KALKULUS II. PÉLDATÁR

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KALKULUS II. PÉLDATÁR"

Átírás

1 Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár

2

3 Lajkó Károly KALKULUS II. PÉLDATÁR

4 mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István

5 Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez matematikus hallgatóknak mobidiák könyvtár Debreceni Egyetem Informatikai Intézet

6 Lektor Dr. Fazekas István Dr. Losonczi László Copyright c Lajkó Károly, 4 Copyright c elektronikus közlés mobidiák könyvtár, 4 mobidiák könyvtár Debreceni Egyetem Informatikai Intézet 4 Debrecen, Pf. A m egyéni tanulmányozás céljára szabadon letölthet. Minden egyéb felhasználás csak a szerz el zetes írásbeli engedélyével történhet. A m A mobidiák önszervez mobil portál (IKTA, OMFB-7/) és a GNU Iterátor, a legújabb generációs portál szoftver (ITEM, 5/) projektek keretében készült.

7 Tartalomjegyzék I. Integrálszámítás Primitív függvény, határozatlan integrál Riemann-integrál... 5 Gyakorló feladatok II. Vektorterek, Euklideszi terek, metrikus terek Alapfogalmak Az R n euklideszi tér R n és metrikus tér topológiája További lineáris algebrai el ismeretek Gyakorló feladatok III. Sorozatok R k -ban Gyakorló feladatok... 5 IV. Többváltozós és vektorérték függvények folytonossága, határértéke... 7 Gyakorló feladatok... 5 V. A Riemann-integrál általánosítása és alkalmazása Korlátos változású függvények Riemann-Stieltjes integrál.... Görbék, görbementi integrál... 5 Gyakorló feladatok... VI. Többváltozós függvények dierenciálszámítása... Gyakorló feladatok

8

9 I. fejezet Integrálszámítás. Primitív függvény, határozatlan integrál Alapintegrálok.. feladat. Bizonyítsa be a Kalkulus II. jegyzet I. fejezete. paragrafusában az úgynevezett alapintegráloknak nevezett alábbi képleteket (formulákat): a) b) c) d) e) f) g) h) i) d { ln() + C ( > ) ln( ) + C ( < ) µ d µ+ µ + + C ( R +, µ ) a d a + C ( R, a >, a ) ln a sin() d cos() + C ( R) cos() d sin() + C ( R) d arcsin() + C ( (, )) d arctg() + C ( R) + sh() d ch() + C ( R) ch() d sh() + C ( R) 9

10 I. INTEGRÁLSZÁMÍTÁS j) + d arsh() + C ln( + + ) + C ( R) k) d arch() + C ln( + ) + C ( (, )) l) sin () d ctg() + C k ( (kπ, (k + )π), k Z) m) cos () d tg() + C k ( (kπ π, kπ + π ), k Z) ( n) ) a n n n+ d a n n + + C ( ( ϱ, ϱ)) n n Megoldás. A bizonyítások minden esetben a határozatlan integrál (primitív függvény) denícióján (a F : a, b R dierenciálható függvényt a f : a, b R függvény határozatlan integráljának nevezzük, ha F f teljesül) és az elemi függvények (Kalkulus I. VIII. fejezetében vizsgált) differenciálási szabályainak ismeretén alapulnak. Belátjuk, hogy az a)... n) képletek jobb oldalán szerepl F függvények deriváltjai a baloldali integrálokban szerepl f függvények. a) (ln() + C ), ha >, míg (ln( ) + C ) ( ), ha <, így az F () F () { ln() + C ( > ) ln( ) + C ( < ) függvényre ( ), ami (az integrál deníciója miatt) adja az állítást. b) A F () µ + µ + + C ( R +, µ ) függvényre létezik így igaz az állítás. c) A F () a ln a + C F () µ + (µ + )µ µ R + ra, ( R, a >, a ) függvényre R esetén, ami adja az állítást. d) F () cos() + C ( R)-re F () ( )( sin()) sin() ( R), tehát igaz az állítás. F () ln a a ln a a

11 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL e),..., i) az el bbiekhez hasonlóan bizonyítható. j) (arsh() + C) ( R) és + (ln( + ( ) + )) ( R), + ami adja az állítást. k) j)-hez hasonlóan bizonyítjuk. l) és m) is azonnal jön a ctg és tg függvények dierenciálási szabályainak ismeretében. n) A hatványsorok dierenciálására vonatkozó tétel miatt az F () n függvény dierenciálható és F () n s ez adja az állítást. n+ a n + C ( ] ϱ, ϱ [) n + a n n + (n + )n a n n ( ] ϱ, ϱ [), n Alapintegrálokra visszavezethet feladatok.. feladat. Számítsa ki a következ határozatlan integrálokat: ( ) d ; d ; ( ) d ; tg () d ; + d ; + a d ; Megoldás. Használjuk az alapintegrálokat és a Kalkulus II. jegyzet I/. fejezet. tételét (illetve annak általánosítását több függvényre), miután az integrál jele mögötti f függvényekre egyszer azonosságokat használunk.

12 I. INTEGRÁLSZÁMÍTÁS. ( ) ( R) miatt ( ) d ( ) d 7 d 7 d d 6 d + C C ( R) ; 7 ( ) ( ) + ( ) miatt ( ) ( d ) + d d d + d + C ln() + + C ( > ) ln( ) + + C ( < ). + ( + ) + ( + d ) + d + ( R) miatt d arctg() + C ( R) ; (( ) ) miatt d 7 8 ( ) ( > ) 7 8 d C + d + C C C ( > ).

