AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AZ ÉPÍTÉSZEK MATEMATIKÁJA, I"

Átírás

1 BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

2 Speciálisa az építészmérök hallgatók számára felépített elméleti ayag az elmélet megértését segítő feladatokkal. A taayag az építészekek szükséges mélységbe és részletezettséggel tárgyalja a következő témaköröket: umerikus sorozatok; egyváltozós függvéyek határértéke, differeciálszámítás és alkalmazásai, itegrálszámítás és alkalmazásai, vektoralgebra, a tér aalitikus geometriája, mátrialgebra, lieáris egyeletredszerek. Kulcsszavak: umerikus sorozat, függvéy határérték, folytoosság, differeciálszámítás, differeciálszámítás alkalmazási, éritő, szélsőérték, itegrálszámítás, terület, térfogat, ívhossz, súlypot, felszí, görbület, paraméteres görbék, mátri, lieáris egyeletredszer. Barabás Béla, Fülöp Ottília, BME

3 Támogatás: Készült a TÁMOP-4..-8//A/KMR-9-8 számú, a Természettudomáyos (matematika és fizika) képzés a műszaki és iformatikai felsőoktatásba című projekt keretébe. Készült: a BME TTK Matematika Itézet godozásába Szakmai felelős vezető: Fereczi Miklós Lektorálta: Sádor Csaba Az elektroikus kiadást előkészítette: Erő Zsuzsa Címlap grafikai terve: Csépáy Gergely László, Tóth Norbert ISBN: Copyright: 6, Barabás Béla, Fülöp Ottília, BME A termiusai: A szerző evéek feltütetése mellett em kereskedelmi céllal szabado másolható, terjeszthető, megjeletethető és előadható, de em módosítható. Barabás Béla, Fülöp Ottília, BME

4

5 Tartalomjegyzék TARTALOMJEGYZÉK. Bevezetés...3. Numerikus sorozatok fogalma, határértéke Koverges és diverges sorozatok Néháy evezetes sorozat határértéke Függvéyek Elemi függvéyek Iverz elemi függvéyek Függvéyhatárérték-defiíciók Függvéyhatárértékkel kapcsolatos tételek Folytoos függvéyek Zárt itervallumo folytoos függvéyek tulajdoságai Differeciálszámítás A differeciálháyados fogalma, differeciálási szabályok Elemi függvéyek deriváltja és egyéb deriválási szabályok Középértéktételek, L Hospital-szabály A differeciálháyados alkalmazásai Szélsőértékek és ifleiós potok létezéséek szükséges és elégséges feltételei Alkalmazott optimalizációs problémák: szöveges szélsőérték-feladatok Függvéyábrázolás az eddig taultak haszálatával Egyéb alkalmazások: függvéyek éritkezése, Taylor-poliom Itegrálszámítás Rövid áttekités Primitív függvéyek Itegrálási techikák Határozott itegrál A határozott itegrál rövid geometriai iterpretációja A határozott itegrállal kapcsolatos legfotosabb tételek Az aalízis alaptétele Improprius itegrál Az itegrálszámítás alkalmazásai Vektorok Lieáris tér (vektortér) Lieáris altér Mátriok Az m -es mátriok vektortere a valós számhalmaz felett Mátriok szorzása Lieáris traszformációk (leképezések)... 6 Barabás Béla, Fülöp Ottília, BME

6 Az építészek matematikája, I 8. Determiások Másod- és harmadredű determiások A másod- és harmadredű determiások alkalmazásai, geometriai iterpretációk Az -edredű determiás és tulajdoságai Mátri iverzéek kiszámolása a determiás segítségével Koordiátageometria Egyees és sík Illeszkedési és metszési feladatok a térbe Térelemek távolsága Hajlásszögek... 7 PÉLDATÁR... 7 Barabás Béla, Fülöp Ottília, BME

7 . Bevezetés 3. Bevezetés Amikor mi, laikusok távolról közelítük meg egy építméyt, figyelmük fokozatosa terelődik át az egészről a részletekre, szem előtt tartva a teljes egységet, a kocepciót, a fizikai köryezet által meghatározott feltételeket, az aráyokat, a szimmetriát, a szíeket, fiomságot, féy és áryék kölcsöhatását és a harmóiát. Az ókori görögök, főleg Püthagorasz és követői, a püthagoreusok szerit a tökéletes harmóia (azaz kapocs) a legkisebb természetes számok aráyaival fejezhető ki. A püthagoraszi harmóiára egyik legszebb példák a következő: ha egy háromszög oldalaiak aráya 3:4:5, akkor a háromszög derékszögű. Ez éppe Püthagorasz tételéből következik, mert Az igazság kedvéért meg kell itt említeük, hogy bár a matematikatörtéet ezt Püthagoraszak tulajdoítja (hisze ő bizoyította), a babiloiak is haszálták ezt egy évezreddel Püthagorasz előtt, azzal a külöbséggel, hogy ők em tudták, hogy ez igaz valameyi derékszögű háromszögre. A Püthagorasz-tétel (másképpe írva Pitagorasz-tétel) tulajdoképpe közvetle őse a agy Fermat-sejtések (amit érdekes módo, bár 994-be boyolult matematikai módszerekkel bizoyítottak, előszeretettel továbbra is sejtések evezük). Ez a sejtés a püthagoraszi alapokat kapcsolja össze a matematika legboyolultabb elképzeléseivel, ami több mit három évszázado át leyűgözte a matematikustársadalmat. Maga a feladat olya egyszerű, hogy egy kisiskolás is megértheti. 67-be Toulouse-ba Pierre de Fermat (6 665) fracia matematikus és jogász halála utá megjelet a Diophatosz Arithmeticája Pierre Fermat megjegyzéseivel című kötet, melybe Fermat a 8. probléma tőszomszédságába széljegyzetkét kijeletette, hogy az Barabás Béla, Fülöp Ottília, BME

8 4 Az építészek matematikája, I y z egyeletek bármilye rögzített 3,4,5,... számra icse pozitív egész, yz, megoldása. Matematikusok emzedékeit őrjítette meg igerkedő megjegyzésével, amit szité ide írt be: Igazá csodálatos bizoyítást találtam erre a tételre, de ez a margó túl keskey, semhogy ideírhatám. (Lásd Simo Sigh, A agy Fermat-sejtés, Park Köyvkiadó, Budapest, 999.) Hogy miért említjük ilye részletességgel ezt az érdekes, püthagoraszi gyökerekkel redelkező, de csak a múlt évszázad végé bizoyított feladatot? Többek között azért, mert az előadáso elhagzó tételeket (legtöbbjüket itt em is bizoyítjuk) évek múltá köye elfelejthetik, ezt valószíűleg em. Míg az itt tault matematikatételek agy többségéek az utca embere hátat fordítaa, még a Fermat-sejtés bizoyítása előtti időkbe, New Yorkba, a Nyolcadik utcai metróállomás falá a következő falfirka jelet meg: y z : ics megoldás. Igazá csodálatos megoldást találtam erre a tételre, de most ics időm ideíri, mert jö a metró. Az aráy (pl. 3:4) eve görögül logosz, az aráypáré (pl. 6:8=9:) pedig aalógia. A görögök szerit világszemléletük három alapfogalma a harmóia, a logosz és a szimmetria. Adrea Palladio (58 58) észak-itáliai építész hitvallása szerit egy valamirevaló épületek hármas követelméyek kell megfelelie: kéyelem, tartósság, szépség, ha ezek közül valamelyik is hiáyzik, az épület em méltó evére. Palotáival és villáival, új aráyaival, tiszta voalvezetésével a reeszász építészet egyik legtermékeyebb mesterévé vált, megszámlálhatatla követővel. A Villa Capra La Rotoda matematikai precizitással kiszámolt aráyossággal redelkező Palladio-villa terveit a római Patheo ihlette és Viceza városá kívül, egy dombtetőre épült. Elevezése, a La Rotoda a közpoti, kör alakú kupolás hallra utal. Az épület a fet említett credo mide egyes potjáak megfelel, szimmetrikus szerkezeteit, díszítőelemeit, klasszikus formáit több mit égyszáz évig utáozták. Amikor Püthagorasz Hippaszosz evű fiatal taítváya felfedezte, hogy a (pl. az egységyi oldalú égyzet átlójáak hossza) em fejezhető ki két természetes szám háyadosakét, tehát a püthagoreus értelembe véve em szám, a püthagoreusok egész világszemlélete összeomlott. Úgyhogy ikább vízbe fojtották Hippaszoszt és továbbra sem vettek tudomást az ilye számok létezéséről. Talá ez az egyetle dicstele tett, ami a evükhöz kapcsolható. A -t és az irracioális számokat csak a mester halála utá merték újra életre keltei. Vegyük most egy és oldalú téglalapot. Megkétszerezve a rövidebbik oldalt, és oldalú téglalapot kapuk, ami ugyaolya aráyú, mert : :. Ez azt mutatja, hogy két egyforma papírlapot ügyese egymás mellé rakva olya agyobb lapot kapuk, mely hasoló az eredetihez. Ha egy egységyi hosszúságú szakaszt úgy osztuk két részre, hogy a kisebbikek és a agyobbikak az aráya egyelő legye a agyobbikak és az egészek az aráyával, azaz a agyobbik részt -szel jelölve, másodfokú egyeletet kapuk, melyek egyetle 5 pozitív megoldása az és ekkor a agyobbik és kisebbik aráya 5, az araymetszési aráy. Az araymetszésről Velecébe, 59-be Fra Luca Paccioli De Divia Proportioe címmel köyvet írt, melyet barátja, Leoardo da Vici illusztrált. Nézzük meg az araymetszés egyéb előfordulását is. Fiboacci, a középkor kiemelkedő matematikusa, körül, yulak szaporodását vizsgálva, bevezette és taulmáyozta a következő umerikus sorozatot:,,,3,5,8,3,,, azaz általáosa u u u. A Fiboacci-sorozat egymást követő tagjaiak háyadosa: ; ;,5;,666;,6;,65;,653,..., az araymetszés értékéhez tart. Barabás Béla, Fülöp Ottília, BME

9 . Bevezetés 5 A Fiboacci-számok aráyai a természetbe is megtalálhatók: a szilvafa gallyai a levelek általába félfordulatra követik egymást, a bükkél, mogyoróál ez /3, a tölgyél, sárgabarackál /5, körtefáál, yárfáál 3/8, maduláál, fűzfáál 5/3, és így tovább. Ezek az aráyok éppe a másodszomszéd Fiboacci-számok aráyai. Kepler szerit éppe az araymetszés adta az ötletet a Teremtőek, hogy bevezesse a hasoló dolgokak hasoló dolgokból való származtatását. Bevezetők em teljes, ha em teszük említést a párhuzamos egyeeseket időkét metszőkek ábrázoló perspektivitásról. A perspektív traszformáció a reeszász ideje alatt terjedt el, főkét a firezei Filippo Bruelleschiek köszöhetőe. Taítváya, Masaccio olya Szetháromság-képet festett a firezei Sata Maria Novella templom falára, hogy azt hitték, áttörték a templom falait. Ahogy a perspektivitás em a végső szó a traszformációk világába, úgy Bruelleschi sem az az építészetbe. Azóta is agyszerű megoldások, kocepciók születek, egyre újabb harmóiákat teremtük, igyekezvé miél jobba kihaszáli a redelkezésükre álló matematikai eszközöket, lehetőségeiket és képzeletüket. I am certai of othig, but the holiess of the heart s affectios ad the truth of Imagiatio What the Imagiatio seizes as Beauty must be Truth. (Joh Keats, Letter, November, 87.) Barabás Béla, Fülöp Ottília, BME

10 6 Az építészek matematikája, I. Numerikus sorozatok fogalma, határértéke.. Koverges és diverges sorozatok... Defiíció: A természetes számoko értelmezett N R valós értékű függvéyeket sorozatokak evezzük. Például: a) b),,,,..., azaz 3 4,,,,..., azaz 3 4 c),,,,..., azaz a a, ( ), d),4,9,6,..., azaz a, a, e),, 3, 4, , azaz a, f) 3 4,,,, , azaz a g),,,, , azaz a.,... Megjegyzés: A sorozat ideezését kezdhetjük -val, sőt, egy,,,... mm m R függvéyt is sorozatak evezük, ameyibe m tetszőleges természetes szám. Ekkor az jelölést haszáljuk. a m..3. Defiíció: Az a m sorozat (mooto) övekedő, ha mide N eseté szigorúa övekedő, ha mide a a, N eseté a a, a a, N eseté a a. (mooto) csökkeő, ha mide N eseté szigorúa csökkeő, ha mide..4. Megjegyzés: A feti példákba az a) és g) szigorúa csökkeő, d) és e) szigorúa övő, b), c) és f) sorozat alteráló előjelű, tehát em mooto. a..5. Defiíció: Az sorozat korlátos, ha létezik olya A és B szám, amelyekkel mide N eseté teljesül az Aa B egyelőtleség (ekkor az A-t a sorozat egy alsó korlátjáak, B-t pedig egy felső korlátjáak evezzük)...6. Megjegyzés: A feti példákba a d) sorozat em korlátos, a többi ige...7. Defiíció: A h R számot az a sorozat határértékéek (vagy limeszéek) evezzük, ha tetszőleges pozitív -hoz található mide eseté az a h egyelőtleség teljesül. N természetes szám (küszöbszám) úgy, hogy Barabás Béla, Fülöp Ottília, BME

11 . Numerikus sorozatok fogalma, határértéke Megjegyzés: A határérték előbbi defiíciója úgy is megfogalmazható, hogy mide ide eseté a sorozat tagjaiak a h, h yílt itervallumba kell esi. Ez egybe azt is jeleti, hogy eze az itervallumo kívül legfeljebb darab, azaz véges sok sorozatelem lehet. A határérték jelölésére az alábbi kifejezést haszáljuk: lim a h vagy a h. Szokás ilyekor azt modai, hogy a tart h-hoz, vagy a kovergál h-hoz...9. Megjegyzés: Ha egy sorozatak va határértéke, akkor azt modjuk, hogy koverges, ha ics, akkor divergesek evezzük. Hagsúlyozzuk, hogy a végtele em valós szám, tehát a feti defiíció értelmébe em lehet egy sorozat határértéke. Eek elleére szoktuk arról beszéli, hogy egy sorozat végtelehez tart. Ezt a következőképpe kell értei:... Defiíció: Az a bármely valós k számhoz található az a k sorozat végtelehez tart, (avagy mide határo túl övő) ha N természetes szám úgy, hogy mide eseté egyelőtleség feáll. Jelölése: lim a. Hasolóa defiiálható a mide határo túl csökkeő sorozat (azaz amikor bármely valós K számhoz található természetes szám úgy, hogy mide lim a.... Példa: Igazoljuk, hogy lim. eseté az a N K egyelőtleség feáll. Jelölése: Megoldás: Tekitsük egy tetszőleges számot. Belátjuk, hogy találuk olya N természetes számot, hogy mide eseté az (mivel ). Ameyibe az N küszöbszámot -ak választjuk, ez telje- sül, tehát lim.... Tétel: Ha az a sorozat koverges, akkor korlátos. Bizoyítás: Legye egyelőtleség teljesül. lim a h és tekitsük az számot. A határérték defiíciója értelmébe létezik N természetes szám (küszöbszám) úgy, hogy mide eseté az h a h egyelőtleség teljesül. Vezessük be a következő jelöléseket: a,..., a, h és M : ma a,...,, h m: mi a. Ekkor yilvá ma M N...3. Defiíció: A t számot a sorozat torlódási potjáak evezzük, ha va a sorozatak a t számhoz kovergáló részsorozata. A -t és -t is a sorozat torlódási potjáak tekitjük, ha va a sorozatak mide határo túl övő illetve csökkeő részsorozata...4. Következméyek:. Mide határérték egybe torlódási pot is. (Ez a defiíciók azoali következméye.) Barabás Béla, Fülöp Ottília, BME

12 8 Az építészek matematikája, I. Ha egy t szám torlódási potja az a t t sorozatak, akkor bármely eseté a, itervallumba (azaz a t szám sugarú yílt köryezetébe) végtele sok sorozatelem va. 3. Ha egy sorozatak va határértéke, akkor egyetle egy va. Bizoyítás: Tegyük fel idirekt, hogy az a sorozatak két külöböző határértéke is va, k l jelölje ezeket l és k és legye l k. Tekitsük az : számot. Ekkor yilvá az l sugarú yílt köryezete és a k sugarú yílt köryezete diszjuktak (em metszik egymást). lim a l, így az előbb rögzített -hoz létezik egy N küszöbszám, hogy mide ide eseté a sorozat tagjaiak a, l l yílt itervallumba kell esi. De k is az a sorozat határértéke, ezért ugyaahhoz az -hoz létezik egy m N küszöbszám, hogy mide m ide eseté a sorozat tagjaiak a k, k yílt itervallumba kell esi. Le- N. Ekkor mide eseté az a midkét köryezetek eleme, gye : ma, m ami elletmodás, hisze azok diszjuktak voltak. N 4. Ha egy korlátos sorozatak egyetle torlódási potja va, akkor koverges. 5. Ha egy sorozat mooto és korlátos, akkor koverges. 6. Mide a sorozatból kiválasztható mooto (övekedő vagy csökkeő) részsorozat...5. Bolzao Weierstrass-tétel: Korlátos sorozatak va koverges részsorozata. Bizoyítás: A 6. tulajdoság alapjá az adott korlátos sorozatak va mooto részsorozata. Nyilvá e mooto részsorozat is korlátos, tehát az előbbi következméyek közül az 5. miatt koverges is...6. Cauchy-féle kritérium: Az a sorozat akkor és csak akkor koverges, ha tetszőleges pozitív -hoz található N természetes szám (küszöbszám) úgy, hogy mide m, eseté az a a egyelőtleség teljesül. m..7. Megjegyzés: Cauchy-sorozatokak evezzük azokat a sorozatokat, amelyek redelkezek a Cauchy-féle kritériumba szereplő tulajdosággal. Ezek szerit a Cauchy-kritérium azt modja ki, hogy egy sorozat akkor és csak akkor koverges, ha Cauchy-sorozat. A Cauchy-féle kritérium bizoyítását itt most em adjuk meg, bár az egyik iráy (a szükségesség) a háromszög egyelőtleség miatt rögtö adódik. Eek elleére szükségesek éreztük magát a kritériumot megemlítei, mert a szakirodalomba számos helye találkozhatak a Cauchy-sorozat elevezéssel...8. Tétel (Összeg, külöbség, szorzat, háyados határértéke): Ha az sorozat koverges és határértéke a, valamit a b lim a b lim a lim b a b, a sorozat is koverges és határértéke b, akkor: Barabás Béla, Fülöp Ottília, BME

13 . Numerikus sorozatok fogalma, határértéke 9 lim a b lim a lim b ab, lim a b lim a lim b a b. Ha még az is teljesül, hogy b, akkor a lim b lim a a. limb b Határérték-számításál először is behelyettesítük. Ameyibe kokrét szám, vagy a helyettesítés-eredméy, késze vagyuk. Legtöbbször azoba a,,,,,, alakú határozatla kifejezések (esetek) valamelyike áll fe, a feladat megoldása em ilye egy- szerű, szükségük lehet a következőkre:..9. Tétel ( redőrelv vagy szedvicstétel ): Ha mide N eseté az a u b egyelőtleség teljesül és lim a lim b u, akkor létezik az sorozat határértéke és lim u u. si... Példa: Számítsuk ki a lim határértéket. si Megoldás: Mivel si, ezért. Tudjuk, hogy lim lim, így a redőrelv miatt.. Néháy evezetes sorozat határértéke u si lim.... Tétel: A következő állítások midegyike igaz:., haq lim q, haq, diverges, egyébkét. lim k a, ha a és k N, a 3. lim, tetszőleges a R eseté,! 4. lim e. Néháy bizoyítás: Az. bizoyításához felhaszáljuk a Beroulli-egyelőtleséget: Barabás Béla, Fülöp Ottília, BME

14 Az építészek matematikája, I... Segédtétel (Beroulli-egyelőtleség): Ha N tetszőleges természetes szám, és a h R valós szám eleget tesz a h és h feltételekek, akkor h 3 Bizoyítás: A q q q qq q q q h. azoosságba a jobb oldalo álló db. zárójeles kifejezés között a q a legkisebb, akár q, akár q. Ezért midkét esetbe q q. Ie q h helyettesítéssel kapjuk a bizoyítadó állítást.. bizoyítása q eseté (a többi eset triviális). Vezessük be az h jelölést. Nyilvá q q miatt h. Továbbá Most q q. h h h h lim miatt a jobb oldal -hoz tart. Ezzel bizoyítottuk az állítást. A 4. határérték létezéséek bizoyítása 3 lépésből áll: Az. lépésbe megmutatjuk, hogy az u sorozat szigorúa övő. A. lépésbe megmutatjuk, hogy a v sorozat szigorúa csökkeő. Az u v egyelőtleségből következik, hogy midkét sorozat korlátos, tehát koverges. lim v u, azaz a két sorozatak közös határ- A 3. lépésbe megmutatjuk, hogy értéke va, ezt pedig e-vel jelöljük, tehát lim e. Az. lépésbe igazoluk kell, hogy Szorozzuk meg midkét oldalt -gyel. Ekkor kapjuk, hogy, azaz ugyaaz, mit. Ez pedig a Beroulli-egyelőtleség miatt igaz. A. lépés igazolása ugyaígy törtéhet: az állítás a következő, azaz.., ami Szorozva -el, adódik, hogy. Ez pedig azért igaz, mert ha a bal oldalra alkalmazzuk a Beroulli-egyelőtleséget, akkor Barabás Béla, Fülöp Ottília, BME

15 . Numerikus sorozatok fogalma, határértéke. Végül a 3. lépés: v u 4. Az utolsó egyelőtleségél felhaszáltuk, hogy u v v 4. Megjegyzés: Az e~,78888 szám a természetes logaritmus alapja, irracioális szám (köyű megjegyezi az első tizedesjegy utái 8888 számjegyeket, mert a Háború és béke írója, Lev Nikolajevics Tolsztoj születési éve 88). 873-ba Charles Hermite (8 9) fracia matematikus bizoyította, hogy az e szám egybe traszcedes is (azaz em gyöke egyetle racioális együtthatójú poliomak sem)...3. Megjegyzés: A. és 3. határértékeket köyebb megjegyezi (sőt újakat is felírhatuk), ha figyelembe vesszük, hogy «e «! «k...4. Példák: Számítsuk ki a b sorozat határértékét, ha. b (mid a számlálóba, mid pedig a evezőbe előforduló legmagasabb hatváyát emeltük ki, ez midkét helye volt, így egyszerűsítettük -el). Megoldás: b Számítsuk ki a 3 c sorozat határértékét, ha 3 75 c Megoldás: c (itt pedig a számlálóba is és a evezőbe is a 6 -t emeltük ki, mert aak volt abszolút értékbe legagyobb az alapja, ezzel egyszerűsítettük itt is). Barabás Béla, Fülöp Ottília, BME

16 Az építészek matematikája, I 3. Függvéyek 3.. Elemi függvéyek 3... Defiíció: Legyeek H R és K R valós számhalmazok. Redeljük hozzá mide H számhoz egyetle y K számot. Az ilye egyértelmű hozzáredelést függvéyek evezzük. ab itervallumo kove, ha bármely és ab, és f f, eseté a következő egyelőtleség áll fe: f f Defiíció: Az f függvéy az, Hasolóa defiiáljuk a kokáv függvéyt is, csak ott az egyelőtleség fordított iráyú. Szoktuk még modai, hogy kove egy függvéy, ha grafikoja megtartja a vizet, pl. az 3 csak a itervallumo kove, a, itervallumo pedig kokáv., ab, Ameyibe bármely eseté az f grafikojához létezik egyértelmű éritő egyees, az f függvéyt lokálisa koveek evezzük egy adott ab, potba, ha létezik -ak olya köryezete, melybe a függvéy grafikoja az éritő fölött helyezkedik el, lokálisa kokávak pedig abba az esetbe, ha ha létezik -ak olya köryezete, melybe a függvéy grafikoja az éritő alatt helyezkedik el Elemi függvéyek grafikojai: A most következő elemi függvéyek grafikojából következteti lehet értelmezési tartomáyukra ( D f ), értékkészletükre ( R f ), esetleg mootoitásukra, paritásukra és periodicitásukra. (Feltételezzük, hogy a függvéy fogalma a középiskolai taulmáyok alapjá mideki előtt ismert, mit ahogy az alábbi függvéytai fogalmak is: értelmezési tartomáy, értékkészlet, kölcsööse egyértelmű leképezés, páros, illetve páratla függvéy, periodikus függvéy.) k Hatváyfüggvéyek: f f f 3 f 3 4 f 4 5 f 5 6 f 6 7, ahol k pozitív egész szám Barabás Béla, Fülöp Ottília, BME

17 3. Függvéyek 3 Páratla gyökfüggvéyek: f() f() f() 3 f 4 () Páros gyökfüggvéyek: 4 4 f() f() 6 6 f() 3 Midegyik páros gyökfüggvéy kokáv az értelmezési tartomáyá. Barabás Béla, Fülöp Ottília, BME

18 4 Az építészek matematikája, I Trigoometrikus függvéyek (si, cos, ta): A si és cos függvéyek periodikusak, főperiódusuk T, míg a tg és ctg (melyek szité periodikusak) főperiódusa T. Epoeciális függvéyek: f a (a>) y y e 3 y f()=^ f()=e^ f()=(/)^ y Barabás Béla, Fülöp Ottília, BME

19 3. Függvéyek 5 Érdemes megjegyezi, hogy az epoeciális függvéy mootoitása az alaptól függ: ameyibe a függvéy alapja a, az epoeciális függvéy szigorúa övekvő, míg a a alap eseté az epoeciális függvéy szigorúa csökkeő. Értelmezési tartomáya R, értékkészlete pedig, (vigyázat, az ábráko úgy éz ki, mitha a függvéy metszeé az tegelyt, valójába csak egyre jobba közeledik hozzá). Természetes alapú epoeciális függvéy: y e, ahol az alapszám (az e) egy, az előző fejezetbe vizsgált evezetes sorozat határértéke: lim e. Hiperbolikus függvéyek e e Kosziusz hiperbolikusz függvéy: ch :, szokásos jelölés még y cosh. A grafikoja az y e és y e grafikookból következik: 3.5 y f()=cosh() f()=e^ f()=e^(-) e e Sziusz hiperbolikusz függvéy: sh :, szokásos jelölés még y sih. Barabás Béla, Fülöp Ottília, BME

20 6 Az építészek matematikája, I sh e e Tages hiperbolikusz függvéy: th :, szokásos jelölés még y tah, az ch e e alábbi közös ábrá a, értékkészletű (em metszi az y illetve y egyeeseket, csak egyre jobba közeledik hozzájuk), szigorúa mooto övekvő függvéy y f()=tah() f()=sih() f()=cosh() f()=- f()= Iverz elemi függvéyek Az f függvéy iverz függvéyéek evezzük és f -gyel jelöljük azt a függvéyt, mely mide valós b számhoz (mely az eredeti f függvéy értékkészletéhez ( Rf -hez ) tartozik), azt az a számot redeli az f értelmezési tartomáyából ( D f -ből ), melyhez az f a b -t redelte, vagyis ha f b a. f a b, akkor Ie következik, hogy f f b b és f f a a, mit ahogy az is, hogy az f értelmezési tartomáya az f értékkészlete, és f értékkészlete az f értelmezési tartomáya. Tehát csak kölcsööse egyértelmű függvéyek va iverze, hisze szükséges, hogy a egyértelmű legye. Barabás Béla, Fülöp Ottília, BME

21 3. Függvéyek Tétel: Az f függvéy ivertálhatóságáak elégséges feltétele a függvéy szigorú mootoitása. Az iverz függvéy megőrzi a mootoitást (azaz pl. szigorúa övekvő függvéy iverze is szigorúa övekvő). f függvéy és az f függvéy grafikoja egymásak az y egyeesre vett tü- Az körképei. Az ábrá az y 3 függvéy és iverze, az 3 látható. y 3 Barabás Béla, Fülöp Ottília, BME

22 8 Az építészek matematikája, I A természetes alapú logaritmusfüggvéy f R f e Az :,, (e alapú) epoeciális függvéy szigorúa övekvő, tehát midehol létezik az iverze, ezt a függvéyt evezzük természetes alapú logaritmusfüggvéyek, f :, R f l. Mivel az e alapú epoeciális függvéy szigorúa övekvő,, ezért a természetes logaritmusfüggvéy is az. (Az egyéb alapú ( a, a ) logaritmusfüggvéy mootoitása megegyezik az ugyaolya alapú epoeciális függvéy mootoitásával.) Az y si függvéy em ivertálható a, itervallumo, mert em kölcsööse egyértelmű. Ivertálható a, tartomáyo, itt szigorúa mooto ő. Az iverz függvéyét arkusz sziusz (arcus sius) függvéyek evezzük, jele arcsi. Barabás Béla, Fülöp Ottília, BME

23 3. Függvéyek 9 Az y arcsi értelmezési tartomáya a, itervallum, értékkészlete pedig,. Hasolóa ábrázolhatjuk a többi trigoometrikus és hiperbolikus függvéy iverzeit is szigorúa mooto szakaszoko: a cos függvéyt a, itervallumo ivertáljuk, így az arccos :,, a tagest a, itervallumo, így arctg :, R, R,, a kotagest a, itervallumo, így arcctg : a kosziusz hiperbolikuszt a, itervallumo, így ar ch, :,, (area kosziusz hiperbolikuszak evezzük), a sziusz hiperbolikuszt R-e, így ar sh : R R (area sziusz hiperbolikuszak modjuk),, R (area tages hiperbolikusz, szoktuk a tages hiperbolikuszt R-e, így ar th : még arta h -val jelöli), míg ch e e a kotages hiperbolikuszt az R halmazo, így sh e e,, R (area kotages hiperbolikusz). arcth : Megjegyezzük még, hogy a th és cth függvéyek iverzei redelkezek még logaritmusos alakkal is, mely a következő: arth l, arcth l Függvéyhatárérték-defiíciók Tegyük fel, hogy az potjába ( lehet kivétel). f értelmezve va valamely, az Defiíció: Az f függvéyek az R körüli yílt itervallum mide R helye létezik a határértéke és az a h R valós szám, ha bármely számhoz található szám úgy, hogy a egyelőtleséget kielégítő értékek mid bee vaak az f függvéy értelmezési tartomáyába és teljesül az f h egyelőtleség Defiíció (határérték II.): Az f függvéyek az az a h R hoz kovergáló lim f h. valós szám, ha bármely, az sorozat eseté az R helye létezik a határértéke és f függvéy értelmezési tartomáyából választott és - f függvéyérték sorozat kovergál h -hoz. Jelölés: A két defiíció ekvivales (itt em bizoyítjuk). A második defiíció olya feladatokál haszálható eredméyese, ahol várhatóa ics határérték. Barabás Béla, Fülöp Ottília, BME

24 Az építészek matematikája, I Példa: Számítsuk ki a lim si határértéket. Megoldás: Vegyük az alábbi két, ullához tartó számsorozatot:,,,,..., 5 4,,,,..., lim si, míg lim si, így a feladatba kért határérték em létezik Defiíció: Az f függvéyek az R helye létezik a jobb oldali határértéke és az a h R valós szám, ha bármely számhoz található szám úgy, hogy a egyelőtleséget kielégítő értékek bee vaak az f függvéy értelmezési tartomáyába és teljesül az f h egyelőtleség. Hasolóa értelmezzük a függvéy Defiíció: Az f függvéyek az R helye vett bal oldali határértékét: R helye létezik a bal oldali határértéke és az a h R valós szám, ha bármely számhoz található szám úgy, hogy a egyelőtleséget kielégítő értékek bee vaak az f függvéy értelmezési tartomáyába és teljesül az f h egyelőtleség. Jelölés: lim f h ill. lim f h Defiíció: Azt modjuk, hogy az f függvéyek az R helye végtele a határértéke, ha tetszőleges pozitív A számhoz létezik olya szám úgy, hogy a egyelőtleséget kielégítő értékek bee vaak az f függvéy értelmezési tartomáyába és teljesül az f > A egyelőtleség. Jelölés: lim f. (Hasolóa defiiáljuk a lim f esetet is.) Tétel: Az f függvéyek az szám, ha lim f lim f h. R helye létezik a határértéke és az a h R valós Barabás Béla, Fülöp Ottília, BME

25 3. Függvéyek Defiíció: Az f függvéy határértéke eseté a h R valós szám, ha bármely számhoz található k valós szám úgy, hogy a függvéy értelmezve va k eseté és eze értékekre teljesül az egyelőtleség. f h Jelölés: lim f h. (Hasolóa defiiáljuk a lim f h esetet is.) 3.4. Függvéyhatárértékkel kapcsolatos tételek Tétel (Összeg, külöbség, szorzat, háyados határértéke): Ha létezik lim f lim g, akkor létezik a két függvéy összegéek, külöbségéek, szorzatáak a határértéke is és a következők érvéyesek: és továbbá, ha lim f g lim f lim g lim f g lim f lim g lim f g lim f lim g lim lim g, akkor létezik az f g lim f. lim g f,,, g függvéy határértéke is, és 3.4. Tétel (Összetett függvéy határértéke): Ha lim g a b és lim f b olya szám, hogy a eseté g b, akkor lim f g c. a c, továbbá va Tétel (redőrelv vagy szedvicstétel függvéyhatárértékekre): Ha az f, g és h függvéyek értelmezve vaak az pot egy köryezetébe és itt f g h, valamit lim f lim h L lim g L., akkor Határérték-számításál először is behelyettesítük. Ameyibe kokrét szám, vagy a helyettesítés eredméye, késze vagyuk. Legtöbbször azoba a,,,,,, alakú határozatla kifejezések (esetek) valamelyike áll fe, a feladat megoldása em ilye egyszerű, szükségük lehet a következőkre: Tétel (Nevezetes függvéyhatárértékek):. Ha az szöget radiába adjuk meg, akkor igaz), si lim (természetese lim is si Barabás Béla, Fülöp Ottília, BME

26 Az építészek matematikája, I tg. ugyaakkor igaz, hogy lim (természetese lim is igaz), tg 3. lim e képletet, mit egy (természetese, lim y y alakot, ahol... ), y e is igaz, a léyeg, hogy úgy tekitsük a loga lim loga e, ameyibe a, a, speciális esetbe l a a e lim l a, ha a, a, speciális esetbe lim, lim, ahol R. l lim, Bizoyítai csak az. tulajdoságot fogjuk a redőrelv segítségével: Ívmértekkel mérve az szöget, a mellékelt ábra területeiből látszik, hogy si tg, ie si -szel osztva: si cos. Mivel lim, ezért a redőrelv szerit cos si lim. Ekkor lim lim. si si Néháy példa függvéyhatárérték-számításra Szimbolikusa példa ) lim lim 3. (Kiemeltük előforduló legmagasabb hatváyát (ugyaezt tettük vola, ha ), majd leegyszerűsítettük.) si si si ) lim lim lim Tétel. képletét.). (Haszáltuk a 3) ( ) lim lim 6 4, valamit 5 4 (5 4) 4 4 Barabás Béla, Fülöp Ottília, BME

27 3. Függvéyek ( ) 4) lim lim 3. (Vegyük észre, ( ) hogy ameyibe, előforduló legalacsoyabb hatváyát emeljük ki.) 5) lim lim ( ). (Haszáltuk, hogy és.) si 6) lim si lim si lim ) lim lim e Folytoos függvéyek Defiíció: Az f függvéy folytoos az helye, ha értelmezett az helye, és aak egy köryezetébe, létezik a lim f lim f f. és Defiíció: Az f függvéy folytoos az, folytoos Defiíció: Az f függvéy balról folytoos az helye, ha ab itervallumo, ha aak mide potjába értelmezett az helye, és aak egy bal oldali köryezetébe, azaz lim f és létezik a lim f f., -ba, A jobb oldali folytoosságot hasolóa defiiáljuk, csak ott jobb oldali köryezetet tekitük és -ba jobb oldali határértéket Defiíció: Az f függvéy folytoos az [a,b] itervallumo, ha folytoos az (a,b) itervallumo és az a potba jobbról, b potba pedig balról folytoos Példák: az f az, ha Q Dirichlet-függvéy sehol sem folytoos,, ha R Q f abszolút érték függvéy pedig mideütt folytoos függvéy. Barabás Béla, Fülöp Ottília, BME

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME Speciálisa

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1. PROGRAMTERVEZŐ MATEMATIKUS SZAK II. ÉVF. III. FÉLÉV GYAKORLÓ FELADATOK AZ II. ANALÍZIS ZH-RA Primitívfüggvéy keresés. Adja meg az f függvéy egy primitívfüggvéyét: f) = 6 8 + 3 b) f) = + 3 f) = + 5 ) /

Részletesebben

Kalkulus gyakorlat - Megoldásvázlatok

Kalkulus gyakorlat - Megoldásvázlatok Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

II. INTEGRÁLÁSI MÓDSZEREK

II. INTEGRÁLÁSI MÓDSZEREK Itegrálási módszerek 5 II INTEGRÁLÁSI MÓDSZEREK A parciális itegrálás módszere Ha az f, g : D (D em degeerált itervallumok egyesítése) függvéyek deriválhatók a D halmazo, akkor tudjuk, hogy a szorzatuk

Részletesebben

Függvények határértéke 69. III. Függvények határértéke

Függvények határértéke 69. III. Függvények határértéke Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

BSc Analízis I. előadásjegyzet

BSc Analízis I. előadásjegyzet BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel? 1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) Gyakorló feladatok (Ép. matek). Komple számok: A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss) ) Számítsa ki a következő

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

A1 Analízis minimumkérdések szóbelire 2014

A1 Analízis minimumkérdések szóbelire 2014 A1 Aalízis miimumkérdések szóbelire 2014 Halmazelmélet és komplex számok 1. Halmaz, metszet, uió, külöbség halmaz: em defiiált alapfogalom o jelölés: A, B halmazok; a A; a em B (em defiiáljuk) o üreshalmaz:

Részletesebben

A primitív függvény és a határozatlan integrál 7

A primitív függvény és a határozatlan integrál 7 A primitív függvéy és a határozatla itegrál 7 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Korábbi taulmáyaitok sorá láthattátok, hogy sok műveletek, függvéyek va fordított művelete, iverz függvéye

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gyakorló feladatok Programtervez iformatikus szakos hallgatókak az Aalízis. cím tárgyhoz Összeállította Szili László 8. február Tartalomjegyzék I. Feladatok 5. Primitív függvéyek határozatla

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12

Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12 Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek?

I. rész. c) Az m valós paraméter értékétől függően hány megoldása van a valós számok halmazán az alábbi egyenletnek? Fazakas Tüde, 05 ovember Emelt szitű érettségi feladatsorok és megoldásaik Összeállította: Fazakas Tüde; dátum: 05 ovember I rész feladat a) Egymillió forit összegű jelzálogkölcsöt veszük fel évre 5%-os

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

Taylor-sorok alkalmazása numerikus sorok vizsgálatára Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Alkalmazott Aalízis és Számításmatematikai Taszék Taylor-sorok alkalmazása umerikus sorok vizsgálatára Szakdolgozat Készítette: Témavezet : Walter Petra

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

6. Számsorozat fogalma és tulajdonságai

6. Számsorozat fogalma és tulajdonságai 6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

KÖZGAZDÁSZ SZAK. Módszertani szigorlat követelménye, tavaszi félév

KÖZGAZDÁSZ SZAK. Módszertani szigorlat követelménye, tavaszi félév KÖZGAZDÁSZ SZAK Módszertai szigorlat követelméye, 2014. tavaszi félév A módszertai szigorlat a B1, B2, Optimumszámítás és Statisztika I. tatárgyak ayagát öleli fel. Szigorlatot az tehet, akiek a Matematika

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Kétváltozós függvények

Kétváltozós függvények Kétváltozós függvéek Tartalomjegzék Többváltozós függvéek... Kétváltozós függvéek... Nevezetes felületek... 3 Forgásfelületek... 3 Kétváltozós függvé határértéke... 4 Foltoos kétváltozós függvéek... 6

Részletesebben

Bevezető analízis II. példatár

Bevezető analízis II. példatár Bevezető aalízis II. példatár Gémes Margit, Szetmiklóssy Zoltá Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Matematikai Itézet 06. ovember 3. Tartalomjegyzék. Bizoyítási módszerek, valós számok 3..

Részletesebben

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3.

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3. . feladatsor () Határozzuk meg a következő területi itegrálokat a megadott téglalapoko: ( (x + y) dx dy, ahol T : x, y 3. ( T T x si y dx dy, ahol T : x, 2 y 3. (2) Határozzuk meg a következő területi

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben