A Secretary problem. Optimális választás megtalálása.



Hasonló dokumentumok
Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

1. Komplex szám rendje

A szita formula és alkalmazásai. Gyakran találkozunk az alábbi kérdéssel, sokszor egy összetett feladat részfeladataként.

Tuzson Zoltán A Sturm-módszer és alkalmazása

Feladatok és megoldások a 11. heti gyakorlathoz

A Sturm-módszer és alkalmazása

Kalkulus I. Első zárthelyi dolgozat szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l n 6n + 8

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

Számelméleti alapfogalmak

Információs rendszerek elméleti alapjai. Információelmélet

1. A radioaktivitás statisztikus jellege

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Divergens sorok. Szakdolgozat

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

VII. A határozatlan esetek kiküszöbölése

m,p) binomiális eloszlás.

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Matematika I. 9. előadás

A fogótétel alkalmazása sorozatok határértékének kiszámolására

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I o)

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

Statisztika 1. zárthelyi dolgozat március 21.

Hegedős Csaba NUMERIKUS ANALÍZIS

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Nevezetes sorozat-határértékek

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

A teveszabály és alkalmazásai

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

2. fejezet. Számsorozatok, számsorok

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

? közgazdasági statisztika

Valószínűségszámítás összefoglaló

Szindbád mellett, egyszerre csak egy háremhölgy jelenik meg. Szindbád. hogy a kalifának hány háremhölgye van, viszont semmit nem tud arról,

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Kombinatorika (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla

? közgazdasági statisztika

Metrikus terek. továbbra is.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

III. ALGEBRAI STRUKTÚRÁK

1. Hibaszámítás Hibaforrások A gépi számok

BIOMATEMATIKA ELŐADÁS

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Differenciaegyenletek aszimptotikus viselkedésének

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

Regresszió és korreláció

286 Versenyre előkészítő feladatok VIII. FEJEZET. ÖSSZEFOGLALÓ FELADATOK VIII.1. Versenyre előkészítő feladatok (337. oldal)

Számelméleti érdekességek dr. Kosztolányi József, Szeged

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Statisztika. Eloszlásjellemzők

Valószínőségszámítás

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Mérési adatok feldolgozása Méréselmélet PE_MIK MI_BSc, VI_BSc 1

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

2. gyakorlat - Hatványsorok és Taylor-sorok

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

Tapasztalati eloszlás. Kumulált gyakorisági sorok. Példa. Értékösszegsor. Grafikus ábrázolás

i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.

Gyakorló feladatok II.

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

1. előadás: Bevezetés. Számonkérés. Irodalom. Valószínűségszámítás helye a tudományok között. Cél

Matematikai statisztika

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Sorozatok A.: Sorozatok általában

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

1. Írd fel hatványalakban a következõ szorzatokat!

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

Komplex számok (el adásvázlat, február 12.) Maróti Miklós

Regresszió és korreláció

I. rész. Valós számok

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában

FELADATOK a Bevezetés a matematikába I tárgyhoz

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

Csikv ari P eter Diszkr et matematika El oad as jegyzet

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Átírás:

A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra smert számú jelölt jeletez a véletle sorredbe jelee meg a felvétel terjúra és mde lehetséges sorred egyforma valószíű. Legye a legjobb jelölt ragja a másod legjobb jelölt ragja és a - legjobb jelölt ragja... A felvétel terjú sorá az éppe jeletező felvételző jóságát össze tudju hasolíta az addg megjeleteel azaz meg tudju moda az addg megjelete özött relatv ragját. Ezutá eldötjü hogy a jelöltet elfogadju vagy elbocsájtju és ezt a dötést ésőbb em változtathatju meg. Célu az hogy mmalzálju a választott jelölt ragjáa a várható értéét. Kérdés hogy ez a rag optmáls választás eseté végtelehez tart-e ha a jelölte száma tart a végtelehez. Be lehet lát hogy optmáls választás eseté létez véges határérté és aa értée s smert. Ez a ( ) /(j+) j + 3.8695 j szám. Ee a téye azoba cs olya egyszerű dolása mt aa hogy Szdbád problémájába a seres választás valószíűsége jó stratéga eseté em tart ullához eseté. A Secretary problem -a csa részleges megoldását írom le. Megadom mde rögzített -re az optmáls stratégát lletve azt a reurzót melye segítségével számítható az optmáls stratéga eseté a választott jelölt ragjáa a várható értée. Ee segítségével megmutatom hogy ee a várható értée az értée mde számra sebb mt 8. Aa bzoyítása hogy létez a fet megadott határérté a reurzó alaposabb vzsgálatát géyl. Ez meglehetőse fárasztó a valószíűségszámításhoz özvetleül em apcsolódó probléma. Ezért ee részletet em tárgyalom csa egy heursztus dolást ado mely felhaszálja az optmáls megoldás megadásához szüséges számsorozat éháy természetes de bzoyításra szoruló tulajdoságát. Az érdelődő a részleteet dolgozó teljes bzoyítást megtalálhatjá Y. S. Chow S. Morgut H. Robbs és M. Samuels Optmal Selecto Based O Relatve Ras ( the Secretary Problem ) című az Israel Joural of Mathematcs (964) 8 90 újsága megjelet cébe. A secretary problem soba hasolít a Szdbád problémához. Az ott taulta agyo haszosa és léyegébe elegedő formácót ada az optmáls stratéga dolgozásához. Legye Z...Z az egymás utá megjeleő jelölte a megjeleés pllaatába smeretle ragja és legye ξ az - jelült (megjeleése utá megsmert) relatv ragja az első jelölt özött. Eor mt azt a Szdbád probléma megoldásába láttu a ξ...ξ valószíűség változó függetlee és P(ξ j) mde j számra. Továbbá tudju számol aa feltételes valószíűségét hogy a -ed jelölt

ragja egy adott szám feltéve az első megfgyelés értéét. Ez a P(Z ξ j...ξ j ξ j) j j ( ). () érté. Ezt az azoosságot például a övetezőépp láthatju be: P(ξ j...ξ j ξ j) ( ) ( )!! ame egy lehetséges dolása a övetező: A jelölte összese! sorredbe jelehete meg és mde sorred egyformá valószíű. Az olya ( ) sorrede száma ( ) melyere teljesüle a ξ j...ξ j ξ j feltétele ( )! mert féle módo választhatju meg az első lépésbe megjeleő jelölte halmazát eze belső sorredjét egyértelműe meghatározza a ξ j...ξ j ξ j feltétel és ezutá a maradé jelölt ( )! sorredbe jelehet meg. Másrészt P(Z ξ j...ξ j ξ j) ( )! j j.! Ez az azoosság az előzőhöz hasolóa doolható. ( )( Azt ell ) megérteü hogy eor a lehetséges megjeleés sorrede száma ( )!. Ugyas eor az j j első lépésbe megjeleő jelölte özött ott lee aa a jelölte ae a ragja és ee a relatv ragja az első jelölt özött j ell hogy legye. Ez azt jelet hogy a legjobb jelölt özül j és a( legrosszabb )( ) jelölt özül pedg j résztvevő jele meg az első lépésbe. Ez módo lehetséges. Ezutá j j a Z ξ j...ξ j ξ j feltétel egyértelműe meghatározza az első jelölt belső sorredjét a maradé jelölt pedg ( )! módo jelehet meg. Az () relácó specálsa azt s jelet hogy j j j ( ). ()

Ezért j j E(Z ξ...ξ j ξ j) ( ) j ( ) + ( ( + ) ( + ) + ) j j ( ) j + j ( + ) (j + ) + j a () relácó alapjá (az és j paramétere helyett az + + és j + paraméter választással. Feladat: Adju a () azoosságra özvetle ombatorus bzoyítást. Egy lehetőség: Számolju össze háy olya + hosszúságú fej-írás sorozat va melybe az + - tag az + - fej. Számolju ezt össze úgy s hogy előírju a sorozatba szereplő j- fejdobás helyét majd összegezü ee a helye a lehetséges értéere. Egy más lehetséges dolás: (A egatív bomáls eloszlásról taulta alapjá) írju át a () fejezésbe szereplő tagoat mt alalmas (egatív számoat s megegedő) bomáls együtthatóat. ( ) ( ) ( ) ( + ) Például: ( ). Ezutá alalmazzu az ( x) α+β ( x) α ( x) β azoosságot llletve aa övetezméyét e függvéye hatváysoraa együtthatóra alalmas α és β választással. A fet eredméy lletve a Szdbád probléma megoldásába taulta alapjá a Secretary problem evvales a övetező érdéssel: Legyee ξ...ξ függetle valószíűség változó melye eloszlását a P(ξ j). j éplet adja meg. Vezessü be a v (j) v (j) j + öltségfüggvéyt. Keressü meg azt + az optmáls τ megállás szabályt mely mmalzálja a öltségfüggvéy Ev τ (ξ τ ) várható értéét. Azt s megtárgyaltu hogya ell ezt a feladatot megolda. Defálju a c Ev (ξ ) c E ( ( )) + m + ξ c j + + + (3) ( ( )) + m + jc... (4) számsorozatot. Eor az optmáls megállás az lesz hogy a - dőpotba állo meg ha em álltam meg előbb és v (ξ ) + + ξ c. Az - lépésbe mdeépp megállo. A öltség várható értée pedg (az optmáls stratéga eseté) c 0. Eze utá a feladat a (4) reurzív eljárással megadott az megegedett lépésszámtól 3

s függő c c () sorozat számolása és a C lm c() 0 határérté meghatározása (feltéve hogy ez a határérté létez). A c sorozat vzsgálatába érdemes bevezet a t + + c 0 és s [t ] meységeet ahol [x] jelöl az x szám egész részét. Ezeel a jelöléseel a (4) reurzós formula émleg egyszerűbb formába írható fel: c ( ) + + ( + + s ) + ( s )c ( ) + s (s + ) + ( s )c + és t s + α 0 < α < jelöléssel t s (s + ) + t ( s ) (5a) ( + ) t t ( + t ) ( + ) α( α) ( + ). (5) A t t traszformácó vseledésée jobb megértése érdeébe vezessü be az aa a fő részét leíró x( + x) T(x) T (x) ( + ) traszformácót. Egyszerű számolás adja hogy T (x) + x ( + ) 0 ha x + ezért T(x) mooto ő x + eseté. Továbbá (5) alapjá A fete alapjá bzoyítható a övetező T(t ) t. (6) Lemma. t + 3. (7) A lemma bzoyítása előtt mutassu meg aa egy érdees övetezméyét. Követezméy: c 0 < 8 azaz a várható yereméy optmáls stratéga eseté bármely számra sebb mt 8. 4

A övetezméy bzoyítása. [ A c sorozat defcójából olvasható hogy az mooto ] ő. Ezért választva az számot apju a Lemma felhaszálásával hogy c 0 c + + t + + + 3 ( + ) < 8. + 3) ( A Lemma bzoyítása: A Lemma állítása érvéyes -re mert t 4. Ezért elég belát hogy ameybe az érvéyes -re aor érvéyes -re s. Ezt úgy bzoyítju hogy felhaszálju a (7)-es formulát a már bzoyított paraméterrel a (6) egyelőtleséget valamt azt hogy a T(x) traszformácó mooto ő t + esetbe. Továbbá mvel a c sorozat mooto ő ezért t + c + + c + +. Ez a becslés túl durva mégs haszos. Ugyas vagy teljesül az + 4 azoosság és az ducós feltevés teljesül -re s (ez csa agyo s dexre lehetséges) vagy > + 4 és eor + + 3 ezért md a t md a + 3 t számo beleese abba az tervallumba ahol T( ) mooto ő. Ezért ( ) t T(t ) T + 3 {( + )( + 3) } ( + )( + 3) + 4 am azt jelet hogy gaz az ducós feltevés -re s. Az utolsó azoosság azért gaz mert az evvales a ( + 3) + ( 0( + 3) + 0 egyelőtleséggel am yílvá érvéyes azaz eseté. A lm c() 0 határérté meghatározása. A részlete dologzása élül. Vezessü be az () meységeet a övetező módo: A legsebb j poztív egész szám melyre t j. Az meységeet azért érdemes bevezet mert segítségüel vzsgálható az optmáls megállás szabály. Ez a övetező: Az első jelöltet mdeéppe elutasítju. Az j < + - megjelet jelöltet aor fogadju el ha aa ξ relatív ragja sebb vagy egyelő mt. A fet megjegyzésből az s övetez hogy c 0 c c. 5

(Emléeztetőül a c j meység aa a várható értée hogy meora a öltségfüggvéyem ha az első j lépésbe em állhato meg és eze feltétel mellett az optmáls stratégát folytatom.) Be lehet lát hogy hogy léteze az α lm α < mde 0... számra és lm α. az α 0 > 0 szgorú egyelőtleség érvéyes. () határértée α 0 α Érdemes ülö hagsúlyoz hogy Ezeívül a t j t () j számo a j dex megváltozásával eveset változa. Potosabba megfogalmazva tetszőleges 0 < α < β < számra lm sup (t () j α j β t () j ) 0. A fet relácó azt sugallja hogy a t t özelítéssel s hbát övetü el. Specálsa ezért c 0 c c ( + )t lm c() 0 lm Ezért a feladat megoldása érdeébe elég a lm () α 0. (8) α meységeet meghatároz. Azért hogy ezeet a határértéeet számolju vezessü be a () v t ha < + azaz t < + meységeet és írju fel mt jeletee a t meységere feálló reurzós formulá a v meységere. Azt apju hogy ahoa v + ( + ) + ( ) ( v ( + ) ) + v + v v + v ha < +. (9) (Hogya lehet rájö hogy a fet defált v meységere lye egyszerű reurzós formula érvéyes?) Alalmazva a (8) relácót szucesszve a < + számora azt apju hogy v j v (j + ) (j + ) ( + ) ( + ) ha j < +. (0) 6

Alalmazzu a (0) formulát j + választással. Azt apju hogy egyrészt másrészt Ie ezért v () + lm v () v () + lm v () ( ) () + ( ) + + α lm () α lm ( t () + ( t () + α 0 α ) ) + ( α α ) + ( ) j+ j j + +. és határátmeettel (felhaszálva hogy lm α ) apju hogy lm () α 0 ( ) j+ j. j + Ie és a (8) formuából övetez hogy a eresett várható érté valóba a megadott szám. A fet heursztus érvelés potossá tétele érdeéba éháy becslésre va szüség. Eze özül a legfotosabb az hogy a t j meységere e csa (vszoylag durva) felső becslést adju (ezt tettü meg a Lemmába) haem megfelelő alsó becslést s bzoyítsu. Ez ell például ahhoz hogy tudju: lmf () > 0. A t j meységre adott felső becslés bzoyítása azo alapult hogy az (5) formula segítségével vszoylag egyszerű de jó t T(t ) alaú becslést tudtu ad. Hasoló elve egy alsó becslést s lehet bzoyíta. Be lehet lát hogy és ee alapjá t t ( + t 3( + ) ( + ). ) t ( + ) A bzoyítás részletet elhagyju. Az megtalálható az említett cbe. 7