13 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5. tg () sin () cos () cos () cos ( ] () kπ π tg () d cos (), kπ + π [, k Z ) felhasználásával ( ) cos () d cos () d + C tg() + C k ( ] kπ π, kπ + π [, k Z ) a + a + a ( > ) miatt + a ( ) d + a d d + a d + C + a + C + a + C ( > ). Egy egyszer helyettesítés.. feladat. Határozza meg az alábbi integrálokat: cos ( 5) d ; + d ; + 9 d ; d ; d ; (e + e ) d ; Megoldás. Egyszer számolás adja, hogy ha f() d F () + C, akkor f(a+b) d F (a+b)+c. Azaz, ha ismerjük f() határozatlan a integrálját, akkor egyszer en kapjuk az f(a+b) függvény határozatlan integrálját. Az f() cos () ( ] kπ π, kπ + π [ ), k Z függvényre F () tg() (lásd alapintegrálok), így az f( 5) cos ( 5) ( 5 ] kπ π, kπ + π [, k Z)

14 4 I. INTEGRÁLSZÁMÍTÁS függvény határozatlan integráljára kapjuk, hogy cos ( 5) d tg( 5) + C k ( 5 ] kπ π, kπ + π [, k Z). Tudjuk, hogy + d arsh() + C ( R). Ha -et el állíthatjuk, mint valamilyen (lineáris) transzformáltja, úgy módszerünk alkalmazható De így miatt ( + 9 d + 9 ( ), + ) + d ( ) arsh + C ( R) ( ) d + ( ) arsh + C ( R). ( ( ) ) arsh + C Az ( R) függvényt az f() ( R) függvényb l az ( R) változó transzformációval kapjuk. Másrészt d így d C C ( R), d ( ) C ( ) C ( R).

15 Az. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL egyenl ség és az Az + + d ( ) ( R) d arctg() + C alapintegrál miatt 6 arctg ( ) d + arctg ( ) + C ( ) + C ( R). ) ( egyenl ség és az a módszer) adja, hogy d arch() + C ) d ( ( ) arch + C arch ( ) ( > ) ( > ) alapintegrál (és + C ( > ).

16 6 I. INTEGRÁLSZÁMÍTÁS A c) alapintegrál a e választással adja, hogy ezért és e d e + C ( R), e d e + C e + C ( R) ezek szerint (e + e ) d e d e + C ( R), e d + e d + C e e + C ( R). Néhány speciális integrandus.4. feladat. Határozzuk meg az alábbi határozatlan integrálokat: + d ; d ; sin 5 cos d ; tg() d ; sin d ; sin cos d ; d ; e + e d ; Megoldás. Egyszer en belátható, hogy ha f : a, b R dierenciálható, akkor és f α ()f () d f α+ () α + f () f() + C (α ) d ln(f()) + C (f() > ). Továbbá (lásd helyettesítéses integrálás tétele), f : a, b R, g : c, d a, b olyanok, hogy g c, d R és f, akkor létezik (f g)g és c R, hogy (( f(g())g () d ) ) f g () + C Az egyes integrálok ezen tételek valamelyikével számolhatók. f(t)dt tg() + C

17 Az. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 7 + d + d ( + ) d ( R) egyenl ség mutatja, hogy f() + -re f (), így α mellett alkalmazható az els formula, ezért Mivel + d ( + ) 4 4 tg sin sin cos cos így f() cos >, ha ezért a második formula szerint: tg d + d ( + ) d + C 4 ( + ) 4 + C ( R). ( ] π + kπ, π + kπ[ ), ] π + kπ, π + kπ [ és f () sin, sin cos d ln(cos()) + C k ( ] π + kπ, π + kπ[ ). Az d d ( ) ( ) d ( ], [ ) egyenl ség mutatja, hogy f() ( ], [ ) esetén létezik f (), így alkalmazható az els formula, ezért: d ( ) ( ) ( ) d + C ( ], [ ). + C

18 8 I. INTEGRÁLSZÁMÍTÁS Hasonlóan, mint korábban: 4 4 d 4 4 ln( ) + C ( ) d ( ) <. ( ) Legyen >, akkor, továbbá sin d cos +C, így a harmadik formula szerint sin d Részletezés nélkül: sin d sin t dt t + C cos + C ( > ). e ( + e + e d ) e d ln( + e ) + C ( R) ; sin 5 () cos() d sin 5 ()(sin()) d sin6 () + C ( R) ; 6 sin cos d cos () sin() d cos () ( sin()) d cos ()(cos()) d cos () + C k cos() + C k ( ] π + kπ, π + kπ, k Z). Helyettesítéses integrálás.5. feladat. Számítsa ki az alábbi integrálokat: d ; + d ; ( + ) d ; d ; ( ) d ; e e + d ;

19 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 9 Megoldás. Itt most igazi helyettesítésekkel élünk majd, azaz a Kalkulus II. jegyzetben kimondott helyettesítéses integrálás tételét követ megjegyzésben megfogalmazott tételt használjuk: Ha f : a, b R, g : c, d a, b olyanok, hogy g és f, továbbá g, akkor (f g) g és ( ) (( ) ) f() d (f g)g g () + C f(g(t))g (t) dt tg () + C ( c, d ). Ha (f g)g és g ]c, d[-ben, akkor f és ismét érvényes ( ). Hogy milyen helyettesítést válasszunk, arra nincs általános módszer, de vannak jellegzetes típusok (ahogy err l már az elméletben is szóltunk). ( Az d az R d speciális esete, így az elméleti anyagban tett utalás szerint olyan g(t) (t R) helyettesítést alkalmazzunk, melyre g () t ( R), azaz ( t t t (t R) miatt) g(t) t (t R). Ekkor f() ( R), g(t) t -re g : R R és g (t) t (t R), továbbá létezik, n a + b c + d f(g(t))g (t)dt ( t ) t( t ) dt [ t + 6t 6 t 9 ] dt ezért létezik d t t7 7 t ) + C (t R) ; ( t ) t ( t ) dt t + C 4 ( ) ( ) 7 ( ) + C ( R). Hasonló gondolatmenettel az ( + ) d kiszámításánál a g () t ( > ), azaz t g(t) (t > ) helyettesítésnél: f() ( + ) ( > ), g(t) t (t > )-ra g és

20 I. INTEGRÁLSZÁMÍTÁS g (t) t (t > ), továbbá létezik f(g(t))g (t) dt ( + t t dt )t ezért létezik ( + ) d ( ) d ( ) dt arctg t + C (t > ), + t ( + t )t t dt t + C arctg + C ( > ). d ( < ) miatt (az elmélet egyik példáján felbuzdulva) alkalmazzuk az g(t) sin t, t ] π, [ π helyettesítést. Ekkor g szigorúan monoton növeked, így g : ], [ R, g () arcsin(), g (t) cos t ( t ] π, [ π ), továbbá f() Így létezik ( ) d ( ) f(g(t))g (t) dt cos cos t dt t ] tg t + C, t ( ], [ ) mellett ( ) d tg(arcsin ) + C + C ( < ). π, π cos t dt [. cos t cos t dt tarcsin + C sin(arcsin ) sin (arcsin ) + C Az + d kiszámításánál (de általában, ha R(, + ) d típusú integrál szerepel) eredményt hoz az g(t) sh(t) (t R) helyettesítés. Ekkor a sh függvény szigorú monotonitása miatt g () arsh() ( R) és g (t) ch(t) (t R). Felhasználva a ch (t) sh (t) és ch (t) + ch(t) (t R) azonosságokat a hiperbolikusz függvényekre, kapjuk, hogy

21 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL f() + ( R) esetén létezik f(g(t))g (t) dt + sh (t) ch(t) dt + ch(t) ch (t) dt dt dt + ch(t) dt + C t + sh(t) + C (t R). 4 Ezért létezik + d + sh (t) ch(t) dt tarsh() + C arsh() + sh( arsh()) + C 4 arsh() + sh(arsh()) ch(arsh()) + C arsh() C ( R). Az d kiszámításánál, felhasználva, hogy ( d ) d (ha pl. ) és tudva a hiperbolikusz függvények ch (t) sh (t) azonosságát, melyb l sh (t) ch (t) következik, az ch(t) g(t) (t ) helyettesítésben bízunk. Ekkor (mivel a ch függvény szigorúan monoton növeked [, + [-en) g () arch ( ) ( ), g (t) sh(t) (t ) és g (t) (t > ), továbbá f() ( ) mellett létezik f(g(t))g (t) dt ch (t) sh(t) dt sh (t) dt ch(t) dt 4 sh(t) t + C (t ).

22 I. INTEGRÁLSZÁMÍTÁS Ezért (a helyettesítéses integrálás tételének ( ) formulája szerint) létezik ( d ) d ch (t) sh(t) dt tarch + C ( ( arch ( 4 sh sh ( arch ( arch ( )) )) ch ) + C ( ) arch ( ( arch ( arsh Megjegyzés. Hasonlóan kapjuk, hogy d ( arsh ( arsh )) ) + C ) + C ) + C ( ). ) + C ( ). Az e e + d ( R) meghatározásánál (de általában, ha R(e ) d típusú integrál van) eredményre vezet az e g () t ( R), azaz ln(t) g(t) (t > ) helyettesítés. Ekkor g (t) t f() ( R) mellett létezik e e + f(g(t))g (t) dt így létezik e e + d t t + t (t > ) és dt arctg(t) + C (t > ), t t + t dt te + C arctg(e ) + C ( R).

23 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL Parciális integrálás.6. feladat. Határozza meg az alábbi integrálokat: ln d ; cos() d ; arcsin d ; ( + ) ln d ; ( + ) ch() d ; arctg d ; ( )e d ; sin d ; e cos d ; e d ; arctg d ; sin 4 () d ; Megoldás. A parciális integrálás tétele szerint: Ha az f, g : a, b R függvények dierenciálhatók a, b -n és f g, akkor fg is és C R, hogy f()g () d f()g() (P) f ()g() d + C ( a, b ). A feladatban szerepl integrálok többsége a Kalkulus II. jegyzetben az el bb idézett tételt követ megjegyzésben szerepl típusok valamelyike. ln d ln d ( > ) igaz. Válasszuk az f() ln és g() ( > ) függvényeket, akkor f (), g (), továbbá létezik így f ()g() d d d ( > ), ln d f()g () d f()g() f ()g() d + C ln d + C ln + C ( > ). Az ( + ) ln d kiszámításánál tekintsük az f() ln, g () +, azaz g() + ( > ) függvényeket, akkor f () és f ()g() d 9 + ( ) ( ) + d + d ( > ).

24 4 I. INTEGRÁLSZÁMÍTÁS Ezért (tételünk szerint) létezik C R, hogy ( + ) ln d f()g () d f()g() f ()g() d + C ( ) ( ) + ln C ( > ). Megjegyzés. P n () ln d típusú integrál kiszámításánál mindig az f() ln, g () P n () választással használjuk (P)-t. Az ( )e d kiszámításánál az f(), g () e és így g() e, f () ( R) választással alkalmazható (P) és akkor C R, hogy ( )e d ( )e e d + C ( )e e + C ( )e + C ( R). e d esetében, el bb az f(), g () e, f (), g() e ( R) mellett (P)-t használva kapjuk, hogy C R, hogy ( e d ) e + e e e d + C, d + C ha létezik e d. Ennek meghatározására alkalmazzuk újra (P)-t, f(), g () e, f (), g() e ( R) mellett, akkor C R, hogy e d ( ) e e + ( ) e d + C e d + C e 4 e + C ( R).

25 Így. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5 e d e e 4 e + C + C ( ) e + C. 4 Megjegyzés. P n ()e a d típusú integrál kiszámításánál f() P n (), g () e a ( R) mellett használjuk (P)-t (esetleg többször is, de akkor más az el bbiekb l kapott f-fel). cos() d kiszámításánál legyen f(), g () cos(), f (), g() sin() ( R), akkor (P)-b l cos() d sin() sin() d + C sin() + cos() + C ( R). ( + ) ch() d esetében kétszer alkalmazzuk a parciális integrálás tételét és (tömör írásmódban) kapjuk, hogy ( + ) ch() d ( + ) sh() ( + ) sh() d + C [ ] ( + ) sh() ( + ) ch() ch() d + C + C ( + ) sh() ( + ) ch() + sh() + C + C ( + + ) sh() ( + ) ch() + C ( R). Megjegyzés. Az P n () sin(a + b) d, P n () cos(a + b) d, Pn () sh(a + b) d, P n () ch(a + b) d típusú integrálok kiszámításánál az f() P n () (és g () a másik tényez ) mellett alkalmazzuk (P )-t (esetleg többször). Így ( ) sin d cos ( ) cos d + C cos + cos d + C

26 6 I. INTEGRÁLSZÁMÍTÁS cos + [ sin ] sin d + C + C cos + sin + 4 cos + C + C ( + ) cos + sin + C ( R). 4 arctg() d arctg() d arctg() arctg() + d + C arctg() ln( + ) + C ( R). + d + C arcsin() d arcsin() d arcsin() d+c arcsin() + ( ) ( ) d + C arcsin() + ( ) + C arcsin() + + C ( R). arctg() d arctg() + d + C arctg() + + d + C [ arctg() + d arctg() + C + d ( R). ] + C Megjegyzés. Az P n () arcsin() d, P n () arccos() d, Pn () arctg() d, Pn () arcctg() d típusú integráloknál a g () P n () és f() a másik tényez jelölés mellett alkalmazzuk (P )-t.

27 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 7 A parciális integrálás tételét (a (P ) formulával) felhasználva, f() e, g() cos ( R) választással e sin sin cos d e e d + C e sin e sin d + C e sin [ ] cos cos e e d + C + C e sin + 9 e cos 4 e cos d + C 9 C ( R) következik, ami rendezés után adja, hogy [ e cos d sin + ] cos e + C ( R). Megjegyzés. A fenti módszer alkalmazható általában az e a sin b d, e a cos b d típusú integrálok esetén is. sin n () d sin() sin n () d cos() sin n () cos()(n ) sin n () cos() d + C cos() sin n () + (n ) cos sin n () d + C cos() sin n () + (n ) ( sin ()) sin n () d + C cos() sin n () + (n ) sin n () d (n ) sin n () d + C ( R), és ebb l rendezéssel kapjuk, hogy sin n () d n cos() sinn () + n n Ez az I n sin n () d jelöléssel az sin n () d + C I n n cos() sinn () + n n I n + C ( R) ( R).

28 8 I. INTEGRÁLSZÁMÍTÁS úgynevezett rekurzív formulát adja I n -re. Ha például n, úgy sin () d cos() sin() + + C. Ha n, úgy sin () d cos() sin () + sin() d + C cos() sin () cos() + C ( R). Általában n lépésben (n ) megkapjuk I n -t. Megjegyzés. Hasonló eljárással megadható I n cos n () d rekurzív formulája is. Trigonometrikus és hiperbólikusz függvényekre vonatkozó azonosságok felhasználása.7. feladat. Számítsa ki az alábbi integrálokat: + cos() d ; sh() d ; sin () d ; Megoldás. A cos adja, hogy Ezért cos() d ; sin sin 5 d ; sin 4 () d ; + cos + cos cos + cos d sin() d ; cos cos d ; ctg () d. egyenl ségb l cos + cos, ha π + kπ, k Z. ha ] π + kπ, π + kπ[, k Z. d cos tg + C tg + C k cos cos() d ; következik, ami d

29 A sin. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 9 cos cos sin Így Mivel egyenl ség adja, hogy sin cos, azaz, ha kπ, k Z. cos d sin d ctg + C k ( ]kπ, k + π[, k Z). sin sin cos sin + cos sin cos így sin d ln sin cos cos + sin, sin cos ( cos d + ) + ln cos sin ( sin d + C ) ( + C ln tg ) + C k, ha például ]kπ, (k + )π[, k Z. Belátható, hogy ( ( sin d ln tg )) + D k ( ](k )π, kπ[, k Z). Az cos ( sin + π ) cos d ln ( sin ( tg ( π + kπ, k Z ) egyenl ség miatt ) d ln tg + π + π ( + π )) + C k, 4 + C k

30 I. INTEGRÁLSZÁMÍTÁS ha + π 4 ha + π 4 Az ]kπ, (k + )π[, k Z, míg ( ( ( cos d ln tg + π ))) + D k, 4 ](k + )π, (k + )π[, k Z. sh sh ch ch sh sh ch azonosság miatt illetve sh d ch sh sh ch ch sh ( ln sh ) ( ln th d ( ln ( ) sh ch d + C ) + C ch ( )) + C ( > ), ( ( sh d ln th )) + C ( < ) következik. Az ismert sin α sin β [cos(α β) cos(α + β)] trigonometrikus azonosság miatt így sin sin 5 [cos cos 8] ( R), sin sin 5 d (cos cos 8) d cos cos 8 d + C sin sin 8 + C ( R). 4 6

31 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL Tudjuk, hogy cos α cos β [cos(α + β) + cos(α β)] α, β-ra, így A A cos cos [ ( cos + ) [ cos cos 6 ez pedig adja, hogy cos cos d cos 5 6 d + sin sin ( + cos )] ] ( R), cos 6 d + C + C 5 sin sin + C ( R). 6 sin sin sin ( cos ) sin sin cos sin trigonometrikus azonosság miatt sin d sin d + cos + cos cos ( sin ) d + C + C ( R). sin 4 sin ( cos ) sin 4 sin cos azonosság miatt sin 4 d 8 cos cos cos 4 ( R) 8 d cos d 8 8 sin sin 4 + C 8 4 cos 4 d + C 8 4 sin sin 4 + C ( R). Megjegyzés. Az utóbbi két feladat az sin 4 d speciális eseteként is számítható (amit a parciális integrálásnál vizsgáltunk).

32 I. INTEGRÁLSZÁMÍTÁS Racionális (tört)függvények integrálása Legyenek P n, Q m : R R n-, illetve m-edfokú polinomok, a, b R olyan intervallum, melyben Q m nem zérus. Az R: a, b R, R() P n() Q m () függvényt racionális (tört)függvénynek nevezzük. Bizonyítható, hogy ha n m, akkor léteznek P n m és P l (n m illetve l(< m)-edfokú) polinomok, hogy R() P n() Q m () P n m() + P l() Q m () a, b -re. Legyen továbbá a Q m polinom (R feletti úgynevezett irreducibilis tényez kre való) felbontása Q m () A( a ) α ( a r ) αr ( + p + q ) β ( + p s + q s ) βs, ahol A Q m f együtthatója, i,..., r, j,..., s esetén a i, p j, q j R, α i, β j N és p j 4q j < (azaz + p j + q j nem bontható fel valós els fokú polinomok szorzatára). Ekkor léteznek A ik, B jl, C jl R, hogy P l () Q m () A + + A α a ( a ) α + + A r + + A rα r a r ( a r ) α + r + B + C + + B β + C β + p + q ( + p + q ) β B s + C s + + B sβ s + C sβs + p s + q s ( + p s + q s ) βs a, b esetén. Így egy racionális törtfüggvény P n () d határozatlan integráljának meghatározása visszavezethet egy n m-edfokú polinom, illetve az Q m () A ( a) i d és B + C ( d típusú integrálok meghatározására. + p + q) j A feladatban mindig megadjuk a racionális (tört)függvény fenti el állítását (meghatározva P n m -et és a törtekben szerepl együtthatókat is).

33 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL.8. feladat. Határozza meg adott A, B, C R, a R, p, q R (p 4q < ), i, j N esetén az integrálokat. Megoldás. a) Nyilvánvaló, hogy i esetén b) i > esetén A ( a) i d és { A a d A ln( a) + C B + C ( + p + q) j d, ha > a A ln( ( a)) + C, ha < a. ( a) i+ A A ( a) i d i + ( a) i+ A i + (Lásd Egy egyszer helyettesítés cím fejezet.) B + C ( + p + q) j B + C [ ( + p ) p ] j + q 4 + C, ha > a + C, ha < a. [ ( + p B + C ) ] j + b b j B + C + p b + ( R) j miatt (ahol q p 4 4q p 4 > miatt vezetjük be, hogy b q p 4 ), + p az bt p g(t) (t R) illetve g () t ( R) b helyettesítéssel kapjuk (a helyettesítéses integrálás tétele szerint), C,

34 4 I. INTEGRÁLSZÁMÍTÁS hogy ( B + C B bt p ) + C ( + p + q) j d b j (t + ) j Ha j, úgy ebb l B + C + p + q d B b (j ) + C B p b j b dt t + p b t (t + ) j dt + t p + b (t + ) j dt t + p b B b (j ) ln + p b + C B p b j következik R esetén. Ha j >, úgy B + C ( + p + q) j d B arctg + p b (t + ) j+ b (j ) j + + C B p b j + C + C C + t p + b (t + ) j dt t + p b következik. Ugyanakkor a parciális integrálás tételét felhasználva + C

35 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5 (t (t + ) j dt + ) t (t + ) j dt t t (t + ) j dt [t (t + ) j+ j + j j Ezért, ha j >, akkor B + C ( + p + q) j d (t dt + ) j (t dt + ) j ] dt + C 4 (t + ) j+ j + (t + ) j dt + (j ) p B C B b (j ) ( j) + b j (j ) t t (t + ) j + C 4. (t + ) j t+ p + C B p + j b j j Ha (t + ) (t + ) j dt t+ p + C 5. dt-re az el bbi módszert alkalmazzuk, illetve azt tovább j folytatjuk, úgy integrálunk véges (j) lépésben meghatározható. Megjegyzés. Természetesen (a megjegyezhet ség nehézségei miatt) nem ezen bonyolult formulákat használjuk, hanem minden konkrét feladatban ugyanezt az eljárást követjük majd..9. feladat. Határozza meg az alábbi integrálokat: + d ; + ( )( + 5) d ; d ; + ( + + ) d. Megoldás. + d + d 5 ( + ) d ; ( + )( + )( + ) d ; ( + )( + ) d ; (az.8. feladat a) esetének megfelel en). + d ; { ln( + ) + C,ha > ln( ( + )) + C,ha < d ; + d ;

36 6 I. INTEGRÁLSZÁMÍTÁS 5 ( + ) d 5 ( + ) d 5( + ) 5( + ) C 5 + ( ) + + miatt + d + ( )( + 5) miatt + ( )( + 5) d + C,ha > + C,ha <,ha > + + C,ha <. ( )( + ) + + ( ) d + + d ln( + ) + C,ha > + ln( ( + )) + C,ha <. ( ) + ( + 5) ( )( + 5) ( ) d ( ) (, 5) ln( ( + 5)) + ln( ( )) + C,ha < 5, ln( + 5) + ln( ( )) + C,ha ] 5, [, ln( + 5) + ln( ) + C,ha >. Megmutatjuk, hogy A, B, C R, hogy ( + )( + )( + ) A + + B + + C + A jobb oldalon közös nevez re hozva, és rendezve ( + )( + )( + ) (,, ). (A + B + C) + (5A + 4B + C) + 6A + B + C ( + )( + )( + )

37 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 7 következik, ha,,, ami csak akkor teljesülhet, ha (A + B + C) + (5A + 4B + C) + 6A + B + C ami csak úgy lehetséges, ha ( R), A + B + C, 5A + 4B + C, 6A + B + C. Ez egy lineáris egyenletrendszer A, B, C-re, melynek egyértelm megoldására (nem nehéz számolással) következik, így A 6, B, C ( + )( + )( + ) (,, ), ami adja, hogy ( + )( + )( + ) d 6 ln( ( + )) ln( ( + )) + ln( ( + )) + C,ha <, 6 ln( ( + )) ln( ( + )) + ln( + ) + C,ha ], [, 6 ln( ( + )) ln( + ) + ln( + ) + C,ha ], [, 6 ln( + ) ln( + ) + ln( + ) + C 4,ha > ( 5 + 6) + (5 6 + ) ( 5 + 6) ( )( ) Megmutatjuk, hogy A, B, C R, hogy ( )( ) A + B + C (,, ) (,, ). A jobb oldalt hasonlóan alakítva, mint az el z feladatban ( )( ) (A + B + C) + ( A B 5C) + 6C ( )( ) következik, ha,,, ami csak akkor igaz, ha A + B + C 5, A B 5C 6, 6C,

38 8 I. INTEGRÁLSZÁMÍTÁS ami teljesül, ha A 6, B 5 6, C 6. Az el bbiek miatt, így (,, ), ami adja, hogy d ln( ( )) 6 ln( ( )) + 6 ln( ) + C,ha <, ln( ( )) 6 ln( ( )) + 6 ln() + C,ha ], [, ln( ( )) 6 ln( ) + 6 ln() + C,ha ], [, ln( ) 6 ln( ) + 6 ln() + C 4,ha >. Az d az.8. feladat b) részének megfelel integrál B, C, p, q és j mellett, hiszen p 4q 4 <. Az ( + ) ( R)

39 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 9 azonosság és a g () + t ( R) illetve t d 4 4 g(t) (t R) helyettesítés adja, hogy d t + t + dt + C t (+ ) t t + dt + t (+ ) ] ln [ ( ( + )) + + t + dt + C t (+ ) ( ( arctg + )) + C ( R). Az ( + )( d integrál meghatározásához el bb megmutatjuk, + ) hogy A, B, C R, hogy ( + )( + ) A + + B + C + ( ). A jobboldalt közös nevez re hozva, rendezés után kapjuk, hogy ( + )( + ) (A + B) + (B + C) + A + C ( + )( + ) ami csak úgy lehetséges, ha A + B, B + C, A + C, azaz ha A, B, C, így ( + )( + ) ( ). ( ), Ezért integrálunkban az.8. feladatban szerepl mindkét típus el fordul, továbbá a b) típusnál már teljes négyzet a nevez. Ezeket gyelembe

40 4 I. INTEGRÁLSZÁMÍTÁS véve: ( + )( + ) d Az + d 4 + d + ln( + ) 4 ln( + ) + arctg() + C,ha >, ln( ( + )) 4 ln( + ) + arctg() + C,ha <. + ( ) ( ) ( ) + d ( )( + ) ( ) ( + ) ( R) egyenl ség miatt + ( ) ( + ) és megmutatjuk, hogy A, B, C R, hogy ( ) ( + ) A + B ( ) + C + (, ) (, ), azaz ( ) ( + ) (A + C) + (A + B C) A + B + C ( ) ( + ) (, ), ami csak úgy lehetséges, ha A + C, A + B C, A + B + C, azaz, ha A 5, B 5, C, 5 ezért ( ) 5 + Ebb l következik, hogy + d 5 d ln( ( )) + ( ) 5 5 ln( ( )) + ( ) 5 5 ln( ) + ( ) 5 ( ) d 5 (, ). + d + C 5 ln( ( + )) + C,ha <, 5 ln( + ) + C,ha ], [, 5 ln( + ) + C,ha >.

41 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 4 Az + ( d az.8. feladat b) részében szerepl integrál speciális esete: B, C, p, q p 4q < és + + ) j >. Így az ott használt módszerrel dolgozhatunk + ( + + ) d + [( + ) + ] d (t ) + (t + ) dt t+ + C t (t + ) dt t+ (t + ) dt t+ + C (t + ) (t + ) t dt t+ (t + ) dt t+ + C + + t + dt t+ + t t (t + ) dt + C + + arctg( + ) + + ) t(t t+ (t + ) dt t+ + C arctg( + ) + C 5 ( R).

42 4 I. INTEGRÁLSZÁMÍTÁS Racionális törtfüggvényre vezet helyettesítések.. feladat. Alkalmas helyettesítéssel vezesse vissza az alábbi integrálokat racionális törtfüggvények integráljára: + d ; ( + + ) d ; sin cos + 5 d ; tg + tg d ; 6 7 d ; d ; ( + ) + + d ; e d. d ; + sin + cos d ; ( + cos ) sin d ; + + d ; + d ; (7 ) d ; e d ; e Megoldás. Az els három feladat annak annak speciális esete, amikor egy ( R, n ) a + b c + d,..., n k a + b d c + d (ahol R(u,..., u k+ ) az u,..., u k+ meghatározni. Ekkor mindig eredményre vezet a racionális függvénye) integrált kell t n a + b c + d g (), g(t) dtn b a ct n helyettesítés (alkalmas intervallumon), ahol n az n,..., n k természetes számok legkisebb közös többszöröse.

43 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 4 A t g (), t g(t) (t ) helyettesítésnél g (t) t, így (a helyettesítéses integrálás tétele szerint): A + d + t t dt t + C (t + ) dt t + C + t dt t t + dt t + C ln( + ) + C ( ). t g () ( ), t g(t) (t > ) helyettesítéssel, g (t) t d t t t dt t dt 4 t 4 ( 4 ( + ln + t ( t ) (t > ) mellett t ( t ) dt t + C + C (t )(t + ) + C t ) 4 t + dt + C t ) t ( ln ) + + C ( > ).

44 44 I. INTEGRÁLSZÁMÍTÁS A t 6 g () ( ), t 6 g(t) (t ) helyettesítéssel, g (t) 6t 5 (t ) mellett t 6 ( + t + t ) 6t5 dt t 6 + C ( + + ) d 6 t(t + t + ) dt t 6 + C 6 t(t + )(t t + ) dt t 6 + C t(t + ) A t + ( ( t 4 B t + + ) ) + dt t 6 + C 6 ( t 4 Ct + D ) + 6 dt t 6 + C, ahol A, B, C, D a korábban használt módszerrel meghatározhatók, az integrálok pedig az.8 feladatbeliek speciális esetei. A következ három (de az azokat követ is) az R(sin, cos ) d speciális esete, ahol R(u, v) az u és v változók racionális függvénye. Ekkor (ahogy az elméletben már jeleztük) a tg t g () ( ] π, π[ ) illetve arctg(t) g(t) (t R) helyettesítés mindig eredményt hoz (racionális törtfüggvény integráljához jutunk), ugyanis ekkor sin() sin cos sin + cos tg tg + t t + (t R), cos cos() sin tg sin + cos + tg és g (t) + t (t R) miatt R(sin, cos ) d R ( t + t, t + t ) t + t (t R) + t dt ttg + C

45 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 45 adódik és a jobb oldalon az integrandus racionális törtfüggvény. Ezért: + sin + cos d + t + t + t + t t + dt ttg + C ln (tg ) + ( ln sin cos + 5 d 4t + t t + t + 5 t + t + ( t + ( 5 + ) ( ) 5 t t dt ttg + C + C,ha tg + > (tg )) + + C,ha tg + < + t dt ttg + C dt ttg + C ) dt ttg + C + tg arctg C dt ttg + C

46 46 I. INTEGRÁLSZÁMÍTÁS ( + cos ) sin d ( + ) t t + t dt ttg + C + t + t t + (t + )t dt ttg + C ( A t + Bt + C ) t dt + ttg ami már egyszer en meghatározható. tg ( + tg d π ] 4, π, π [ ) számítható az el bbi módszerrel, de a g () tg t, arctg t g(t) helyettesítéssel is. Ekkor g (t), így t + tg t + tg d + t ( t + dt ttg + C ) dt ttg + C, A t + + Bt + C t + ami már egyszer en folytatható. A következ hat integrál kiszámításánál két módszer is kínálkozik. A) Ezek olyan integrálok, melyek az R(, a + b + c) d integrál speciális esetei, így: (i) ha a >, akkor a a + b + c a + t vagy a + b + c a t ; (ii) ha c >, akkor a a + b + c t + c vagy a + b + c t c ; (iii) ha R, hogy a + b + c, akkor a a + b + c t( ) helyettesítés után racionális törtfüggvényt kell integrálni (természetesen minden esetben megadható az g(t) helyettesít függvény, melynek t g () inverzének alakja azonnal látszik).

47 B) Az. PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 47 a + b + c a [ ( + b ) + a ] 4ac b 4a teljes négyzetté alakítás jelzi a másik lehetséges utat, melynél 4ac b d 4ac b, vagy d jelöléssel, + b a helyére helyettesítünk sin t-t, vagy sh t-t, vagy ch t-t. 4a 4a d Az + + d integrálnál a t, t + + g (), t t g(t) helyettesítés g (t) t t + mellett adja, hogy ( t) + + d t ( t t t + t ) ( ) t t + ( t) dt t ++ + C, ami már egy racionális tört integrálja. Ez persze még elég sok munkával jár. Másrészt az + + ( + )

48 48 I. INTEGRÁLSZÁMÍTÁS azonosság, illetve az + helyettesítés adja, hogy sh t, sh t g(t) (t ) + + d ( ) sh t + + ( ) 4 sh t ch t dt + tarsh ch t sh t dt 4 + tarsh 8 ch t ch t 8 tarsh + 8 ch arsh + 6 arsh ch t dt tarsh + + C ch t dt tarsh + + C + C dt + + C tarsh sh + arsh + C. Az 6 7 d számításánál a t t 6 7 g (), t + 7 t + 6

49 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 49 helyettesítés, g (t) t + t 4 (t + 6) mellett adja, hogy 6 7 d ( ) t t + 7 t + t 4 t + 6 (t + 6) dt t C (t + 6t 7) (t + 6) dt t C, ami viszonylag egyszer en kezelhet. Másrészt az 6 7 ( ) [ ( ) ] 4 azonosság, ch t, illetve 4 ch t + g(t) helyettesítés, g (t) 4 sh t miatt adja, hogy 6 7 d ( ) 4 d 4 4 ch t sh t dt tarsh + C 4 6 sh t dt tarsh + C ch t 6 8 arsh 4 4 dt tarsh + C ( 4 4 sh arsh 4 ) + C ( R). A második módszer most is gyorsabban ad eredményt. A t t ( + ) g (),

50 5 I. INTEGRÁLSZÁMÍTÁS illetve t t + g(t) (t R) helyettesítés, g (t) t + 4t + (t + ) adja, hogy + d t + t + t(t )(t + ) dt t ( +) + C ( t + t ) t + dt t ( +) + C [ ln t + ln(t ) arctg t] t ( +) + C. A másik módon: ( + ) és az + sin t g (t) cos t adja, hogy + d ( ( ) ) + ( + ) ( t arcsin + ), sin t g(t), + ( + ) d cos t + cos t dt tarcsin + + C ami például a tg t helyettesítéssel vihet tovább. Most a két módszer nagyjából egyformán gyors. A t, azaz t 4 helyettesítéssel (t + ) d t + t + 4 t(t + ) dt t C ( 4 t ) t + (t + ) dt t C ln( ) ln( ) C.

51 . PRIMITÍV FÜGGVÉNY, HATÁROZATLAN INTEGRÁL 5 Próbálja ki a másik módszert is. A 7 t( 5), azaz 5t + t + helyettesítéssel 5t (7 ) d + 9 t ] ch[arsh( + )] sh[arsh( + )] + C C. + [ 9 t + 4 9t dt t t 5 + C. + C ( + ) + + d ( + ) ( + ) + d sh t sh t + ch t dt tarsh(+) + C sh t dt tarsh(+) + C cth[arsh( + )] + C + sh (arsh( + )) + Az e t, ln t g(t) (t > ) helyettesítés, g (t) t adja, hogy e d e t t t dt te + C ( t dt te A t + B ) t + + C A ln(e ) + B ln(e + ) + C, ha >, ahol A és B egyszer en meghatározható. Az e t, ln t g(t) (t > ) helyettesítéssel, g (t) t -vel e d t t dt te + C (t > ) miatt dt te következik. A t u, t u + g(u) (u R) helyettesítés és g (u) u adja,

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

MATEMATIKA II. FELADATGY JTEMÉNY

MATEMATIKA II. FELADATGY JTEMÉNY MATEMATIKA II. FELADATGY JTEMÉNY KÉZI CSABA Date: today. KÉZI CSABA ELŽSZÓ Ez a feladatgy jtemény a Debreceni Egyetem M szaki Karának Matematika II. tantárgyának tematikájához szorosan illeszkedik. Célja

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel. Feladatok a Diffrenciálegyenletek IV témakörhöz 1 Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel (a) y 3y 4y = 3e t (b) y 3y 4y = sin t (c) y 3y 4y = 8t

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

6. Differenciálegyenletek

6. Differenciálegyenletek 312 6. Differenciálegyenletek 6.1. A differenciálegyenlet fogalma Meghatározni az f függvény F primitív függvényét annyit jelent, mint találni egy olyan F függvényt, amely differenciálható az adott intervallumon

Részletesebben

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu

Polinomgy r k. 1. Bevezet. 2. Polinomok. Dr. Vattamány Szabolcs. http://www.huro-cbc.eu Polinomgy r k Dr. Vattamány Szabolcs 1. Bevezet Ezen jegyzet célja, hogy megismertesse az olvasót az egész, a racionális, a valós és a komplex számok halmaza fölötti polinomokkal. A szokásos jelölést használjuk:

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat

Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat ANALÍZIS FELADATGYŰJTEMÉNY I Jegyzetek és példatárak a matematika egyetemi oktatásához sorozat Algoritmuselmélet Algoritmusok bonyolultsága Analitikus módszerek a pénzügyben és a közgazdaságtanban Analízis

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

Diszkrét matematika II., 1. el adás. Lineáris leképezések

Diszkrét matematika II., 1. el adás. Lineáris leképezések 1 Diszkrét matematika II., 1. el adás Lineáris leképezések Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. február 6 Gyakorlati célok Ezen el adáson,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár Orosz Ágota Kaiser Zoltán Diszkrét Matematika I példatár mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Orosz Ágota Kaiser

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

13. Trigonometria II.

13. Trigonometria II. Trigonometria II I Elméleti összefoglaló Tetszőleges α szög szinusza a koordinátasíkon az i vektortól az óramutató járásával ellentétes irányban α szöggel elforgatott e egységvektor második koordinátája

Részletesebben

Komplex számok algebrai alakja

Komplex számok algebrai alakja Komplex számok algebrai alakja Lukács Antal 015. február 8. 1. Alapfeladatok 1. Feladat: Legyen z 1 + 3i és z 5 4i! Határozzuk meg az alábbiakat! (a) z 1 + z (b) 3z z 1 (c) z 1 z (d) Re(i z 1 ) (e) Im(z

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

Nagy Ilona 2013.06.01.

Nagy Ilona 2013.06.01. Bevezető matematika példatár Kádasné Dr. V. Nagy Éva Nagy Ilona 0.06.0. Tartalomjegyzék Bevezető. Gyakorlatok.. Műveletek törtekkel, hatványokkal, gyökökkel................. A logaritmus fogalma; arány-

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Második rész Cikkünk első részében az elemrend és a körosztási polinomok fogalmára alapozva beláttuk, hogy ha n pozitív egész,

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége

LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel

Részletesebben

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz A vizsga menete: a vizsga írásbeli és szóbeli részből áll. Az írásbeli beugrón az alábbi kérdések közül szerepel összesen 12 darab, mindegyik egy pontot

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1

Lajk o K aroly Kalkulus II. Debreceni Egyetem Matematikai es Informatikai Int ezet 2003 1 Ljkó Károly Klkulus II. Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 1 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet dvi, pdf és ps formátumbn

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

1. Algebrai alapok: Melyek műveletek az alábbiak közül?

1. Algebrai alapok: Melyek műveletek az alábbiak közül? 1. Algebrai alapok: Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz egyértelműen hozzárendel egy

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Többváltozós széls érték számítás és alkalmazásai

Többváltozós széls érték számítás és alkalmazásai Eötvös Loránd Tudományegyetem Természettudományi Kar Többváltozós széls érték számítás és alkalmazásai BSc Szakdolgozat Készítette: Prikkel Anett Matematika BSc Matematikai elemz szakirány Témavezet :

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április

Dr. Tóth László Hány osztója van egy adott számnak? 2008. április Hány osztója van egy adott számnak? Hány osztója van egy adott számnak? Dr. Tóth László http://www.ttk.pte.hu/matek/ltoth előadásanyag, Pécsi Tudományegyetem, TTK 2008. április. Bevezetés Lehetséges válaszok:

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS

MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS Matematika PRÉ megoldókulcs 0. január. MTEMTIK PRÓBÉRETTSÉGI MEGOLDÓKULCS = KÖZÉP SZINT = I. rész: z alábbi feladat megoldása kötelező volt! ) Oldd meg az alábbi egyenletet a valós számok halmazán! tg

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma

16. Sorozatok. I. Elméleti összefoglaló. A sorozat fogalma 16. Sorozatok I. Elméleti összefoglaló A sorozat fogalma Sorozatnak nevezzük az olyan függvényt, amelynek értelmezési tartománya a pozitív egész számok halmaza. Számsorozat olyan sorozat, amelynek értékkészlete

Részletesebben

Analízis II. gyakorlat

Analízis II. gyakorlat Analízis II. gyakorlat Németh Adrián 4. január 7. Tartalomjegyzék Előszó.................................................... Ismétlés................................................... Integrálás...............................................

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám rendje A rend fogalma A 1-nek két darab egész kitevőjű hatványa van: 1 és 1. Az i-nek 4 van: i, i 2 = 1, i 3 = i, i 4 = 1. Innentől kezdve ismétlődik: i 5 = i, i 6 = i 2 = 1, stb. Négyesével

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 11 ÉRETTSÉGI VIZSGA 01. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások: 1.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Függvények Analízis A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE

GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE GAUSS-EGÉSZEK ÉS DIRICHLET TÉTELE KEITH KEARNES, KISS EMIL, SZENDREI ÁGNES Első rész 1. Bevezetés Tekintsük az ak + b számtani sorozatot, ahol a > 0. Ha a és b nem relatív prímek, akkor (a,b) > 1 osztója

Részletesebben

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom

DIFFERENCIÁLSZÁMÍTÁS. 5. Taylor-polinom DIFFERENCIÁLSZÁMÍTÁS KÉZI CSABA GÁBOR 5. Taylor-polinom 5.. Feladat. Írjuk fel az f(x) = e x függvény x 0 = 0 pont körüli negyedfokú Taylor polinomját! Ennek segítségével számoljuk ki e közelítő értékét!

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben