() cos >, ha ezért a második formula szerint: tg d + d ( + ) d + C 4 ( + ) 4 + C ( R). ( ] π + kπ, π + kπ[ ), ] π + kπ, π + kπ [ és f () sin, sin cos d ln(cos()) + C k ( ] π + kπ, π + kπ[ ). Az d d ( ) ( ) d ( ], [ ) egyenl ség mutatja, hogy f() ( ], [ ) esetén létezik f (), így alkalmazható az els formula, ezért: d ( ) ( ) ( ) d + C ( ], [ ). + C

18 8 I. INTEGRÁLSZÁMÍTÁS Hasonlóan, mint korábban: 4 4 d 4 4 ln( ) + C ( ) d ( ) <. ( ) Legyen >, akkor, továbbá sin d cos +C, így a harmadik formula szerint sin d Részletezés nélkül: sin d sin t dt t + C cos + C ( > ). e ( + e + e d ) e d ln( + e ) + C ( R) ; sin 5 () cos() d sin 5 ()(sin()) d sin6 () + C ( R) ; 6 sin cos d cos () sin() d cos () ( sin()) d cos ()(cos()) d cos () + C k cos() + C k ( ] π + kπ, π + kπ, k Z). Helyettesítéses integrálás.5. feladat. Számítsa ki az alábbi integrálokat: d ; + d ; ( + ) d ; d ; ( ) d ; e e + d ;

19 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 9 Megoldás. Itt most igazi helyettesítésekkel élünk majd, azaz a Kalkulus II. jegyzetben kimondott helyettesítéses integrálás tételét követ megjegyzésben megfogalmazott tételt használjuk: Ha f : a, b R, g : c, d a, b olyanok, hogy g és f, továbbá g, akkor (f g) g és ( ) (( ) ) f() d (f g)g g () + C f(g(t))g (t) dt tg () + C ( c, d ). Ha (f g)g és g ]c, d[-ben, akkor f és ismét érvényes ( ). Hogy milyen helyettesítést válasszunk, arra nincs általános módszer, de vannak jellegzetes típusok (ahogy err l már az elméletben is szóltunk). ( Az d az R d speciális esete, így az elméleti anyagban tett utalás szerint olyan g(t) (t R) helyettesítést alkalmazzunk, melyre g () t ( R), azaz ( t t t (t R) miatt) g(t) t (t R). Ekkor f() ( R), g(t) t -re g : R R és g (t) t (t R), továbbá létezik, n a + b c + d f(g(t))g (t)dt ( t ) t( t ) dt [ t + 6t 6 t 9 ] dt ezért létezik d t t7 7 t ) + C (t R) ; ( t ) t ( t ) dt t + C 4 ( ) ( ) 7 ( ) + C ( R). Hasonló gondolatmenettel az ( + ) d kiszámításánál a g () t ( > ), azaz t g(t) (t > ) helyettesítésnél: f() ( + ) ( > ), g(t) t (t > )-ra g és

20 I. INTEGRÁLSZÁMÍTÁS g (t) t (t > ), továbbá létezik f(g(t))g (t) dt ( + t t dt )t ezért létezik ( + ) d ( ) d ( ) dt arctg t + C (t > ), + t ( + t )t t dt t + C arctg + C ( > ). d ( < ) miatt (az elmélet egyik példáján felbuzdulva) alkalmazzuk az g(t) sin t, t ] π, [ π helyettesítést. Ekkor g szigorúan monoton növeked, így g : ], [ R, g () arcsin(), g (t) cos t ( t ] π, [ π ), továbbá f() Így létezik ( ) d ( ) f(g(t))g (t) dt cos cos t dt t ] tg t + C, t ( ], [ ) mellett ( ) d tg(arcsin ) + C + C ( < ). π, π cos t dt [. cos t cos t dt tarcsin + C sin(arcsin ) sin (arcsin ) + C Az + d kiszámításánál (de általában, ha R(, + ) d típusú integrál szerepel) eredményt hoz az g(t) sh(t) (t R) helyettesítés. Ekkor a sh függvény szigorú monotonitása miatt g () arsh() ( R) és g (t) ch(t) (t R). Felhasználva a ch (t) sh (t) és ch (t) + ch(t) (t R) azonosságokat a hiperbolikusz függvényekre, kapjuk, hogy

21 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL f() + ( R) esetén létezik f(g(t))g (t) dt + sh (t) ch(t) dt + ch(t) ch (t) dt dt dt + ch(t) dt + C t + sh(t) + C (t R). 4 Ezért létezik + d + sh (t) ch(t) dt tarsh() + C arsh() + sh( arsh()) + C 4 arsh() + sh(arsh()) ch(arsh()) + C arsh() C ( R). Az d kiszámításánál, felhasználva, hogy ( d ) d (ha pl. ) és tudva a hiperbolikusz függvények ch (t) sh (t) azonosságát, melyb l sh (t) ch (t) következik, az ch(t) g(t) (t ) helyettesítésben bízunk. Ekkor (mivel a ch függvény szigorúan monoton növeked [, + [-en) g () arch ( ) ( ), g (t) sh(t) (t ) és g (t) (t > ), továbbá f() ( ) mellett létezik f(g(t))g (t) dt ch (t) sh(t) dt sh (t) dt ch(t) dt 4 sh(t) t + C (t ).

22 I. INTEGRÁLSZÁMÍTÁS Ezért (a helyettesítéses integrálás tételének ( ) formulája szerint) létezik ( d ) d ch (t) sh(t) dt tarch + C ( ( arch ( 4 sh sh ( arch ( arch ( )) )) ch ) + C ( ) arch ( ( arch ( arsh Megjegyzés. Hasonlóan kapjuk, hogy d ( arsh ( arsh )) ) + C ) + C ) + C ( ). ) + C ( ). Az e e + d ( R) meghatározásánál (de általában, ha R(e ) d típusú integrál van) eredményre vezet az e g () t ( R), azaz ln(t) g(t) (t > ) helyettesítés. Ekkor g (t) t f() ( R) mellett létezik e e + f(g(t))g (t) dt így létezik e e + d t t + t (t > ) és dt arctg(t) + C (t > ), t t + t dt te + C arctg(e ) + C ( R).

23 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL Parciális integrálás.6. feladat. Határozza meg az alábbi integrálokat: ln d ; cos() d ; arcsin d ; ( + ) ln d ; ( + ) ch() d ; arctg d ; ( )e d ; sin d ; e cos d ; e d ; arctg d ; sin 4 () d ; Megoldás. A parciális integrálás tétele szerint: Ha az f, g : a, b R függvények dierenciálhatók a, b -n és f g, akkor fg is és C R, hogy f()g () d f()g() (P) f ()g() d + C ( a, b ). A feladatban szerepl integrálok többsége a Kalkulus II. jegyzetben az el bb idézett tételt követ megjegyzésben szerepl típusok valamelyike. ln d ln d ( > ) igaz. Válasszuk az f() ln és g() ( > ) függvényeket, akkor f (), g (), továbbá létezik így f ()g() d d d ( > ), ln d f()g () d f()g() f ()g() d + C ln d + C ln + C ( > ). Az ( + ) ln d kiszámításánál tekintsük az f() ln, g () +, azaz g() + ( > ) függvényeket, akkor f () és f ()g() d 9 + ( ) ( ) + d + d ( > ).

24 4 I. INTEGRÁLSZÁMÍTÁS Ezért (tételünk szerint) létezik C R, hogy ( + ) ln d f()g () d f()g() f ()g() d + C ( ) ( ) + ln C ( > ). Megjegyzés. P n () ln d típusú integrál kiszámításánál mindig az f() ln, g () P n () választással használjuk (P)-t. Az ( )e d kiszámításánál az f(), g () e és így g() e, f () ( R) választással alkalmazható (P) és akkor C R, hogy ( )e d ( )e e d + C ( )e e + C ( )e + C ( R). e d esetében, el bb az f(), g () e, f (), g() e ( R) mellett (P)-t használva kapjuk, hogy C R, hogy ( e d ) e + e e e d + C, d + C ha létezik e d. Ennek meghatározására alkalmazzuk újra (P)-t, f(), g () e, f (), g() e ( R) mellett, akkor C R, hogy e d ( ) e e + ( ) e d + C e d + C e 4 e + C ( R).

25 Így. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5 e d e e 4 e + C + C ( ) e + C. 4 Megjegyzés. P n ()e a d típusú integrál kiszámításánál f() P n (), g () e a ( R) mellett használjuk (P)-t (esetleg többször is, de akkor más az el bbiekb l kapott f-fel). cos() d kiszámításánál legyen f(), g () cos(), f (), g() sin() ( R), akkor (P)-b l cos() d sin() sin() d + C sin() + cos() + C ( R). ( + ) ch() d esetében kétszer alkalmazzuk a parciális integrálás tételét és (tömör írásmódban) kapjuk, hogy ( + ) ch() d ( + ) sh() ( + ) sh() d + C [ ] ( + ) sh() ( + ) ch() ch() d + C + C ( + ) sh() ( + ) ch() + sh() + C + C ( + + ) sh() ( + ) ch() + C ( R). Megjegyzés. Az P n () sin(a + b) d, P n () cos(a + b) d, Pn () sh(a + b) d, P n () ch(a + b) d típusú integrálok kiszámításánál az f() P n () (és g () a másik tényez ) mellett alkalmazzuk (P )-t (esetleg többször). Így ( ) sin d cos ( ) cos d + C cos + cos d + C

26 6 I. INTEGRÁLSZÁMÍTÁS cos + [ sin ] sin d + C + C cos + sin + 4 cos + C + C ( + ) cos + sin + C ( R). 4 arctg() d arctg() d arctg() arctg() + d + C arctg() ln( + ) + C ( R). + d + C arcsin() d arcsin() d arcsin() d+c arcsin() + ( ) ( ) d + C arcsin() + ( ) + C arcsin() + + C ( R). arctg() d arctg() + d + C arctg() + + d + C [ arctg() + d arctg() + C + d ( R). ] + C Megjegyzés. Az P n () arcsin() d, P n () arccos() d, Pn () arctg() d, Pn () arcctg() d típusú integráloknál a g () P n () és f() a másik tényez jelölés mellett alkalmazzuk (P )-t.

27 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 7 A parciális integrálás tételét (a (P ) formulával) felhasználva, f() e, g() cos ( R) választással e sin sin cos d e e d + C e sin e sin d + C e sin [ ] cos cos e e d + C + C e sin + 9 e cos 4 e cos d + C 9 C ( R) következik, ami rendezés után adja, hogy [ e cos d sin + ] cos e + C ( R). Megjegyzés. A fenti módszer alkalmazható általában az e a sin b d, e a cos b d típusú integrálok esetén is. sin n () d sin() sin n () d cos() sin n () cos()(n ) sin n () cos() d + C cos() sin n () + (n ) cos sin n () d + C cos() sin n () + (n ) ( sin ()) sin n () d + C cos() sin n () + (n ) sin n () d (n ) sin n () d + C ( R), és ebb l rendezéssel kapjuk, hogy sin n () d n cos() sinn () + n n Ez az I n sin n () d jelöléssel az sin n () d + C I n n cos() sinn () + n n I n + C ( R) ( R).

28 8 I. INTEGRÁLSZÁMÍTÁS úgynevezett rekurzív formulát adja I n -re. Ha például n, úgy sin () d cos() sin() + + C. Ha n, úgy sin () d cos() sin () + sin() d + C cos() sin () cos() + C ( R). Általában n lépésben (n ) megkapjuk I n -t. Megjegyzés. Hasonló eljárással megadható I n cos n () d rekurzív formulája is. Trigonometrikus és hiperbólikusz függvényekre vonatkozó azonosságok felhasználása.7. feladat. Számítsa ki az alábbi integrálokat: + cos() d ; sh() d ; sin () d ; Megoldás. A cos adja, hogy Ezért cos() d ; sin sin 5 d ; sin 4 () d ; + cos + cos cos + cos d sin() d ; cos cos d ; ctg () d. egyenl ségb l cos + cos, ha π + kπ, k Z. ha ] π + kπ, π + kπ[, k Z. d cos tg + C tg + C k cos cos() d ; következik, ami d

29 A sin. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 9 cos cos sin Így Mivel egyenl ség adja, hogy sin cos, azaz, ha kπ, k Z. cos d sin d ctg + C k ( ]kπ, k + π[, k Z). sin sin cos sin + cos sin cos így sin d ln sin cos cos + sin, sin cos ( cos d + ) + ln cos sin ( sin d + C ) ( + C ln tg ) + C k, ha például ]kπ, (k + )π[, k Z. Belátható, hogy ( ( sin d ln tg )) + D k ( ](k )π, kπ[, k Z). Az cos ( sin + π ) cos d ln ( sin ( tg ( π + kπ, k Z ) egyenl ség miatt ) d ln tg + π + π ( + π )) + C k, 4 + C k

30 I. INTEGRÁLSZÁMÍTÁS ha + π 4 ha + π 4 Az ]kπ, (k + )π[, k Z, míg ( ( ( cos d ln tg + π ))) + D k, 4 ](k + )π, (k + )π[, k Z. sh sh ch ch sh sh ch azonosság miatt illetve sh d ch sh sh ch ch sh ( ln sh ) ( ln th d ( ln ( ) sh ch d + C ) + C ch ( )) + C ( > ), ( ( sh d ln th )) + C ( < ) következik. Az ismert sin α sin β [cos(α β) cos(α + β)] trigonometrikus azonosság miatt így sin sin 5 [cos cos 8] ( R), sin sin 5 d (cos cos 8) d cos cos 8 d + C sin sin 8 + C ( R). 4 6

31 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL Tudjuk, hogy cos α cos β [cos(α + β) + cos(α β)] α, β-ra, így A A cos cos [ ( cos + ) [ cos cos 6 ez pedig adja, hogy cos cos d cos 5 6 d + sin sin ( + cos )] ] ( R), cos 6 d + C + C 5 sin sin + C ( R). 6 sin sin sin ( cos ) sin sin cos sin trigonometrikus azonosság miatt sin d sin d + cos + cos cos ( sin ) d + C + C ( R). sin 4 sin ( cos ) sin 4 sin cos azonosság miatt sin 4 d 8 cos cos cos 4 ( R) 8 d cos d 8 8 sin sin 4 + C 8 4 cos 4 d + C 8 4 sin sin 4 + C ( R). Megjegyzés. Az utóbbi két feladat az sin 4 d speciális eseteként is számítható (amit a parciális integrálásnál vizsgáltunk).

32 I. INTEGRÁLSZÁMÍTÁS Racionális (tört)függvények integrálása Legyenek P n, Q m : R R n-, illetve m-edfokú polinomok, a, b R olyan intervallum, melyben Q m nem zérus. Az R: a, b R, R() P n() Q m () függvényt racionális (tört)függvénynek nevezzük. Bizonyítható, hogy ha n m, akkor léteznek P n m és P l (n m illetve l(< m)-edfokú) polinomok, hogy R() P n() Q m () P n m() + P l() Q m () a, b -re. Legyen továbbá a Q m polinom (R feletti úgynevezett irreducibilis tényez kre való) felbontása Q m () A( a ) α ( a r ) αr ( + p + q ) β ( + p s + q s ) βs, ahol A Q m f együtthatója, i,..., r, j,..., s esetén a i, p j, q j R, α i, β j N és p j 4q j < (azaz + p j + q j nem bontható fel valós els fokú polinomok szorzatára). Ekkor léteznek A ik, B jl, C jl R, hogy P l () Q m () A + + A α a ( a ) α + + A r + + A rα r a r ( a r ) α + r + B + C + + B β + C β + p + q ( + p + q ) β B s + C s + + B sβ s + C sβs + p s + q s ( + p s + q s ) βs a, b esetén. Így egy racionális törtfüggvény P n () d határozatlan integráljának meghatározása visszavezethet egy n m-edfokú polinom, illetve az Q m () A ( a) i d és B + C ( d típusú integrálok meghatározására. + p + q) j A feladatban mindig megadjuk a racionális (tört)függvény fenti el állítását (meghatározva P n m -et és a törtekben szerepl együtthatókat is).

33 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL.8. feladat. Határozza meg adott A, B, C R, a R, p, q R (p 4q < ), i, j N esetén az integrálokat. Megoldás. a) Nyilvánvaló, hogy i esetén b) i > esetén A ( a) i d és { A a d A ln( a) + C B + C ( + p + q) j d, ha > a A ln( ( a)) + C, ha < a. ( a) i+ A A ( a) i d i + ( a) i+ A i + (Lásd Egy egyszer helyettesítés cím fejezet.) B + C ( + p + q) j B + C [ ( + p ) p ] j + q 4 + C, ha > a + C, ha < a. [ ( + p B + C ) ] j + b b j B + C + p b + ( R) j miatt (ahol q p 4 4q p 4 > miatt vezetjük be, hogy b q p 4 ), + p az bt p g(t) (t R) illetve g () t ( R) b helyettesítéssel kapjuk (a helyettesítéses integrálás tétele szerint), C,

34 4 I. INTEGRÁLSZÁMÍTÁS hogy ( B + C B bt p ) + C ( + p + q) j d b j (t + ) j Ha j, úgy ebb l B + C + p + q d B b (j ) + C B p b j b dt t + p b t (t + ) j dt + t p + b (t + ) j dt t + p b B b (j ) ln + p b + C B p b j következik R esetén. Ha j >, úgy B + C ( + p + q) j d B arctg + p b (t + ) j+ b (j ) j + + C B p b j + C + C C + t p + b (t + ) j dt t + p b következik. Ugyanakkor a parciális integrálás tételét felhasználva + C

35 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5 (t (t + ) j dt + ) t (t + ) j dt t t (t + ) j dt [t (t + ) j+ j + j j Ezért, ha j >, akkor B + C ( + p + q) j d (t dt + ) j (t dt + ) j ] dt + C 4 (t + ) j+ j + (t + ) j dt + (j ) p B C B b (j ) ( j) + b j (j ) t t (t + ) j + C 4. (t + ) j t+ p + C B p + j b j j Ha (t + ) (t + ) j dt t+ p + C 5. dt-re az el bbi módszert alkalmazzuk, illetve azt tovább j folytatjuk, úgy integrálunk véges (j) lépésben meghatározható. Megjegyzés. Természetesen (a megjegyezhet ség nehézségei miatt) nem ezen bonyolult formulákat használjuk, hanem minden konkrét feladatban ugyanezt az eljárást követjük majd..9. feladat. Határozza meg az alábbi integrálokat: + d ; + ( )( + 5) d ; d ; + ( + + ) d. Megoldás. + d + d 5 ( + ) d ; ( + )( + )( + ) d ; ( + )( + ) d ; (az.8. feladat a) esetének megfelel en). + d ; { ln( + ) + C,ha > ln( ( + )) + C,ha < d ; + d ;

36 6 I. INTEGRÁLSZÁMÍTÁS 5 ( + ) d 5 ( + ) d 5( + ) 5( + ) C 5 + ( ) + + miatt + d + ( )( + 5) miatt + ( )( + 5) d + C,ha > + C,ha <,ha > + + C,ha <. ( )( + ) + + ( ) d + + d ln( + ) + C,ha > + ln( ( + )) + C,ha <. ( ) + ( + 5) ( )( + 5) ( ) d ( ) (, 5) ln( ( + 5)) + ln( ( )) + C,ha < 5, ln( + 5) + ln( ( )) + C,ha ] 5, [, ln( + 5) + ln( ) + C,ha >. Megmutatjuk, hogy A, B, C R, hogy ( + )( + )( + ) A + + B + + C + A jobb oldalon közös nevez re hozva, és rendezve ( + )( + )( + ) (,, ). (A + B + C) + (5A + 4B + C) + 6A + B + C ( + )( + )( + )

37 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 7 következik, ha,,, ami csak akkor teljesülhet, ha (A + B + C) + (5A + 4B + C) + 6A + B + C ami csak úgy lehetséges, ha ( R), A + B + C, 5A + 4B + C, 6A + B + C. Ez egy lineáris egyenletrendszer A, B, C-re, melynek egyértelm megoldására (nem nehéz számolással) következik, így A 6, B, C ( + )( + )( + ) (,, ), ami adja, hogy ( + )( + )( + ) d 6 ln( ( + )) ln( ( + )) + ln( ( + )) + C,ha <, 6 ln( ( + )) ln( ( + )) + ln( + ) + C,ha ], [, 6 ln( ( + )) ln( + ) + ln( + ) + C,ha ], [, 6 ln( + ) ln( + ) + ln( + ) + C 4,ha > ( 5 + 6) + (5 6 + ) ( 5 + 6) ( )( ) Megmutatjuk, hogy A, B, C R, hogy ( )( ) A + B + C (,, ) (,, ). A jobb oldalt hasonlóan alakítva, mint az el z feladatban ( )( ) (A + B + C) + ( A B 5C) + 6C ( )( ) következik, ha,,, ami csak akkor igaz, ha A + B + C 5, A B 5C 6, 6C,

38 8 I. INTEGRÁLSZÁMÍTÁS ami teljesül, ha A 6, B 5 6, C 6. Az el bbiek miatt, így (,, ), ami adja, hogy d ln( ( )) 6 ln( ( )) + 6 ln( ) + C,ha <, ln( ( )) 6 ln( ( )) + 6 ln() + C,ha ], [, ln( ( )) 6 ln( ) + 6 ln() + C,ha ], [, ln( ) 6 ln( ) + 6 ln() + C 4,ha >. Az d az.8. feladat b) részének megfelel integrál B, C, p, q és j mellett, hiszen p 4q 4 <. Az ( + ) ( R)

39 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 9 azonosság és a g () + t ( R) illetve t d 4 4 g(t) (t R) helyettesítés adja, hogy d t + t + dt + C t (+ ) t t + dt + t (+ ) ] ln [ ( ( + )) + + t + dt + C t (+ ) ( ( arctg + )) + C ( R). Az ( + )( d integrál meghatározásához el bb megmutatjuk, + ) hogy A, B, C R, hogy ( + )( + ) A + + B + C + ( ). A jobboldalt közös nevez re hozva, rendezés után kapjuk, hogy ( + )( + ) (A + B) + (B + C) + A + C ( + )( + ) ami csak úgy lehetséges, ha A + B, B + C, A + C, azaz ha A, B, C, így ( + )( + ) ( ). ( ), Ezért integrálunkban az.8. feladatban szerepl mindkét típus el fordul, továbbá a b) típusnál már teljes négyzet a nevez. Ezeket gyelembe

40 4 I. INTEGRÁLSZÁMÍTÁS véve: ( + )( + ) d Az + d 4 + d + ln( + ) 4 ln( + ) + arctg() + C,ha >, ln( ( + )) 4 ln( + ) + arctg() + C,ha <. + ( ) ( ) ( ) + d ( )( + ) ( ) ( + ) ( R) egyenl ség miatt + ( ) ( + ) és megmutatjuk, hogy A, B, C R, hogy ( ) ( + ) A + B ( ) + C + (, ) (, ), azaz ( ) ( + ) (A + C) + (A + B C) A + B + C ( ) ( + ) (, ), ami csak úgy lehetséges, ha A + C, A + B C, A + B + C, azaz, ha A 5, B 5, C, 5 ezért ( ) 5 + Ebb l következik, hogy + d 5 d ln( ( )) + ( ) 5 5 ln( ( )) + ( ) 5 5 ln( ) + ( ) 5 ( ) d 5 (, ). + d + C 5 ln( ( + )) + C,ha <, 5 ln( + ) + C,ha ], [, 5 ln( + ) + C,ha >.

41 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 4 Az + ( d az.8. feladat b) részében szerepl integrál speciális esete: B, C, p, q p 4q < és + + ) j >. Így az ott használt módszerrel dolgozhatunk + ( + + ) d + [( + ) + ] d (t ) + (t + ) dt t+ + C t (t + ) dt t+ (t + ) dt t+ + C (t + ) (t + ) t dt t+ (t + ) dt t+ + C + + t + dt t+ + t t (t + ) dt + C + + arctg( + ) + + ) t(t t+ (t + ) dt t+ + C arctg( + ) + C 5 ( R).

42 4 I. INTEGRÁLSZÁMÍTÁS Racionális törtfüggvényre vezet helyettesítések.. feladat. Alkalmas helyettesítéssel vezesse vissza az alábbi integrálokat racionális törtfüggvények integráljára: + d ; ( + + ) d ; sin cos + 5 d ; tg + tg d ; 6 7 d ; d ; ( + ) + + d ; e d. d ; + sin + cos d ; ( + cos ) sin d ; + + d ; + d ; (7 ) d ; e d ; e Megoldás. Az els három feladat annak annak speciális esete, amikor egy ( R, n ) a + b c + d,..., n k a + b d c + d (ahol R(u,..., u k+ ) az u,..., u k+ meghatározni. Ekkor mindig eredményre vezet a racionális függvénye) integrált kell t n a + b c + d g (), g(t) dtn b a ct n helyettesítés (alkalmas intervallumon), ahol n az n,..., n k természetes számok legkisebb közös többszöröse.

43 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 4 A t g (), t g(t) (t ) helyettesítésnél g (t) t, így (a helyettesítéses integrálás tétele szerint): A + d + t t dt t + C (t + ) dt t + C + t dt t t + dt t + C ln( + ) + C ( ). t g () ( ), t g(t) (t > ) helyettesítéssel, g (t) t d t t t dt t dt 4 t 4 ( 4 ( + ln + t ( t ) (t > ) mellett t ( t ) dt t + C + C (t )(t + ) + C t ) 4 t + dt + C t ) t ( ln ) + + C ( > ).

44 44 I. INTEGRÁLSZÁMÍTÁS A t 6 g () ( ), t 6 g(t) (t ) helyettesítéssel, g (t) 6t 5 (t ) mellett t 6 ( + t + t ) 6t5 dt t 6 + C ( + + ) d 6 t(t + t + ) dt t 6 + C 6 t(t + )(t t + ) dt t 6 + C t(t + ) A t + ( ( t 4 B t + + ) ) + dt t 6 + C 6 ( t 4 Ct + D ) + 6 dt t 6 + C, ahol A, B, C, D a korábban használt módszerrel meghatározhatók, az integrálok pedig az.8 feladatbeliek speciális esetei. A következ három (de az azokat követ is) az R(sin, cos ) d speciális esete, ahol R(u, v) az u és v változók racionális függvénye. Ekkor (ahogy az elméletben már jeleztük) a tg t g () ( ] π, π[ ) illetve arctg(t) g(t) (t R) helyettesítés mindig eredményt hoz (racionális törtfüggvény integráljához jutunk), ugyanis ekkor sin() sin cos sin + cos tg tg + t t + (t R), cos cos() sin tg sin + cos + tg és g (t) + t (t R) miatt R(sin, cos ) d R ( t + t, t + t ) t + t (t R) + t dt ttg + C

45 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 45 adódik és a jobb oldalon az integrandus racionális törtfüggvény. Ezért: + sin + cos d + t + t + t + t t + dt ttg + C ln (tg ) + ( ln sin cos + 5 d 4t + t t + t + 5 t + t + ( t + ( 5 + ) ( ) 5 t t dt ttg + C + C,ha tg + > (tg )) + + C,ha tg + < + t dt ttg + C dt ttg + C ) dt ttg + C + tg arctg C dt ttg + C

46 46 I. INTEGRÁLSZÁMÍTÁS ( + cos ) sin d ( + ) t t + t dt ttg + C + t + t t + (t + )t dt ttg + C ( A t + Bt + C ) t dt + ttg ami már egyszer en meghatározható. tg ( + tg d π ] 4, π, π [ ) számítható az el bbi módszerrel, de a g () tg t, arctg t g(t) helyettesítéssel is. Ekkor g (t), így t + tg t + tg d + t ( t + dt ttg + C ) dt ttg + C, A t + + Bt + C t + ami már egyszer en folytatható. A következ hat integrál kiszámításánál két módszer is kínálkozik. A) Ezek olyan integrálok, melyek az R(, a + b + c) d integrál speciális esetei, így: (i) ha a >, akkor a a + b + c a + t vagy a + b + c a t ; (ii) ha c >, akkor a a + b + c t + c vagy a + b + c t c ; (iii) ha R, hogy a + b + c, akkor a a + b + c t( ) helyettesítés után racionális törtfüggvényt kell integrálni (természetesen minden esetben megadható az g(t) helyettesít függvény, melynek t g () inverzének alakja azonnal látszik).

47 B) Az. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 47 a + b + c a [ ( + b ) + a ] 4ac b 4a teljes négyzetté alakítás jelzi a másik lehetséges utat, melynél 4ac b d 4ac b, vagy d jelöléssel, + b a helyére helyettesítünk sin t-t, vagy sh t-t, vagy ch t-t. 4a 4a d Az + + d integrálnál a t, t + + g (), t t g(t) helyettesítés g (t) t t + mellett adja, hogy ( t) + + d t ( t t t + t ) ( ) t t + ( t) dt t ++ + C, ami már egy racionális tört integrálja. Ez persze még elég sok munkával jár. Másrészt az + + ( + )

48 48 I. INTEGRÁLSZÁMÍTÁS azonosság, illetve az + helyettesítés adja, hogy sh t, sh t g(t) (t ) + + d ( ) sh t + + ( ) 4 sh t ch t dt + tarsh ch t sh t dt 4 + tarsh 8 ch t ch t 8 tarsh + 8 ch arsh + 6 arsh ch t dt tarsh + + C ch t dt tarsh + + C + C dt + + C tarsh sh + arsh + C. Az 6 7 d számításánál a t t 6 7 g (), t + 7 t + 6

49 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 49 helyettesítés, g (t) t + t 4 (t + 6) mellett adja, hogy 6 7 d ( ) t t + 7 t + t 4 t + 6 (t + 6) dt t C (t + 6t 7) (t + 6) dt t C, ami viszonylag egyszer en kezelhet. Másrészt az 6 7 ( ) [ ( ) ] 4 azonosság, ch t, illetve 4 ch t + g(t) helyettesítés, g (t) 4 sh t miatt adja, hogy 6 7 d ( ) 4 d 4 4 ch t sh t dt tarsh + C 4 6 sh t dt tarsh + C ch t 6 8 arsh 4 4 dt tarsh + C ( 4 4 sh arsh 4 ) + C ( R). A második módszer most is gyorsabban ad eredményt. A t t ( + ) g (),

50 5 I. INTEGRÁLSZÁMÍTÁS illetve t t + g(t) (t R) helyettesítés, g (t) t + 4t + (t + ) adja, hogy + d t + t + t(t )(t + ) dt t ( +) + C ( t + t ) t + dt t ( +) + C [ ln t + ln(t ) arctg t] t ( +) + C. A másik módon: ( + ) és az + sin t g (t) cos t adja, hogy + d ( ( ) ) + ( + ) ( t arcsin + ), sin t g(t), + ( + ) d cos t + cos t dt tarcsin + + C ami például a tg t helyettesítéssel vihet tovább. Most a két módszer nagyjából egyformán gyors. A t, azaz t 4 helyettesítéssel (t + ) d t + t + 4 t(t + ) dt t C ( 4 t ) t + (t + ) dt t C ln( ) ln( ) C.

51 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5 Próbálja ki a másik módszert is. A 7 t( 5), azaz 5t + t + helyettesítéssel 5t (7 ) d + 9 t ] ch[arsh( + )] sh[arsh( + )] + C C. + [ 9 t + 4 9t dt t t 5 + C. + C ( + ) + + d ( + ) ( + ) + d sh t sh t + ch t dt tarsh(+) + C sh t dt tarsh(+) + C cth[arsh( + )] + C + sh (arsh( + )) + Az e t, ln t g(t) (t > ) helyettesítés, g (t) t adja, hogy e d e t t t dt te + C ( t dt te A t + B ) t + + C A ln(e ) + B ln(e + ) + C, ha >, ahol A és B egyszer en meghatározható. Az e t, ln t g(t) (t > ) helyettesítéssel, g (t) t -vel e d t t dt te + C (t > ) miatt dt te következik. A t u, t u + g(u) (u R) helyettesítés és g (u) u adja,

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

1. Sorozatok 2014.03.12.

1. Sorozatok 2014.03.12. 1. Sorozatok Azokat a függvényeket, amelyek értelmezési tartománya a pozitív egész számok halmaza ( jelölése N ), a képhalmaz a valós számok halmaza, sorozatnak nevezzük. Az a függvény n N helyen vett

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA.. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika. elektronikus

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten ANALÍZIS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Nevezetes halmazok

Részletesebben

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása

Tartalomjegyzék. Bevezetés... 7 A) Függvényegyenletek a természetes számok halmazán... 11 C) Többváltozós függvényegyenletek megoldása 5 Tartalomjegyzék Bevezetés.......................................................... 7 A) Függvényegyenletek a természetes számok halmazán........... 11 B) Egyváltozós függvényegyenletek megoldása....................

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Gazdasági Matematika I.

Gazdasági Matematika I. Dr. Lajkó Károly Gazdasági Matematika I. NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK Dr. Lajkó Károly Gazdasági Matematika I. jegyzet az alapképzéshez NYÍREGYHÁZI FŐISKOLA GAZDASÁGMÓDSZERTANI TANSZÉK

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16).

Függvény deriváltja FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS. lim határértékkel egyenlő, amennyiben az létezik ( lásd Fig. 16). FÜGGVÉNY DERIVÁLTJA - DIFFERENCIÁLHÁNYADOS Definíció Definíció Az f ( ) függvény pontban értelmezett deriváltja a f ( + ) f ( ) lim határértékkel egyenlő amennyiben az létezik ( lásd Fig 6) df A deriváltat

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

Valós függvénytan Elektronikus tananyag

Valós függvénytan Elektronikus tananyag Valós függvénytan Elektronikus tananyag Valós függvénytan: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Függvények menetének vizsgálata, szöveges széls érték feladatok

Függvények menetének vizsgálata, szöveges széls érték feladatok Függvények menetének vizsgálata, szöveges széls érték feladatok 2015. március 29. 1. Alapfeladatok 1. Feladat: Hol növekv az f() függvény, ha deriváltja f () = ( + 2)( 5) 2? Megoldás: Egy függvény növekedését,

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

BEVEZETÉS AZ ANALÍZISBE

BEVEZETÉS AZ ANALÍZISBE BEVEZETÉS AZ ANALÍZISBE földtudomány szakos hallgatók számára Mezei István, Faragó István, Simon Péter Eötvös Loránd Tudományegyetem Alkalmazott Analízis és Számításmatematikai Tanszék ii Tartalomjegyzék

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged

Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged Egy emelt szintű érettségi feladat kapcsán Ábrahám Gábor, Szeged A 01. május 8.-i emelt szintű matematika érettségin szerepelt az alábbi feladat. Egy háromszög oldalhosszai egy számtani sorozat egymást

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert)

GYAKORLAT. 1. Elemi logika, matematikai állítások és következtetések, halmazok (lásd EA-ban is; iskolából ismert) GYAKORLAT. Elemi logika, matematikai állítások és következtetések, halmazok lásd EA-ban is; iskolából ismert I. Halmazok.. Alapfogalmak: "halmaz" és "eleme". Halmaz kritériuma: egyértelm en eldönthet,

Részletesebben

Vektorszámítás Fizika tanárszak I. évfolyam

Vektorszámítás Fizika tanárszak I. évfolyam Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék

Tartalomjegyzék. Typotex Kiadó III. Tartalomjegyzék III 1. Aritmetika 1 1.1. Elemi számolási szabályok............................... 1 1.1.1. Számok..................................... 1 1.1.1.1. Természetes, egész és racionális számok.............. 1

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Matematikai analízis 1. Szász Róbert

Matematikai analízis 1. Szász Róbert Matematikai analízis Szász Róbert . fejezet.. Topológikus terek... Értelmezés. Adott egy X halmaz. A d : X X [0, + ) függvényt metrikának nevezzük, ha teljesülnek a következő feltételek:. d(x, y) > 0,

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0

Analízis. Ha f(x) monoton nő [a;b]-n, és difható egy (a;b)-beli c helyen, akkor f'(c) 0 Analízis A differenciálszámítás középértéktételei: 1) Rolle-tétel: Ha f folytonos a korlátos és zárt [a;b] intervallumon, f diffható [a;b]-n és f(a) = f(b), akkor van egy a < c < b belső pont, ahol f'(c)

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

24. szakkör (Csoportelméleti alapfogalmak 3.)

24. szakkör (Csoportelméleti alapfogalmak 3.) 24. szakkör (Csoportelméleti alapfogalmak 3.) D) PERMUTÁCIÓK RENDJE Fontos kérdés a csoportelméletben, hogy egy adott elem hanyadik hatványa lesz az egység. DEFINÍCIÓ: A legkisebb olyan pozitív k számot,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Irracionális egyenletek, egyenlôtlenségek

Irracionális egyenletek, egyenlôtlenségek 9 Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek, egyenlôtlenségek Irracionális egyenletek /I a) Az egyenlet bal oldala a nemnegatív számok halmazán, a jobb oldal minden valós szám esetén

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. ***************

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS II. *************** JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS II. Folytonosság, differenciálhatóság *************** Pécs, 1996 Lektorok: DR. SZÉKELYHIDI LÁSZLÓ egyetemi tanár, a mat. tud. doktora DR. SZILI LÁSZLÓ

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük.

Hozzárendelések. A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. Hozzárendelések A és B halmaz között hozzárendelést létesítünk, ha megadjuk, hogy az A halmaz egyes elemeihez melyik B-ben lévő elemet rendeltük. A B Egyértelmű a hozzárendelés, ha az A halmaz mindegyik

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben