Differenciálegyenletek

Hasonló dokumentumok
3. Lineáris differenciálegyenletek

Matematika III. harmadik előadás

Differenciálegyenletek

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

Differenciálegyenletek december 13.

BIOMATEMATIKA ELŐADÁS

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

y + a y + b y = r(x),

Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

Differenciálegyenletek. Vajda István március 4.

5. fejezet. Differenciálegyenletek

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

Definíció Függvényegyenletnek nevezzük az olyan egyenletet, amelyben a kiszámítandó ismeretlen egy függvény.

Határozatlan integrál

Differenciálegyenletek

KOVÁCS BÉLA, MATEMATIKA II.

1. Bevezetés Differenciálegyenletek és azok megoldásai

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Differenciaegyenletek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

6. Differenciálegyenletek

2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

KOVÁCS BÉLA, MATEMATIKA II.

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Differenciálegyenletek megoldása próbafüggvény-módszerrel

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Differenciálegyenlet rendszerek

Differenciálegyenletek Oktatási segédanyag

λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Differenciálegyenletek numerikus integrálása április 9.

Kétváltozós függvények differenciálszámítása

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Matematika A1a Analízis

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Közönséges differenciálegyenletek

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Matematika I. NÉV:... FELADATOK:

Differenciál egyenletek (rövid áttekintés)

Matematika A3 1. ZH+megoldás

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

Differenciaegyenletek a differenciálegyenletek

Reakciókinetika és katalízis

Matematika A2 vizsga mgeoldása június 4.

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Differenciálegyenletek a mindennapokban

Boros Zoltán február

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

Kalkulus 2., Matematika BSc 1. Házi feladat

KOVÁCS BÉLA, MATEMATIKA II.

Segédanyag az A3 tárgy gyakorlatához

Differenciálegyenletek gyakorlat december 5.

Matematika I. Vektorok, egyenesek, síkok

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

11. gyakorlat megoldásai

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

differenciálegyenletek

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

A brachistochron probléma megoldása

Lineáris algebra numerikus módszerei

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

Analízis 1. tárgyban tanult ismeretekre épül, tehát ismertnek tekintjük

11. gyakorlat megoldásai

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

Feladatok matematikából 3. rész

Szélsőérték feladatok megoldása

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

3. Elsőrendű differenciálegyenletek

Közönséges differenciálegyenletek megoldása Mapleben

2014. november Dr. Vincze Szilvia

MATEK-INFO UBB verseny április 6.

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

2.1. Másodrendű homogén lineáris differenciálegyenletek. A megfelelő másodrendű homogén lineáris differenciálegyenlet általános alakja

Dierenciálhányados, derivált

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Debreceni Egyetem. Kalkulus II. példatár. Gselmann Eszter

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

Határozatlan integrál

Fourier sorok február 19.

Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Közönséges differenciálegyenletek

Átírás:

DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum

DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1) (x) ) egyenletet n-edrendű közönséges explicit differenciálegyenletnek nevezzük. Megjegyzés: Mivel a továbbiakban csak közönséges explicit differenciálegyenletekkel foglalkozunk, ezért e két jelzőt a továbbiakban nem fogjuk kiírni.

Elsőrendű differenciálegyenlet DE 3 Az elsőrendű (közönséges explicit) differenciálegyenletek általános alakja: y (x) f ( x, y(x) ) Másodrendű differenciálegyenlet: A másodrendű (közönséges explicit) differenciálegyenletek általános alakja: y (x) f ( x, y(x), y (x) )

Példa: Newton II. törvénye DE 4 m a(t) F(t,s(t), v(t)) Mivel a sebesség-idő függvény az út-idő függvény első deriváltja (v(t)s (t)), a gyorsulás-idő függvény pedig a második deriváltja (a(t)s (t)), Newton II. törvénye az út-idő függvényre egy másodrendű differenciálegyenlet: s (t) 1 m F(t,s(t),s (t)) f (t,s(t),s (t))

DE 5 Példa: felfüggesztett kötél Két végén felfüggesztett, hajlékony, nyújthatatlan kőtél alakját leíró függvény ( y(x) ) a következő differenciálegyenletnek tesz eleget: y "(x) k 1+ y'(x)

DE 6 Definíció: differenciálegyenlet megoldása A ϕ : I függvény megoldásaaz y (n) (x) f ( x, y(x), y'(x),..., y (n-1) (x) ) n-edrendű differenciálegyenletnek, ha ϕ n-szer differenciálható az I-n (x,ϕ(x), ϕ'(x),..., ϕ (n-1) (x) ) D f, ha x I ϕ (n) (x) f ( x, ϕ(x), ϕ'(x),..., ϕ (n-1) (x) ), ha x I.

Definíció: kezdeti érték probléma DE 7 Legyen (x 0,y 0,...,y n-1 ) D. Az y (n) (x) f ( x, y(x), y'(x),..., y (n-1) (x) ) d.e.-re vonatkozó kezdeti érték problémán azt a feladatot értjük, amikor az egyenletnek azokat a ϕ : I megoldásait keressük, melyekre: x 0 I ϕ(x 0 ) y 0, ϕ (x 0 ) y 1, ϕ (x 0 ) y, ϕ (n-1) (x 0 ) y n-1 Megjegyzés A feltételek száma azonos a d.e. rendjével.

Tétel DE 8 Ha a differenciálegyenletben szereplő f függvény folytonos, akkor az k.é.p.-nak van megoldása. Tétel Ha a differenciálegyenletben szereplő f függvény folytonosan differenciálható (azaz az f összes elsőrendű parciális derivált függvénye folytonos), akkor a k.é.p.- nak pontosan egy megoldása van.

Iránymező DE 9 y'(x) y(x) + x -x P 1 (-1,-1) x -1, y -1 y 1 P (,0) x, y 0 y A megoldásfüggvények: y(x) c e x x x 1, c

DE 10 y(x) c e x x x 1, c Az y(0)0 kezdeti értéknek megfelelő megoldásfüggvény: c e 0 0 0 1 0 c 1 y(x) e x x x 1

DE 11 Szétválasztható változójú differenciálegyenletek Ha a g:]a,b[ és a h:]c,d[ függvények folytonosak, akkor az y'(x) g ( x ) h(y(x) ) típusú elsőrendű differenciálegyenleteket szétválasztható változójú (vagy szeparábilis) differenciálegyenleteknek nevezzük.

DE 1 Szétválasztható változójú differenciálegyenletek megoldásának formális lépései y (x) g(x) h(y(x)) dy g(x) h(y) dx Példa: y (x) x (y dy x (y 1) dx + 1 dy g(x)dx dy y + 1 h(y) 1 (x) + 1) x dx

DE 13 Példa: y'(x) xy (x) +x, y(0) 1. y (x) x (y (x) + 1) dy x (y 1) dx + 1 dy x dx y + 1 arctg y x + c x y(x) tg + c A k.é.p. megoldása: π y(0) 1 tg c 1 c 4 y(x) tg x + π 4

DE 14 Megjegyzések 1. A fenti módszerrel általában csak implicit alakban kaphatók meg a megoldásfüggvények.. A differenciálegyenlet formális megoldása után meg kell vizsgálni, hogy a kapott függvény hol értelmezhető, és mely intervallumokon lesz ténylegesen megoldása az egyenletnek. Az előző példában kapott függvény megoldása a d.e.-nek minden olyan intervallumon, melyet az x halmaz tartalmaz. x + π 4 π + kπ, k Z

DE 15 Megjegyzés Az y (x) f (x,y(x)) típusú differenciálegyenletek között speciális esetként szerepelnek a legegyszerűbb elsőrendű egyenletek az y (x) f (x) típusú differenciálegyenletek. Itt a megoldásfüggvények az f határozatlan integrál függvényei. Példa y (x) x x y(x) (x x)dx x 3 3 x + c

DE 16 Példa 10 C-os test hőmérséklete 30 C-os környezeti hőmérséklet mellett 10 perc alatt 60 C-ra csökkent. Mennyi idő alatt csökken a test hőmérséklete 40 C-ra? A kérdés megválaszolásához meg kell határozni a hűlést jellemző hőmérséklet-idő függvényt. Jelölje T a hőmérsékletet, t az időt! Azzal a legegyszerűbb feltevéssel élve, hogy a hűlés sebessége csak a kenyér és a környezet hőmérsékletkülönbségétől függ, mégpedig azzal egyenesen arányos azt kapjuk, hogy: T(t) t k (T(t) 30) ahol k az anyagra jellemző állandó.

DE 17 A t 0 határértéket véve: lim t 0 T(t) t lim t 0 ( k (T(t) 30) ) dt dt k (T 30) vagyis a T(t) függvényre egy elsőrendű szétválasztható változójú differenciálegyenletet kaptunk. Ennek megoldása: 1 dt T 30 k ln( T 30) kt + 1dt c T(t) e kt + c + 30

DE 18 A k és a c konstansok értéke a feladatban közölt információk alapján meghatározható. A T(0)10 és a T(10)60 feltételekből a következő egyenletrendszer adódik: T(0) 10 I. 60 e -10k+c + 30 T(10) 60 II. 10 e c + 30 c ln 90, k ( ln 3 ) / 10 Így a feladat megoldása: T(t) e ln 3 t + ln 90 10 + 30

DE 19 T(t) e ln 3 t + ln 90 10 + 30 A feladat jellegéből adódóan t [0,+ ). Mennyi idő alatt csökken a test hőmérséklete (a kezdeti 10 C ról) 40 C -ra? 40 e ln 3 t + ln 90 10 + 30 t 0 (perc).

DE 0 Lineáris differenciálegyenletek Definíció Ha a g 0, g 1,, g n-1, h : I függvények folytonosak, akkor az y (n) (x) + g n-1 (x)y (n-1) (x) + + g (x)y"(x) + +g 1 (x)y (x) + g 0 (x)y(x) h(x) d.e.-et n-edrendű lineáris differenciálegyenleteknek nevezzük.

DE 1 Definíció Ha h(x) 0, akkor homogén, különben inhomogén lineáris egyenletről beszélünk. Megjegyzések 1. Ha egy inhomogén egyenletben a h függvény helyébe a konstans 0 függvényt írjuk, akkor inhomogén egyenlet homogén megfelelőjét kapjuk. A későbbiekben látni fogjuk, hogy az inhomogén egyenletek megoldásai szoros kapcsolatban állnak a homogén megfelelő megoldásaival.. Az alkalmazások szempontjából a lineáris differenciálegyenletek a legfontosabbak közé tartoznak.

DE Példák lineáris differenciálegyenletre 1. NEWTON II. EGYENLET - CSILLAPÍTOTT EZGÉS Egy D rugóállandójú rugóhoz rögzített m tömegű test rezgésének kitérés-idő függvénye ( y(t) ), a sebességgel arányos közegellenállás esetén (arányossági tényező: f)a következő differenciálegyenletnek tesz eleget: f D y "(t) + y'(t) + y(t) m m 0

DE 3 Példák lineáris differenciálegyenletre. SOOS -L-C KÖ Konstans U 0 feszültség rákapcsolásával a körben kialakuló áramerősség függvény ( i(t) ) a következő differenciálegyenletnek tesz eleget: 1 i "(t) + i'(t) + i(t) L CL 0

A lineáris differenciálegyenletek megoldásairól DE 4 Definíció: lineárisan független függvényrendszer A {ϕ 1, ϕ,, ϕ n } függvényrendszert lineárisan függetlennek nevezünk, ha a rendszer egyik elemét sem lehet a többi elem lineáris kombinációjaként előállítani. Tétel: homogén lineáris differenciálegyenlet alaprendszere Minden n-edrendű a lineáris homogén differenciálegyenletek létezik n darab olyan megoldásfüggvénye, melyek lineárisan független rendszert alkotnak. Egy ilyen {ϕ 1, ϕ,, ϕ n } függvényrendszert a lineáris homogén differenciálegyenlet alaprendszerének nevezzük.

DE 5 Definíció: a homogén egyenlet általános megoldása Ha a {ϕ 1,ϕ,,ϕ n } függvényrendszer egy lineáris homogén differenciálegyenlet alaprendszere, akkor e függvények bármely c 1 ϕ 1 +c ϕ + +c n ϕ n lineáris kombinációja szintén megoldása az egyenletnek. E függvények összességét (ami végtelen sok függvényt tartalmaz) nevezzük a lineáris homogén differenciálegyenlet általános megoldásának: y H c 1 ϕ 1 +c ϕ + +c n ϕ n, c 1, c, c n

Definíció: az inhomogén egyenlet partikuláris megoldása DE 6 Egy lineáris inhomogén differenciálegyenlet egy konkrét megoldásfüggvényét partikuláris megoldásnak nevezzük. Tétel: az inhomogén egyenlet általános megoldása Ha y H egy lineáris inhomogén differenciálegyenlet homogén megfelelőjének általános megoldása, y p pedig az inhomogén egyenlet egy partikuláris megoldása, akkor az inhomogén egyenlet megoldásai éppen az y IH y H + y p alakú függvények. E függvények összességét a lineáris inhomogén differenciálegyenlet általános megoldásának nevezzük.

DE 7 Elsőrendű lineáris differenciálegyenletek megoldása Ha a h:i és a g:i függvények folytonosak, akkor az y'(x) + g(x) y(x) h(x) egyenletet elsőrendű lineáris inhomogén d.e.-nek, az y'(x) + g(x) y(x) 0 egyenletet elsőrendű lineáris homogén d.e.-nek nevezzük.

A homogén egyenlet megoldása DE 8 Tétel: Az y'(x) + g(x) y(x) 0 homogén lineáris differenciálegyenlet általános megoldása: y H (x) c e g(x) dx, c Példa: y'(x) x y(x) 0 g(x) -x y H (x) c e g(x)dx c e x dx c e x

DE 9 A lineáris differenciálegyenletek általános tárgyalásakor korábban megfogalmazottak szerint: Az y'(x) + g(x) y(x) h(x) differenciálegyenletet egy konkrét megoldását partikuláris megoldásnak nevezzük. Az y'(x) + g(x) y(x) h(x) inhomogén lineáris differenciálegyenletet általános megoldása: y IH y H + y p ahol y H az y'(x) + g(x) y(x) 0 egyenlet általános megoldása, y p pedig az inhomogén egyenlet egy tetszőleges partikuláris megoldása.

DE 30 A partikuláris megoldás meghatározása konstansvariálással Az inhomogén egyenlet y p partikuláris megoldásának meghatározására több módszert ismert. Ezek közül itt a ún. konstansvariálás módszert mutatjuk be, mely a homogén megfelelő általános megoldásának ismeretében szolgáltatja az inhomogén egyenlet egy partikuláris megoldását.

DE 31 A konstansvariálás lépései y H (x) ce g(x) dx y p (x) k(x) e y'(x) + g(x) y(x) h(x) g(x) dx k (x) e g(x) dx + k(x) e g(x) dx ( g(x)) + g(x) k(x) e g(x) dx h(x) k (x) e g(x) dx h(x) k (x) h(x) e g(x) dx k(x) g(x) dx h(x) e dx y p

Példa IH H DE 3 y'(x) x y(x) x 3, y(0) 1 g(x) -x h(x) x 3 y'(x) x y(x) 0 y H (x) ce g(x) dx y H (x) x x ce y p (x) k(x) e IH k (x) e x x 3 k (x) x 3 e x k(x) x x 3 x e dx (x + ) e y p

DE 33 y p (x) k(x) e x (x + ) e x e x (x + ) y IH (x) y H (x) + y p (x) c e x (x + ) A k.é.p. megoldása: y (0) 1 c 1 c 3 x + y(x) 3 e (x )

DE 34 Példa: soros -C kör konstans feszültséggel Kérdés: soros -C körre U 0 konstans feszültséget kapcsolva a körben folyó áram erőssége hogyan függ az időtől? Az áramerősség-idő függvény a következő elsőrendű lineáris homogén differenciálegyenletnek tesz eleget: 1 i '(t) + i(t) C 0 A feszültség rákapcsolásakor az áramerősség: U0 i(0)

DE 35 Ennek általános megoldása: i(t) i H (t) ce 1 C A kezdeti értéket figyelembe véve: U0 i(0) A probléma megoldása: dt ce U0 c 1 t C i(t) U 0 e 1 C dt

DE 36 Példa: soros -L kör konstans feszültséggel Kérdés: soros -L körre U 0 konstans feszültséget kapcsolva a körben folyó áram erőssége hogyan függ az időtől? Az áramerősség-idő függvény a következő elsőrendű lineáris inhomogén differenciálegyenletnek tesz eleget: U0 i'(t) + i(t) L L A feszültség rákapcsolásakor az áramerősség 0. Ezt az i(0) 0 kezdeti érték feltétellel lehet figyelembe venni.

Az egyenlet homogén megfelelője: Ennek általános megoldása: i '(t) + i(t) L 0 DE 37 i H (t) ce L dt ce t L Az eredeti (inhomogén egyenlet egy partikuláris megoldása: i p (t) k(t) e t L a k függvényt konstansvariálással határozzuk meg:

DE 38 t L 0 e L U k'(t) L U e '(t) k 0 t L t L 0 t L 0 t L 0 e U L e U dt e U k(t) Ebből a partikuláris megoldás: U e e U e k(t) (t) i 0 t L t L 0 t L p Az inhomogén egyenlet általános megoldása pedig: U e c (t) i (t) i (t) i 0 t L p H IH + +

t U L 0 iih (t) ih (t) + ip(t) ce + DE 39 i(0) 0 U0 0 c + U0 c A probléma megoldása: i(t) U t 0 U + 0 U L 0 L e 1 e t

DE 40 Példa: soros -L kör váltakozó feszültséggel A Sorosan kapcsolunk egy ellenállást, egy L induktivitású tekercset és egy Usin(ωt) függvény szerint időben változó feszültségforrást. Határozzuk meg az áramerősséget az idő függvényében tudván, hogy a t0 időpillanatban az áramerősség nulla, azaz i(0)0. A fizikából ismeretes, hogy a feladatban leírt esetben az áramerősség-idő függvény (i(t)) eleget tesz az L di(t) dt + i(t) Usin( ωt) d.e.-nek. Az egyenletet elosztva L-lel az

IH i'(t) + L i(t) U L sin( ωt) lineáris inhomogén d.e.-hez jutunk, ahol Az H i '(t) + i(t) L 0 g (t) L h(t) U L DE 41 sin( ωt) homogén egyenlet általános megoldása: i H (t) c e g(t)dt c e L dt c e L t

DE 4 A konstansvariálás módszert alkalmazva az inhomogén egyenlet partikuláris megoldását c(x) e alakban keressük. Ezt a függvényt az inhomogén egyenletbe helyettesítve a c függvényre a L t c'(t) U L sin( ωt) L e t d.e. adódik. Ebből (a parciális integrálási módszert alkalmazva): c(t) U sin( ωt) e L L t dt U L ω ( sin ωt Lωcosωt) e L t

DE 43 Az inhomogén egyenlet partikuláris megoldása: L T U ip(t) c(t) e L ω ( sin ωt Az inhomogén egyenlet általános megoldása: Lωcosωt) T U iih(t) ih(t) + ip(t) c e + L ω L ( sin ωt Lωcosωt) A k.é.p. megoldása: i(t) L U t (Lωe + sin ωt Lωcosωt) L ω

DE 48 Néhány másodrendű differenciálegyenlet-típus megoldása y (x) f ( x, y(x), y (x) ) y (x) f ( x, y (x) ) típusú differenciálegyenletek Ha I és J intervallumok, f:i J függvény, akkor az folytonos y"(x) f ( x, y'(x) ) alakú d.e.-ek megoldása a p(x) y'(x) jelöléssel visszavezethető két elsőrendű d.e. megoldására az alábbiak szerint:

DE 49 y (x) f ( x, y (x) ) y (x) p(x) y (x) p (x) I. p (x) f(x,p(x)) II. y (x) p(x) p(x) y(x)

DE 50 Példa: y"(x) y'(x) + e x, y'(0)1, y(0)1 y"(x) y'(x) + e x y (x) p(x) y (x) p (x) I. p'(x) p(x) e x (elsőrendű lineáris inhomogén d.e.) p p H p (x) (x) 1dx x c1 e c1 e k (x) 1 k(x) x k(x) e x p p (x) x e x x p(x) c 1 e x +xe x k (x) e e x

DE 51 II. y'(x) c 1 e x +xe x y(x) ( xe x +c 1 e x ) dx (x+c 1 ) e x dx ( x 1+c 1 ) e x +c A k.é.p. megoldása: y (x) (x+c 1 )e x y'(0) 1 c 1 1 y(x) ( x 1+c 1 ) e x +c y(0) 1 c 1 y(x) x e x +1

DE 5 Megjegyzés: Az y (x) f (x,y (x)) típusú differenciálegyenletek között speciális esetként szerepelnek a legegyszerűbb másodrendű egyenletek az y (x) f (x) típusú differenciálegyenletek. A előbbiekben leírt megoldási módszert követve látható, hogy két y (x)f(x) típusú egyenletet kell megoldani, azaz két integrálással eredményre lehet jutni.

Példa: y "(x) x, y(1) 4, y'(1) y'(x) 3 3 x dx x + c1 x + 3 3 c1 DE 53 3 5 4 5 y (x) x + c 1 dx x + c1 x + c x + c1 x + 3 3 3 3 y '(1) 1 + c1 4 15 5 y (1) 4 4 1 + 1+ c Az k.é.p. megoldása: 5 y(x) 4 3 4 15 x 5 4 3 15 x + c 1 c 4 3 36 15 + 36 15 c

Példa: Newton II. törvénye konstans erőhatás esetén DE 54 m s (t) F 0 F0 s (t) m F0 F0 v (t) s'(t) dt t + c1 m m F0 F0 t s (t) t + c1 dt + c1 t + c m m Kezdeti értékek: kezdeti hely: kezdeti sebesség: s(0)s 0 v(0)v 0 v(0)v 0 c 1 v 0 s(0)s 0 c s 0 Megoldás: F t a s (t) + m 0 0 + v s 0 t + s0 t + v0 t 0

DE 55 Másodrendű lineáris konstansegyütthatós differenciálegyenletek Ha h:i folytonos függvény, b,c, akkor az y"(x) + by'(x) + cy(x) h(x) egyenletet másodrendű lineáris konstansegyütthatós inhomogén d.e.-nek, az y"(x) + by'(x) + cy(x) 0 egyenletet másodrendű lineáris konstansegyütthatós homogén d.e.-nek nevezzük.

DE 56 A lineáris differenciálegyenletek általános tárgyalásakor korábban megfogalmazottak szerint: Ha y 1 :I és y :I függvények az y"(x) + by'(x) + cy(x) 0 egyenlet lineárisan független megoldása, akkor az {y 1,y } függvényrendszert a d.e. alaprendszerének nevezzük. Ha { y 1, y } az y"(x) + by'(x) + cy(x) 0 homogén egyenlete alaprendszere, akkor az egyenlet általános megoldása: y H c 1 y 1 +c y.

DE 57 Homogén egyenlet alaprendszerének és általános megoldásának meghatározása Definíció: karakterisztikus egyenlet Az y"(x) + by'(x) + cy(x) 0 egyenlet karakterisztikus egyenlete: λ +b λ+c0 A karakterisztikus egyenlet megoldásainak ismeretében a homogén d.e. alaprendszere és így az általános megoldása is meghatározható a következők szerint:

Tétel: DE 58 Ha a λ +b λ+c0 karakterisztikus egyenletnek két különböző megoldása van: λ 1 és λ, akkor a homogén egyenlet alaprendszere: { λ e x x } 1, e λ általános megoldása pedig: y H (x) λ1x λx c1 e + c e c 1,c

DE 59 Példa: y"(x) + 3 y'(x) + y(x) 0 A karakterisztikus egyenlet: λ + 3λ + 0 Gyökei: λ 1 -, λ -1 Alaprendszer: { e -x, e -x } Általános megoldás: y H c 1 e -x +c e -x, c 1,c

Tétel: Ha a λ +b λ+c0 karakterisztikus egyenletnek egy megoldása van: λ, akkor a homogén egyenlet alaprendszere: DE 60 { x x } e λ, x e λ általános megoldása pedig: y H (x) 1 λx λx c e + c x e c 1,c

DE 61 Példa: y"(x) - 8y'(x) + 16y(x) 0 A karakterisztikus egyenlet: λ -8λ + 16 0 Gyöke: λ 4 Alaprendszer: { e 4x,xe 4x } Általános megoldás: y H c 1 e 4x +c x e 4x, c 1,c

Tétel: DE 6 Ha a λ +b λ+c0 karakterisztikus egyenletnek nincs megoldása, akkor a homogén egyenlet alaprendszere: { e ux sin(vx), e ux cos(vx) } általános megoldása pedig: y H (x) c 1 e ux sin(vx) + c e ux cos(vx) c 1,c ahol u b v 4c b

DE 63 Példa: y"(x) + 6y'(x) + 34y(x) 0 A karakterisztikus egyenlet: λ +6λ + 34 0 Gyöke: nincs, u -3, v 5 Alaprendszer: { e -3x sin(5x), e -3x cos(5x) } Általános megoldás: y H c 1 e -3x sin(5x) + c e -3x cos(5x), c 1,c

DE 64 A lineáris differenciálegyenletek általános tárgyalásakor korábban megfogalmazottak szerint: Az y"(x) + by'(x) + cy(x) h(x) másodrendű lineáris konstansegyütthatós inhomogén differenciál-egyenletet általános megoldása: y IH y H + y p ahol y H az y"(x) + by'(x) + cy(x) 0 egyenlet általános megoldása, y p pedig az inhomogén egyenlet egy tetszőleges partikuláris megoldása.

DE 65 Partikuláris megoldás meghatározása konstansvariálással Az inhomogén egyenlet y p partikuláris megoldásának meghatározására több módszert ismert. Ezek közül itt a ún. konstansvariálás módszert mutatjuk be, mely a homogén megfelelő általános megoldásának ismeretében szolgáltatja az inhomogén egyenlet egy partikuláris megoldását.

A konstansvariálás lépései y H (x) c 1 y 1 (x) + c y (x) DE 66 y p (x) k 1 (x) y 1 (x) + k (x) y (x) A k 1 és a k függvények meghatározása: a I. k 1 '(x) y 1 (x) + k '(x) y (x) 0 II. k 1 '(x) y 1 '(x) + k '(x) y '(x) h(x) egyenletrendszerből a k 1 ' és a k ' derivált függvények egyértelműen kiszámíthatók (például a Cramer szabállyal), ezekből pedig integrálással kapjuk az ismeretlen k 1 és k függvényeket.

A Cramer-szabállyal számolva: DE 67 I. k 1 '(x)y 1 (x) + k '(x)y (x) 0 II. k 1 '(x)y 1 '(x) + k '(x)y '(x) h(x) D(x) y det y 1 1 (x) '(x) y y (x) '(x) k k 0 y (x) y1(x) 0 D (x) det 1 h(x) y '(x) D (x) det y1'(x) h(x) '(x) D1(x) D1(x) k1(x) dx D(x) D(x) y ky +k y p 1 1 1 '(x) D (x) D(x) k (x) D (x) D(x) dx y IH y H +y p

Példa: y"(x) + y(x) x IH DE 68 y"(x) + y(x) 0 H A karakterisztikus egyenlet: λ +1 0 Gyöke nincs, u 0, v 1 A homogén egyenlet általános megoldása: y H c 1 sin x + c cos x, c 1,c y p k 1 (x) sin x + k (x) cos x

I. k 1 '(x) sin x + k '(x) cos x 0 DE 69 II. k 1 '(x) cos x + k '(x) (-sin x) x D(x) sin x det cos x cos x sin x 1 D D (x) 0 cos x D1(x) det x cos x k1'(x) x cos x x sin x D(x) 1 (x) sin x 0 D (x) det x sin x k '(x) x sin x cos x x D(x)

DE 70 D (x) D1(x) k '(x) x sin x k1'(x) x cos x D(x) D(x) D1(x) k1(x) dx x cos x dx x cos x + (x D(x) )sin x D (x) k (x) dx x sin x dx x sin x + (x D(x) ) cos x y p (x) k 1 (x) y 1 (x) + k (x) y (x) [xcos x + (x -)sin x]sin x + [-xsin x + (x -)cos x]cos x (x -) y IH (x) y H (x)+y p (x) c 1 sinx + c cosx + x -, c 1,c.

Példa: harmonikus rezgés DE 71 Határozzuk meg egy D rugóállandójú rugóhoz rögzített m tömegű test rezgésének kitérés-idő függvényét! Jelölje y az egyensúlyi helyzettől való kitérést, t az időt! A D rugóállandójú rugó a testre az y kitéréssel arányos húzóerőt fejt ki: F -Dy. Így a Newton-egyenlet alakja: y"(t) Dy(t) D y "(t) + y(t) 0 m m ami egy másodrendű lineáris konstansegyütthatós d.e.

A karakterisztikus egyenlet λ + D m melynek D/m>0 miatt nincs valós gyöke. 0 DE 7 u 0, v D m így az egyenlet általános megoldása: D D (t) c + 1 sin t c cos t m m yh

DE 73 Ha a t0 időpillanatbeli kitérés y 0, a sebesség v 0, azaz a k.é.p. megoldása: y(0) y 0, y'(0) v 0, m c1 v0 c D y 0 m D D y(t) v + 0 sin t y0 cos t D m m