AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "AZ ÉPÍTÉSZEK MATEMATIKÁJA, I"

Átírás

1 BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

2 Speciálisa az építészmérök hallgatók számára felépített elméleti ayag az elmélet megértését segítő feladatokkal. A taayag az építészekek szükséges mélységbe és részletezettséggel tárgyalja a következő témaköröket: umerikus sorozatok; egyváltozós függvéyek határértéke, differeciálszámítás és alkalmazásai, itegrálszámítás és alkalmazásai, vektoralgebra, a tér aalitikus geometriája, mátrialgebra, lieáris egyeletredszerek. Kulcsszavak: umerikus sorozat, függvéy határérték, folytoosság, differeciálszámítás, differeciálszámítás alkalmazási, éritő, szélsőérték, itegrálszámítás, terület, térfogat, ívhossz, súlypot, felszí, görbület, paraméteres görbék, mátri, lieáris egyeletredszer. Barabás Béla, Fülöp Ottília, BME

3 Támogatás: Készült a TÁMOP-4..-8//A/KMR-9-8 számú, a Természettudomáyos (matematika és fizika) képzés a műszaki és iformatikai felsőoktatásba című projekt keretébe. Készült: a BME TTK Matematika Itézet godozásába Szakmai felelős vezető: Fereczi Miklós Lektorálta: Sádor Csaba Az elektroikus kiadást előkészítette: Erő Zsuzsa Címlap grafikai terve: Csépáy Gergely László, Tóth Norbert ISBN: Copyright: 6, Barabás Béla, Fülöp Ottília, BME A termiusai: A szerző evéek feltütetése mellett em kereskedelmi céllal szabado másolható, terjeszthető, megjeletethető és előadható, de em módosítható. Barabás Béla, Fülöp Ottília, BME

4

5 Tartalomjegyzék TARTALOMJEGYZÉK. Bevezetés...3. Numerikus sorozatok fogalma, határértéke Koverges és diverges sorozatok Néháy evezetes sorozat határértéke Függvéyek Elemi függvéyek Iverz elemi függvéyek Függvéyhatárérték-defiíciók Függvéyhatárértékkel kapcsolatos tételek Folytoos függvéyek Zárt itervallumo folytoos függvéyek tulajdoságai Differeciálszámítás A differeciálháyados fogalma, differeciálási szabályok Elemi függvéyek deriváltja és egyéb deriválási szabályok Középértéktételek, L Hospital-szabály A differeciálháyados alkalmazásai Szélsőértékek és ifleiós potok létezéséek szükséges és elégséges feltételei Alkalmazott optimalizációs problémák: szöveges szélsőérték-feladatok Függvéyábrázolás az eddig taultak haszálatával Egyéb alkalmazások: függvéyek éritkezése, Taylor-poliom Itegrálszámítás Rövid áttekités Primitív függvéyek Itegrálási techikák Határozott itegrál A határozott itegrál rövid geometriai iterpretációja A határozott itegrállal kapcsolatos legfotosabb tételek Az aalízis alaptétele Improprius itegrál Az itegrálszámítás alkalmazásai Vektorok Lieáris tér (vektortér) Lieáris altér Mátriok Az m -es mátriok vektortere a valós számhalmaz felett Mátriok szorzása Lieáris traszformációk (leképezések)... 6 Barabás Béla, Fülöp Ottília, BME

6 Az építészek matematikája, I 8. Determiások Másod- és harmadredű determiások A másod- és harmadredű determiások alkalmazásai, geometriai iterpretációk Az -edredű determiás és tulajdoságai Mátri iverzéek kiszámolása a determiás segítségével Koordiátageometria Egyees és sík Illeszkedési és metszési feladatok a térbe Térelemek távolsága Hajlásszögek... 7 PÉLDATÁR... 7 Barabás Béla, Fülöp Ottília, BME

7 . Bevezetés 3. Bevezetés Amikor mi, laikusok távolról közelítük meg egy építméyt, figyelmük fokozatosa terelődik át az egészről a részletekre, szem előtt tartva a teljes egységet, a kocepciót, a fizikai köryezet által meghatározott feltételeket, az aráyokat, a szimmetriát, a szíeket, fiomságot, féy és áryék kölcsöhatását és a harmóiát. Az ókori görögök, főleg Püthagorasz és követői, a püthagoreusok szerit a tökéletes harmóia (azaz kapocs) a legkisebb természetes számok aráyaival fejezhető ki. A püthagoraszi harmóiára egyik legszebb példák a következő: ha egy háromszög oldalaiak aráya 3:4:5, akkor a háromszög derékszögű. Ez éppe Püthagorasz tételéből következik, mert Az igazság kedvéért meg kell itt említeük, hogy bár a matematikatörtéet ezt Püthagoraszak tulajdoítja (hisze ő bizoyította), a babiloiak is haszálták ezt egy évezreddel Püthagorasz előtt, azzal a külöbséggel, hogy ők em tudták, hogy ez igaz valameyi derékszögű háromszögre. A Püthagorasz-tétel (másképpe írva Pitagorasz-tétel) tulajdoképpe közvetle őse a agy Fermat-sejtések (amit érdekes módo, bár 994-be boyolult matematikai módszerekkel bizoyítottak, előszeretettel továbbra is sejtések evezük). Ez a sejtés a püthagoraszi alapokat kapcsolja össze a matematika legboyolultabb elképzeléseivel, ami több mit három évszázado át leyűgözte a matematikustársadalmat. Maga a feladat olya egyszerű, hogy egy kisiskolás is megértheti. 67-be Toulouse-ba Pierre de Fermat (6 665) fracia matematikus és jogász halála utá megjelet a Diophatosz Arithmeticája Pierre Fermat megjegyzéseivel című kötet, melybe Fermat a 8. probléma tőszomszédságába széljegyzetkét kijeletette, hogy az Barabás Béla, Fülöp Ottília, BME

8 4 Az építészek matematikája, I y z egyeletek bármilye rögzített 3,4,5,... számra icse pozitív egész, yz, megoldása. Matematikusok emzedékeit őrjítette meg igerkedő megjegyzésével, amit szité ide írt be: Igazá csodálatos bizoyítást találtam erre a tételre, de ez a margó túl keskey, semhogy ideírhatám. (Lásd Simo Sigh, A agy Fermat-sejtés, Park Köyvkiadó, Budapest, 999.) Hogy miért említjük ilye részletességgel ezt az érdekes, püthagoraszi gyökerekkel redelkező, de csak a múlt évszázad végé bizoyított feladatot? Többek között azért, mert az előadáso elhagzó tételeket (legtöbbjüket itt em is bizoyítjuk) évek múltá köye elfelejthetik, ezt valószíűleg em. Míg az itt tault matematikatételek agy többségéek az utca embere hátat fordítaa, még a Fermat-sejtés bizoyítása előtti időkbe, New Yorkba, a Nyolcadik utcai metróállomás falá a következő falfirka jelet meg: y z : ics megoldás. Igazá csodálatos megoldást találtam erre a tételre, de most ics időm ideíri, mert jö a metró. Az aráy (pl. 3:4) eve görögül logosz, az aráypáré (pl. 6:8=9:) pedig aalógia. A görögök szerit világszemléletük három alapfogalma a harmóia, a logosz és a szimmetria. Adrea Palladio (58 58) észak-itáliai építész hitvallása szerit egy valamirevaló épületek hármas követelméyek kell megfelelie: kéyelem, tartósság, szépség, ha ezek közül valamelyik is hiáyzik, az épület em méltó evére. Palotáival és villáival, új aráyaival, tiszta voalvezetésével a reeszász építészet egyik legtermékeyebb mesterévé vált, megszámlálhatatla követővel. A Villa Capra La Rotoda matematikai precizitással kiszámolt aráyossággal redelkező Palladio-villa terveit a római Patheo ihlette és Viceza városá kívül, egy dombtetőre épült. Elevezése, a La Rotoda a közpoti, kör alakú kupolás hallra utal. Az épület a fet említett credo mide egyes potjáak megfelel, szimmetrikus szerkezeteit, díszítőelemeit, klasszikus formáit több mit égyszáz évig utáozták. Amikor Püthagorasz Hippaszosz evű fiatal taítváya felfedezte, hogy a (pl. az egységyi oldalú égyzet átlójáak hossza) em fejezhető ki két természetes szám háyadosakét, tehát a püthagoreus értelembe véve em szám, a püthagoreusok egész világszemlélete összeomlott. Úgyhogy ikább vízbe fojtották Hippaszoszt és továbbra sem vettek tudomást az ilye számok létezéséről. Talá ez az egyetle dicstele tett, ami a evükhöz kapcsolható. A -t és az irracioális számokat csak a mester halála utá merték újra életre keltei. Vegyük most egy és oldalú téglalapot. Megkétszerezve a rövidebbik oldalt, és oldalú téglalapot kapuk, ami ugyaolya aráyú, mert : :. Ez azt mutatja, hogy két egyforma papírlapot ügyese egymás mellé rakva olya agyobb lapot kapuk, mely hasoló az eredetihez. Ha egy egységyi hosszúságú szakaszt úgy osztuk két részre, hogy a kisebbikek és a agyobbikak az aráya egyelő legye a agyobbikak és az egészek az aráyával, azaz a agyobbik részt -szel jelölve, másodfokú egyeletet kapuk, melyek egyetle 5 pozitív megoldása az és ekkor a agyobbik és kisebbik aráya 5, az araymetszési aráy. Az araymetszésről Velecébe, 59-be Fra Luca Paccioli De Divia Proportioe címmel köyvet írt, melyet barátja, Leoardo da Vici illusztrált. Nézzük meg az araymetszés egyéb előfordulását is. Fiboacci, a középkor kiemelkedő matematikusa, körül, yulak szaporodását vizsgálva, bevezette és taulmáyozta a következő umerikus sorozatot:,,,3,5,8,3,,, azaz általáosa u u u. A Fiboacci-sorozat egymást követő tagjaiak háyadosa: ; ;,5;,666;,6;,65;,653,..., az araymetszés értékéhez tart. Barabás Béla, Fülöp Ottília, BME

9 . Bevezetés 5 A Fiboacci-számok aráyai a természetbe is megtalálhatók: a szilvafa gallyai a levelek általába félfordulatra követik egymást, a bükkél, mogyoróál ez /3, a tölgyél, sárgabarackál /5, körtefáál, yárfáál 3/8, maduláál, fűzfáál 5/3, és így tovább. Ezek az aráyok éppe a másodszomszéd Fiboacci-számok aráyai. Kepler szerit éppe az araymetszés adta az ötletet a Teremtőek, hogy bevezesse a hasoló dolgokak hasoló dolgokból való származtatását. Bevezetők em teljes, ha em teszük említést a párhuzamos egyeeseket időkét metszőkek ábrázoló perspektivitásról. A perspektív traszformáció a reeszász ideje alatt terjedt el, főkét a firezei Filippo Bruelleschiek köszöhetőe. Taítváya, Masaccio olya Szetháromság-képet festett a firezei Sata Maria Novella templom falára, hogy azt hitték, áttörték a templom falait. Ahogy a perspektivitás em a végső szó a traszformációk világába, úgy Bruelleschi sem az az építészetbe. Azóta is agyszerű megoldások, kocepciók születek, egyre újabb harmóiákat teremtük, igyekezvé miél jobba kihaszáli a redelkezésükre álló matematikai eszközöket, lehetőségeiket és képzeletüket. I am certai of othig, but the holiess of the heart s affectios ad the truth of Imagiatio What the Imagiatio seizes as Beauty must be Truth. (Joh Keats, Letter, November, 87.) Barabás Béla, Fülöp Ottília, BME

10 6 Az építészek matematikája, I. Numerikus sorozatok fogalma, határértéke.. Koverges és diverges sorozatok... Defiíció: A természetes számoko értelmezett N R valós értékű függvéyeket sorozatokak evezzük. Például: a) b),,,,..., azaz 3 4,,,,..., azaz 3 4 c),,,,..., azaz a a, ( ), d),4,9,6,..., azaz a, a, e),, 3, 4, , azaz a, f) 3 4,,,, , azaz a g),,,, , azaz a.,... Megjegyzés: A sorozat ideezését kezdhetjük -val, sőt, egy,,,... mm m R függvéyt is sorozatak evezük, ameyibe m tetszőleges természetes szám. Ekkor az jelölést haszáljuk. a m..3. Defiíció: Az a m sorozat (mooto) övekedő, ha mide N eseté szigorúa övekedő, ha mide a a, N eseté a a, a a, N eseté a a. (mooto) csökkeő, ha mide N eseté szigorúa csökkeő, ha mide..4. Megjegyzés: A feti példákba az a) és g) szigorúa csökkeő, d) és e) szigorúa övő, b), c) és f) sorozat alteráló előjelű, tehát em mooto. a..5. Defiíció: Az sorozat korlátos, ha létezik olya A és B szám, amelyekkel mide N eseté teljesül az Aa B egyelőtleség (ekkor az A-t a sorozat egy alsó korlátjáak, B-t pedig egy felső korlátjáak evezzük)...6. Megjegyzés: A feti példákba a d) sorozat em korlátos, a többi ige...7. Defiíció: A h R számot az a sorozat határértékéek (vagy limeszéek) evezzük, ha tetszőleges pozitív -hoz található mide eseté az a h egyelőtleség teljesül. N természetes szám (küszöbszám) úgy, hogy Barabás Béla, Fülöp Ottília, BME

11 . Numerikus sorozatok fogalma, határértéke Megjegyzés: A határérték előbbi defiíciója úgy is megfogalmazható, hogy mide ide eseté a sorozat tagjaiak a h, h yílt itervallumba kell esi. Ez egybe azt is jeleti, hogy eze az itervallumo kívül legfeljebb darab, azaz véges sok sorozatelem lehet. A határérték jelölésére az alábbi kifejezést haszáljuk: lim a h vagy a h. Szokás ilyekor azt modai, hogy a tart h-hoz, vagy a kovergál h-hoz...9. Megjegyzés: Ha egy sorozatak va határértéke, akkor azt modjuk, hogy koverges, ha ics, akkor divergesek evezzük. Hagsúlyozzuk, hogy a végtele em valós szám, tehát a feti defiíció értelmébe em lehet egy sorozat határértéke. Eek elleére szoktuk arról beszéli, hogy egy sorozat végtelehez tart. Ezt a következőképpe kell értei:... Defiíció: Az a bármely valós k számhoz található az a k sorozat végtelehez tart, (avagy mide határo túl övő) ha N természetes szám úgy, hogy mide eseté egyelőtleség feáll. Jelölése: lim a. Hasolóa defiiálható a mide határo túl csökkeő sorozat (azaz amikor bármely valós K számhoz található természetes szám úgy, hogy mide lim a.... Példa: Igazoljuk, hogy lim. eseté az a N K egyelőtleség feáll. Jelölése: Megoldás: Tekitsük egy tetszőleges számot. Belátjuk, hogy találuk olya N természetes számot, hogy mide eseté az (mivel ). Ameyibe az N küszöbszámot -ak választjuk, ez telje- sül, tehát lim.... Tétel: Ha az a sorozat koverges, akkor korlátos. Bizoyítás: Legye egyelőtleség teljesül. lim a h és tekitsük az számot. A határérték defiíciója értelmébe létezik N természetes szám (küszöbszám) úgy, hogy mide eseté az h a h egyelőtleség teljesül. Vezessük be a következő jelöléseket: a,..., a, h és M : ma a,...,, h m: mi a. Ekkor yilvá ma M N...3. Defiíció: A t számot a sorozat torlódási potjáak evezzük, ha va a sorozatak a t számhoz kovergáló részsorozata. A -t és -t is a sorozat torlódási potjáak tekitjük, ha va a sorozatak mide határo túl övő illetve csökkeő részsorozata...4. Következméyek:. Mide határérték egybe torlódási pot is. (Ez a defiíciók azoali következméye.) Barabás Béla, Fülöp Ottília, BME

12 8 Az építészek matematikája, I. Ha egy t szám torlódási potja az a t t sorozatak, akkor bármely eseté a, itervallumba (azaz a t szám sugarú yílt köryezetébe) végtele sok sorozatelem va. 3. Ha egy sorozatak va határértéke, akkor egyetle egy va. Bizoyítás: Tegyük fel idirekt, hogy az a sorozatak két külöböző határértéke is va, k l jelölje ezeket l és k és legye l k. Tekitsük az : számot. Ekkor yilvá az l sugarú yílt köryezete és a k sugarú yílt köryezete diszjuktak (em metszik egymást). lim a l, így az előbb rögzített -hoz létezik egy N küszöbszám, hogy mide ide eseté a sorozat tagjaiak a, l l yílt itervallumba kell esi. De k is az a sorozat határértéke, ezért ugyaahhoz az -hoz létezik egy m N küszöbszám, hogy mide m ide eseté a sorozat tagjaiak a k, k yílt itervallumba kell esi. Le- N. Ekkor mide eseté az a midkét köryezetek eleme, gye : ma, m ami elletmodás, hisze azok diszjuktak voltak. N 4. Ha egy korlátos sorozatak egyetle torlódási potja va, akkor koverges. 5. Ha egy sorozat mooto és korlátos, akkor koverges. 6. Mide a sorozatból kiválasztható mooto (övekedő vagy csökkeő) részsorozat...5. Bolzao Weierstrass-tétel: Korlátos sorozatak va koverges részsorozata. Bizoyítás: A 6. tulajdoság alapjá az adott korlátos sorozatak va mooto részsorozata. Nyilvá e mooto részsorozat is korlátos, tehát az előbbi következméyek közül az 5. miatt koverges is...6. Cauchy-féle kritérium: Az a sorozat akkor és csak akkor koverges, ha tetszőleges pozitív -hoz található N természetes szám (küszöbszám) úgy, hogy mide m, eseté az a a egyelőtleség teljesül. m..7. Megjegyzés: Cauchy-sorozatokak evezzük azokat a sorozatokat, amelyek redelkezek a Cauchy-féle kritériumba szereplő tulajdosággal. Ezek szerit a Cauchy-kritérium azt modja ki, hogy egy sorozat akkor és csak akkor koverges, ha Cauchy-sorozat. A Cauchy-féle kritérium bizoyítását itt most em adjuk meg, bár az egyik iráy (a szükségesség) a háromszög egyelőtleség miatt rögtö adódik. Eek elleére szükségesek éreztük magát a kritériumot megemlítei, mert a szakirodalomba számos helye találkozhatak a Cauchy-sorozat elevezéssel...8. Tétel (Összeg, külöbség, szorzat, háyados határértéke): Ha az sorozat koverges és határértéke a, valamit a b lim a b lim a lim b a b, a sorozat is koverges és határértéke b, akkor: Barabás Béla, Fülöp Ottília, BME

13 . Numerikus sorozatok fogalma, határértéke 9 lim a b lim a lim b ab, lim a b lim a lim b a b. Ha még az is teljesül, hogy b, akkor a lim b lim a a. limb b Határérték-számításál először is behelyettesítük. Ameyibe kokrét szám, vagy a helyettesítés-eredméy, késze vagyuk. Legtöbbször azoba a,,,,,, alakú határozatla kifejezések (esetek) valamelyike áll fe, a feladat megoldása em ilye egy- szerű, szükségük lehet a következőkre:..9. Tétel ( redőrelv vagy szedvicstétel ): Ha mide N eseté az a u b egyelőtleség teljesül és lim a lim b u, akkor létezik az sorozat határértéke és lim u u. si... Példa: Számítsuk ki a lim határértéket. si Megoldás: Mivel si, ezért. Tudjuk, hogy lim lim, így a redőrelv miatt.. Néháy evezetes sorozat határértéke u si lim.... Tétel: A következő állítások midegyike igaz:., haq lim q, haq, diverges, egyébkét. lim k a, ha a és k N, a 3. lim, tetszőleges a R eseté,! 4. lim e. Néháy bizoyítás: Az. bizoyításához felhaszáljuk a Beroulli-egyelőtleséget: Barabás Béla, Fülöp Ottília, BME

14 Az építészek matematikája, I... Segédtétel (Beroulli-egyelőtleség): Ha N tetszőleges természetes szám, és a h R valós szám eleget tesz a h és h feltételekek, akkor h 3 Bizoyítás: A q q q qq q q q h. azoosságba a jobb oldalo álló db. zárójeles kifejezés között a q a legkisebb, akár q, akár q. Ezért midkét esetbe q q. Ie q h helyettesítéssel kapjuk a bizoyítadó állítást.. bizoyítása q eseté (a többi eset triviális). Vezessük be az h jelölést. Nyilvá q q miatt h. Továbbá Most q q. h h h h lim miatt a jobb oldal -hoz tart. Ezzel bizoyítottuk az állítást. A 4. határérték létezéséek bizoyítása 3 lépésből áll: Az. lépésbe megmutatjuk, hogy az u sorozat szigorúa övő. A. lépésbe megmutatjuk, hogy a v sorozat szigorúa csökkeő. Az u v egyelőtleségből következik, hogy midkét sorozat korlátos, tehát koverges. lim v u, azaz a két sorozatak közös határ- A 3. lépésbe megmutatjuk, hogy értéke va, ezt pedig e-vel jelöljük, tehát lim e. Az. lépésbe igazoluk kell, hogy Szorozzuk meg midkét oldalt -gyel. Ekkor kapjuk, hogy, azaz ugyaaz, mit. Ez pedig a Beroulli-egyelőtleség miatt igaz. A. lépés igazolása ugyaígy törtéhet: az állítás a következő, azaz.., ami Szorozva -el, adódik, hogy. Ez pedig azért igaz, mert ha a bal oldalra alkalmazzuk a Beroulli-egyelőtleséget, akkor Barabás Béla, Fülöp Ottília, BME

15 . Numerikus sorozatok fogalma, határértéke. Végül a 3. lépés: v u 4. Az utolsó egyelőtleségél felhaszáltuk, hogy u v v 4. Megjegyzés: Az e~,78888 szám a természetes logaritmus alapja, irracioális szám (köyű megjegyezi az első tizedesjegy utái 8888 számjegyeket, mert a Háború és béke írója, Lev Nikolajevics Tolsztoj születési éve 88). 873-ba Charles Hermite (8 9) fracia matematikus bizoyította, hogy az e szám egybe traszcedes is (azaz em gyöke egyetle racioális együtthatójú poliomak sem)...3. Megjegyzés: A. és 3. határértékeket köyebb megjegyezi (sőt újakat is felírhatuk), ha figyelembe vesszük, hogy «e «! «k...4. Példák: Számítsuk ki a b sorozat határértékét, ha. b (mid a számlálóba, mid pedig a evezőbe előforduló legmagasabb hatváyát emeltük ki, ez midkét helye volt, így egyszerűsítettük -el). Megoldás: b Számítsuk ki a 3 c sorozat határértékét, ha 3 75 c Megoldás: c (itt pedig a számlálóba is és a evezőbe is a 6 -t emeltük ki, mert aak volt abszolút értékbe legagyobb az alapja, ezzel egyszerűsítettük itt is). Barabás Béla, Fülöp Ottília, BME

16 Az építészek matematikája, I 3. Függvéyek 3.. Elemi függvéyek 3... Defiíció: Legyeek H R és K R valós számhalmazok. Redeljük hozzá mide H számhoz egyetle y K számot. Az ilye egyértelmű hozzáredelést függvéyek evezzük. ab itervallumo kove, ha bármely és ab, és f f, eseté a következő egyelőtleség áll fe: f f Defiíció: Az f függvéy az, Hasolóa defiiáljuk a kokáv függvéyt is, csak ott az egyelőtleség fordított iráyú. Szoktuk még modai, hogy kove egy függvéy, ha grafikoja megtartja a vizet, pl. az 3 csak a itervallumo kove, a, itervallumo pedig kokáv., ab, Ameyibe bármely eseté az f grafikojához létezik egyértelmű éritő egyees, az f függvéyt lokálisa koveek evezzük egy adott ab, potba, ha létezik -ak olya köryezete, melybe a függvéy grafikoja az éritő fölött helyezkedik el, lokálisa kokávak pedig abba az esetbe, ha ha létezik -ak olya köryezete, melybe a függvéy grafikoja az éritő alatt helyezkedik el Elemi függvéyek grafikojai: A most következő elemi függvéyek grafikojából következteti lehet értelmezési tartomáyukra ( D f ), értékkészletükre ( R f ), esetleg mootoitásukra, paritásukra és periodicitásukra. (Feltételezzük, hogy a függvéy fogalma a középiskolai taulmáyok alapjá mideki előtt ismert, mit ahogy az alábbi függvéytai fogalmak is: értelmezési tartomáy, értékkészlet, kölcsööse egyértelmű leképezés, páros, illetve páratla függvéy, periodikus függvéy.) k Hatváyfüggvéyek: f f f 3 f 3 4 f 4 5 f 5 6 f 6 7, ahol k pozitív egész szám Barabás Béla, Fülöp Ottília, BME

17 3. Függvéyek 3 Páratla gyökfüggvéyek: f() f() f() 3 f 4 () Páros gyökfüggvéyek: 4 4 f() f() 6 6 f() 3 Midegyik páros gyökfüggvéy kokáv az értelmezési tartomáyá. Barabás Béla, Fülöp Ottília, BME

18 4 Az építészek matematikája, I Trigoometrikus függvéyek (si, cos, ta): A si és cos függvéyek periodikusak, főperiódusuk T, míg a tg és ctg (melyek szité periodikusak) főperiódusa T. Epoeciális függvéyek: f a (a>) y y e 3 y f()=^ f()=e^ f()=(/)^ y Barabás Béla, Fülöp Ottília, BME

19 3. Függvéyek 5 Érdemes megjegyezi, hogy az epoeciális függvéy mootoitása az alaptól függ: ameyibe a függvéy alapja a, az epoeciális függvéy szigorúa övekvő, míg a a alap eseté az epoeciális függvéy szigorúa csökkeő. Értelmezési tartomáya R, értékkészlete pedig, (vigyázat, az ábráko úgy éz ki, mitha a függvéy metszeé az tegelyt, valójába csak egyre jobba közeledik hozzá). Természetes alapú epoeciális függvéy: y e, ahol az alapszám (az e) egy, az előző fejezetbe vizsgált evezetes sorozat határértéke: lim e. Hiperbolikus függvéyek e e Kosziusz hiperbolikusz függvéy: ch :, szokásos jelölés még y cosh. A grafikoja az y e és y e grafikookból következik: 3.5 y f()=cosh() f()=e^ f()=e^(-) e e Sziusz hiperbolikusz függvéy: sh :, szokásos jelölés még y sih. Barabás Béla, Fülöp Ottília, BME

20 6 Az építészek matematikája, I sh e e Tages hiperbolikusz függvéy: th :, szokásos jelölés még y tah, az ch e e alábbi közös ábrá a, értékkészletű (em metszi az y illetve y egyeeseket, csak egyre jobba közeledik hozzájuk), szigorúa mooto övekvő függvéy y f()=tah() f()=sih() f()=cosh() f()=- f()= Iverz elemi függvéyek Az f függvéy iverz függvéyéek evezzük és f -gyel jelöljük azt a függvéyt, mely mide valós b számhoz (mely az eredeti f függvéy értékkészletéhez ( Rf -hez ) tartozik), azt az a számot redeli az f értelmezési tartomáyából ( D f -ből ), melyhez az f a b -t redelte, vagyis ha f b a. f a b, akkor Ie következik, hogy f f b b és f f a a, mit ahogy az is, hogy az f értelmezési tartomáya az f értékkészlete, és f értékkészlete az f értelmezési tartomáya. Tehát csak kölcsööse egyértelmű függvéyek va iverze, hisze szükséges, hogy a egyértelmű legye. Barabás Béla, Fülöp Ottília, BME

21 3. Függvéyek Tétel: Az f függvéy ivertálhatóságáak elégséges feltétele a függvéy szigorú mootoitása. Az iverz függvéy megőrzi a mootoitást (azaz pl. szigorúa övekvő függvéy iverze is szigorúa övekvő). f függvéy és az f függvéy grafikoja egymásak az y egyeesre vett tü- Az körképei. Az ábrá az y 3 függvéy és iverze, az 3 látható. y 3 Barabás Béla, Fülöp Ottília, BME

22 8 Az építészek matematikája, I A természetes alapú logaritmusfüggvéy f R f e Az :,, (e alapú) epoeciális függvéy szigorúa övekvő, tehát midehol létezik az iverze, ezt a függvéyt evezzük természetes alapú logaritmusfüggvéyek, f :, R f l. Mivel az e alapú epoeciális függvéy szigorúa övekvő,, ezért a természetes logaritmusfüggvéy is az. (Az egyéb alapú ( a, a ) logaritmusfüggvéy mootoitása megegyezik az ugyaolya alapú epoeciális függvéy mootoitásával.) Az y si függvéy em ivertálható a, itervallumo, mert em kölcsööse egyértelmű. Ivertálható a, tartomáyo, itt szigorúa mooto ő. Az iverz függvéyét arkusz sziusz (arcus sius) függvéyek evezzük, jele arcsi. Barabás Béla, Fülöp Ottília, BME

23 3. Függvéyek 9 Az y arcsi értelmezési tartomáya a, itervallum, értékkészlete pedig,. Hasolóa ábrázolhatjuk a többi trigoometrikus és hiperbolikus függvéy iverzeit is szigorúa mooto szakaszoko: a cos függvéyt a, itervallumo ivertáljuk, így az arccos :,, a tagest a, itervallumo, így arctg :, R, R,, a kotagest a, itervallumo, így arcctg : a kosziusz hiperbolikuszt a, itervallumo, így ar ch, :,, (area kosziusz hiperbolikuszak evezzük), a sziusz hiperbolikuszt R-e, így ar sh : R R (area sziusz hiperbolikuszak modjuk),, R (area tages hiperbolikusz, szoktuk a tages hiperbolikuszt R-e, így ar th : még arta h -val jelöli), míg ch e e a kotages hiperbolikuszt az R halmazo, így sh e e,, R (area kotages hiperbolikusz). arcth : Megjegyezzük még, hogy a th és cth függvéyek iverzei redelkezek még logaritmusos alakkal is, mely a következő: arth l, arcth l Függvéyhatárérték-defiíciók Tegyük fel, hogy az potjába ( lehet kivétel). f értelmezve va valamely, az Defiíció: Az f függvéyek az R körüli yílt itervallum mide R helye létezik a határértéke és az a h R valós szám, ha bármely számhoz található szám úgy, hogy a egyelőtleséget kielégítő értékek mid bee vaak az f függvéy értelmezési tartomáyába és teljesül az f h egyelőtleség Defiíció (határérték II.): Az f függvéyek az az a h R hoz kovergáló lim f h. valós szám, ha bármely, az sorozat eseté az R helye létezik a határértéke és f függvéy értelmezési tartomáyából választott és - f függvéyérték sorozat kovergál h -hoz. Jelölés: A két defiíció ekvivales (itt em bizoyítjuk). A második defiíció olya feladatokál haszálható eredméyese, ahol várhatóa ics határérték. Barabás Béla, Fülöp Ottília, BME

24 Az építészek matematikája, I Példa: Számítsuk ki a lim si határértéket. Megoldás: Vegyük az alábbi két, ullához tartó számsorozatot:,,,,..., 5 4,,,,..., lim si, míg lim si, így a feladatba kért határérték em létezik Defiíció: Az f függvéyek az R helye létezik a jobb oldali határértéke és az a h R valós szám, ha bármely számhoz található szám úgy, hogy a egyelőtleséget kielégítő értékek bee vaak az f függvéy értelmezési tartomáyába és teljesül az f h egyelőtleség. Hasolóa értelmezzük a függvéy Defiíció: Az f függvéyek az R helye vett bal oldali határértékét: R helye létezik a bal oldali határértéke és az a h R valós szám, ha bármely számhoz található szám úgy, hogy a egyelőtleséget kielégítő értékek bee vaak az f függvéy értelmezési tartomáyába és teljesül az f h egyelőtleség. Jelölés: lim f h ill. lim f h Defiíció: Azt modjuk, hogy az f függvéyek az R helye végtele a határértéke, ha tetszőleges pozitív A számhoz létezik olya szám úgy, hogy a egyelőtleséget kielégítő értékek bee vaak az f függvéy értelmezési tartomáyába és teljesül az f > A egyelőtleség. Jelölés: lim f. (Hasolóa defiiáljuk a lim f esetet is.) Tétel: Az f függvéyek az szám, ha lim f lim f h. R helye létezik a határértéke és az a h R valós Barabás Béla, Fülöp Ottília, BME

25 3. Függvéyek Defiíció: Az f függvéy határértéke eseté a h R valós szám, ha bármely számhoz található k valós szám úgy, hogy a függvéy értelmezve va k eseté és eze értékekre teljesül az egyelőtleség. f h Jelölés: lim f h. (Hasolóa defiiáljuk a lim f h esetet is.) 3.4. Függvéyhatárértékkel kapcsolatos tételek Tétel (Összeg, külöbség, szorzat, háyados határértéke): Ha létezik lim f lim g, akkor létezik a két függvéy összegéek, külöbségéek, szorzatáak a határértéke is és a következők érvéyesek: és továbbá, ha lim f g lim f lim g lim f g lim f lim g lim f g lim f lim g lim lim g, akkor létezik az f g lim f. lim g f,,, g függvéy határértéke is, és 3.4. Tétel (Összetett függvéy határértéke): Ha lim g a b és lim f b olya szám, hogy a eseté g b, akkor lim f g c. a c, továbbá va Tétel (redőrelv vagy szedvicstétel függvéyhatárértékekre): Ha az f, g és h függvéyek értelmezve vaak az pot egy köryezetébe és itt f g h, valamit lim f lim h L lim g L., akkor Határérték-számításál először is behelyettesítük. Ameyibe kokrét szám, vagy a helyettesítés eredméye, késze vagyuk. Legtöbbször azoba a,,,,,, alakú határozatla kifejezések (esetek) valamelyike áll fe, a feladat megoldása em ilye egyszerű, szükségük lehet a következőkre: Tétel (Nevezetes függvéyhatárértékek):. Ha az szöget radiába adjuk meg, akkor igaz), si lim (természetese lim is si Barabás Béla, Fülöp Ottília, BME

26 Az építészek matematikája, I tg. ugyaakkor igaz, hogy lim (természetese lim is igaz), tg 3. lim e képletet, mit egy (természetese, lim y y alakot, ahol... ), y e is igaz, a léyeg, hogy úgy tekitsük a loga lim loga e, ameyibe a, a, speciális esetbe l a a e lim l a, ha a, a, speciális esetbe lim, lim, ahol R. l lim, Bizoyítai csak az. tulajdoságot fogjuk a redőrelv segítségével: Ívmértekkel mérve az szöget, a mellékelt ábra területeiből látszik, hogy si tg, ie si -szel osztva: si cos. Mivel lim, ezért a redőrelv szerit cos si lim. Ekkor lim lim. si si Néháy példa függvéyhatárérték-számításra Szimbolikusa példa ) lim lim 3. (Kiemeltük előforduló legmagasabb hatváyát (ugyaezt tettük vola, ha ), majd leegyszerűsítettük.) si si si ) lim lim lim Tétel. képletét.). (Haszáltuk a 3) ( ) lim lim 6 4, valamit 5 4 (5 4) 4 4 Barabás Béla, Fülöp Ottília, BME

27 3. Függvéyek ( ) 4) lim lim 3. (Vegyük észre, ( ) hogy ameyibe, előforduló legalacsoyabb hatváyát emeljük ki.) 5) lim lim ( ). (Haszáltuk, hogy és.) si 6) lim si lim si lim ) lim lim e Folytoos függvéyek Defiíció: Az f függvéy folytoos az helye, ha értelmezett az helye, és aak egy köryezetébe, létezik a lim f lim f f. és Defiíció: Az f függvéy folytoos az, folytoos Defiíció: Az f függvéy balról folytoos az helye, ha ab itervallumo, ha aak mide potjába értelmezett az helye, és aak egy bal oldali köryezetébe, azaz lim f és létezik a lim f f., -ba, A jobb oldali folytoosságot hasolóa defiiáljuk, csak ott jobb oldali köryezetet tekitük és -ba jobb oldali határértéket Defiíció: Az f függvéy folytoos az [a,b] itervallumo, ha folytoos az (a,b) itervallumo és az a potba jobbról, b potba pedig balról folytoos Példák: az f az, ha Q Dirichlet-függvéy sehol sem folytoos,, ha R Q f abszolút érték függvéy pedig mideütt folytoos függvéy. Barabás Béla, Fülöp Ottília, BME

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK Függvéek és tulajdoságaik 69 III FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK 6 Gakorlatok és feladatok ( oldal) Írd egszerűbb alakba: a) tg( arctg ) ; c) b) cos( arccos ) ; d) Megoldás a) Bármel f : A B cos ar

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

I. feladatsor. (t) z 1 z 3

I. feladatsor. (t) z 1 z 3 I. feladatsor () Töltse ki az alábbi táblázatot: Komple szám Valós rész Képzetes rész Konjugált Abszolútérték 4 + i 3 + 4i 5i 6i 3 5 3 i 7i () Adottak az alábbi komple számok: z = + 3i, z = i, z 3 = i.

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika emelt szit Javítási-értékelési útmutató MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 0. október. Fotos tudivalók

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben

(arcsin x) (arccos x) ( x

(arcsin x) (arccos x) ( x ALAPDERIVÁLTAK ( c ) (si ) cos ( ) (cos ) si ( ) ( ) ( tg) cos ( e ) e ( ctg ) si ( a ) a l a ( sh) ch (l ) ( ch) sh (log a ) ( th) l a ch (arcsi ) (arccos ) ( arctg ) DERIVÁLÁSI SZABÁLYOK. ( c ) c. c

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0. Földtudomáy lpszk 006/07 félév Mtemtik I gykorlt IV Megoldások A bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, >N eseté A < ε A 0 bármely ε R + számhoz v oly N N küszöbidex, hogy mide N, > N

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0 Ha mást em moduk, szám alatt az alábbiakba, midig alós számot értük. Műeletek összeadás: Példa: ++5 tagok: amiket összeaduk, az előző éldába a, az és az 5 szorzás: Példa: 5 téezők: amiket összeszorzuk,

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

II. rész. Valós függvények

II. rész. Valós függvények II. rész Valós függvények Feladatok 3 4 3.. Értelmezési tartomány Határozza meg a következ függvények értelmezési tartományát! 3.. y = + + 3.. 3.4. 3.6. y = y = 3 y = + 3 ln 5 4 3.3. 3.5. 3.7. y = 3 +

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

IV. Sorozatok. Sorozatok bevezetése

IV. Sorozatok. Sorozatok bevezetése Sorozatok Sorozatok bevezetése 8 Az,,, számjegyek és tegelyes tükörképeik együtt alkotják a sorozat tagjait A folytatás lehetséges például az ábrá látható módoko Megjegyzés: A Hogya folytatható típusú

Részletesebben

VÉGTELEN SOROK, HATVÁNYSOROK

VÉGTELEN SOROK, HATVÁNYSOROK VÉGTELEN SOROK, HATVÁNYSOROK írta: SZILÁGYI TIVADAR. VÉGTELEN SOROK.. Alapfogalmak, a végtele mértai sor, további példák Az aalízisek a végtele sorok cím fejezete abból a problémából fejl dött ki, hogy

Részletesebben

Kevei Péter. 2013. november 22.

Kevei Péter. 2013. november 22. Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus

Részletesebben

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés

7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés 7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

EGY ÚJ SZÁMHÁROMSZÖG A

EGY ÚJ SZÁMHÁROMSZÖG A BELVÁROSI ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM BÉKÉSCSABA EGY ÚJ SZÁMHÁROMSZÖG A KOMBINATORIKÁBAN 0 3 4 5 6 7 8 9 0 0 0 0 3 3 0 4 9 8 6 0 5 44 45 0 0 0 6 65 64 35 40 5 0 7 854 855 94 35 70 0 8 4833 483 740 464

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Eötvös Lorád Tudomáyegyetem, Természettudomáyi Kar Matematikataítási és Módszertai Közpot ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Készítette: Varga Viktória Matematika Bsc taári szakiráy Témavezető: Fried

Részletesebben

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja)

Feladatok megoldásokkal a második gyakorlathoz (függvények deriváltja) Feladatok megoldásokkal a második gyakorlathoz függvények deriváltja Feladat Deriváljuk az f = 2 3 + 3 2 Felhasználva, hogy összeget tagonként deriválhatunk, továbbá, hogy függvény számszorosának deriváltja

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Tranziens káosz nyitott biliárdasztalokon

Tranziens káosz nyitott biliárdasztalokon Eötvös Lorád Tudomáyegyetem Természettudomáyi kar Vicze Gergely Trazies káosz yitott biliárdasztaloko Msc szakdolgozat Témavezető: Tél Tamás, egyetemi taár Elméleti Fizikai Taszék Budapest, 2012 1 Tartalom

Részletesebben

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT KÍVÁNCSISÁGVEZÉRELT MATEMATIKA TANÍTÁS STÁTUS KIADÓ CSÍKSZEREDA, 010 c PRIMAS projekt c Adrás Szilárd Descrierea CIP a Bibliotecii

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

PMMANB 311 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

PMMANB 311 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK M A T E M A T I K A I. PMMANB 3 segédlet a PTE PMMK építőmérök hallgatói részére Az építész- és az építőmérök képzés szerkezeti és tartalmi ejlesztése HEFOP/004/3.3./000.0

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben