1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló"

Átírás

1 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri: skláris menniségeknek, számoknk megdott szál szerint tálázt rendezett hlmz Jelölése: A Négzetes mátri: oln mátri, melen sorok és oszlopok szám megegezik 1 Oszlopmátri: 3 T Sormátri: 1 3 ) Műveletek mátriokkl: Mátri trnszponáltj: tükrözés főátlór A mátri főátlóját z zonos indeű elemek lkotják 11 1 T 11 1 A A 1 1 Mátriok összedás, kivonás: csk zonos méretű mátriok dhtók össze, ill vonhtók ki egmásól A B C A ; B c11 c1 A B c1 c Mátri szorzás (sor-oszlop komináció): AB C,

2 A c, c c T T B d, d d c) Különleges mátriok: 1 Egségmátri: E 1 Tuljdonság: E A AE A Az egségmátriszl történő szorzás nem változttj meg megszorzott mátriot T Szimmetrikus mátri: A A, hol i, j 1,,3, A mátri elemei megegeznek főátlór vett tükörképükkel 1 3 éldául: A , zz T ij Ferdeszimmetrikus mátri: A A, zz, hol i, j 1,,3, A mátri ármelik eleme megegezik főátlór vett tükörképének mínusz egszeresével Eől következik, hog főátlón csk zérus elemek lehetnek 5 éldául: A Vektorok skláris, kétszeres vektoriális és didikus szorzt: Vektor: iránított geometrii, vg fiziki menniség, mi jellemezhető iránnl, ngsággl, mértékegséggel ) Vektorok skláris szorzt: Skláris szorzás értelmezése: A skláris szorzás kiszámítás mátriszorzássl: z zz z A szorzás eredméne eg skláris menniség ) Vektorok kétszeres vektoriális szorzt:, vg c c ji ij ji cos, hol vektorok áltl ezárt szög Kiszámítás kétféleképpen lehetséges: - két vektoriális szorzásnk kijelölt sorrenden történő elvégzésével, - kifejtési tétellel: - -

3 c c c, ill c c c c) Vektorok didikus szorzt: Legen dott z, és c tetszőleges vektor Két vektor didikus szorztánk jelölése:, elnevezése: diád Két vektor didikus szorztát szorzás tuljdonságink megdásávl értelmezzük: - didikus szorzás és skláris szorzás sszocitív (csoportosíthtó, zz szorzások elvégzésének sorrendjét felcserélhetjük): c c, - diád skláris szorzás szempontjáól nem kommuttív (nem mindeg, hog eg diádot joról vg lról szorzunk sklárisn eg vektorrl, mert más eredmént kpunk) c c H szorzás fent leírt összefüggéseket kielégíti szorzás didikus Két vektor didikus szorztánk kiszámítás josodrású, derékszögű koordinát rendszeren z z z z z z z z 13 Tenzorok előállítás: ) Tenzorok értelmezése és tuljdonsági: Tenzor: homogén, lineáris vektor-vektor függvén áltl megvlósított leképezés (hozzárendelés) w f v T v v hozzárendelés w Ov A T tenzor tetszőleges v vektorhoz w képvektort rendeli hozzá ) Tenzor előállítás josodrtú, derékszögű descrtesi koordinát-rendszeren: Tenzor megdás: - tenzor koordinátáivl (mátriávl) és - koordinát rendszerrel történik Tenzor koordinátáink jelölése mátri rendezve: T T T z T11 T1 T13 - T T T T z T1 T T 3 z Tz Tz T zz T 31 T3 T 33 Ow - 3 -

4 Tenzor előállítás: Legen ismert három értékpár: i f i, i j zk, j f j, i j zk, k c f k, c c i c j czk A tenzor didikus előállítás: T i j c k A tenzor mátri: 131 Tenzor előállítás: Adott: r 1i 4 j m A r A c T c z z z c z O r ) A tenzor előállítás: Síkeli eseten tenzort két értékpárj htározz meg: i i, j j A két értékpáról tenzor: T i j A tenzor mátri: 1 T 1 ) Az origór tükrözött r A képvektor meghtározás: ra T r r 1i j m A Feldt: ) Azon T tenzor mátriánk előállítás, mel z sík helvektoriól helvektoroknk koordinátrendszer O kezdőpontjár tükrözött vektorit állítj elő ) Előállítni zt z r A vektort, mel z r vektor origór vett tükörképe - 4 -

5 13 Tenzor előállítás: Adott: r 8i j m, 6 r A r A Feldt: ) Azon T tenzor mátriánk előállítás, mel z sík helvektoriól helvektorok z tengel körül szöggel elforgtott vektorit állítj elő ) Előállítni zt z r A vektort, melet z r vektor szöggel történő elforgtásávl kpunk ) A tenzor előállítás: j Síkeli eseten tenzort két értékpárj htározz meg: i i sin j j i cos j A két értékpáról tenzor: T i j r i A diádok kiszámítás: cos i 1, sin sin j 1 cos A tenzor mátri: cos sin,5,866 T sin cos,866,5 ) Az elforgtott r A vektor meghtározás: cos sin,5,866 8, 68 ra T r sin cos,866,5 7,98 r, 68i 7,98 j m A - 5 -

6 14 Differenciálszámítás: Az f függvén deriváltján z f : lim h htárértéket értjük (feltételezve, hog létezik és véges) d Az f függvén deriváltjánk jelölései: f, f,,,, st, hol z idő d szerinti első derivált A derivált helen vett f helettesítési értékét szokás függvén helhez trtozó differenciálhándosánk is nevezni A derivált előállítását deriválásnk vg differenciálásnk nevezzük A f f h f h differenciálhándos geometrii jelentése z f érintőjének z irántngense, zz f tg (1 ár) f göre helhez trtozó érintő f tg f 1 ár Amennien eg függvén vlmel helen vg intervllumon deriválttl rendelkezik, kkor függvén itt differenciálhtó A differenciálhtóságól pedig függvén foltonosság következik Deriválási szálok: Legenek u, v, f, g differenciálhtó függvének Ekkor: 1 Cu 3 Cu, C állndó; u v u v ; uv uv uv; u uv uv 4, v ; v v 5 f g fgg láncszál ; 1 6 Legen f és f Ekkor f t, t, kkor 7 H f 1 1 ; - 6 -

7 Alpfüggvének deriváltj: C 1 sin, C állndó cos cos 1 tg 1 tg ; cos 1 sin ctg 1 ctg e e sin ln Értelmezzük függvén második, hrmdik st deriváltját Jelölésük: A f függvén differenciálj: df f d ( ár) n f, f,, f, f df d d ár 141 éld: A f : lim formul lpján htározzuk meg z f és g függvén deriváltját h f h f h h h h h h f lim lim lim lim h ; h h h h h h h 1 1 h 1 1 lim h h h g lim lim lim h h h h h h h h h 1-7 -

8 14 éld: Htározzuk meg z lái függvének deriváltját: ; ; A htároztln integrál: A (ng) F függvént (kis) f függvén primitív függvénének nevezzük vlmel nílt intervllumon, h itt F f Eg függvénnek végtelen sok primitív függvéne vn, és ezek összességét f htároztln integráljánk nevezzük Jelölése: f d C, hol C tetszőleges állndó (integrációs állndó) éldául: d C Alpintegrálok: n1 3 n d C, hol C konstns, például: d C n1 ; 3 1 d ln C ; e d e C ; d C, például d C ln ; ln 5 sin d cos C; 6 cos d sin C Integrálási szálok: k f d k f d k F C, például: cos d sin C f g h d F G H C, például: 1 3 e sin d e cos ln C ; 1 f n1 n1 n f f d C, például: ln 1 ln f n f ; ; d ln d C - 8 -

9 f 4 d ln f C, például: f 1 f d d d ln ln C ln ln ln f, sin f tg d d ln cos C cos f, cos f ctg d d ln sin C sin f 5 F k f k d C, például: k 5 5 e e d C, 1 1 d ln C 6 7 f rciális integrálás: uvd uv uv d n1 n F d C n 1 f f f f e d e C, például: f fsin f d cos f C, például: 8 sin 3 cos3 d C, e d e C ; fcos f d sin f C, például: 6 3 sin 3 3 d cos 3 3 C 9 e cos e d sin e C f 16 A htározott integrál: Az f függvén, intervllumr vontkozó htározott integrálján z integrálközelítő összegek soroztánk htárértékét értjük (feltéve, hog ez létezik és véges), n f d : lim f i i, (1) m i 1 hol i i i 1, hol 1 n, intervllum eg felosztás, i pedig z i i 1 részintervllum eg tetszőleges pontj Azt íg értelmezett integrált Riemnn-integrálnk is nevezzük H létezik z (1) htárérték, kkor zt mondhtjuk, hog f z, intervllumon integrálhtó H függvén foltonos vlmel intervllumon, kkor ott integrálhtó z - 9 -

10 H f z, intervllumon integrálhtó, és itt f göre ltti és, geometrii jelentése z f f, kkor z (1) htározott integrál szksz fölötti síkidom területe f d 3 ár A htározott integrál tuljdonsági:, cf d c f d C állndó; f g d f d g d ; c, f d f d f d c c - 1 -

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok /0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

Néhány szó a mátrixokról

Néhány szó a mátrixokról VE 1 Az Néhány szó mátrixokról A : 11 1 m1 1 : m......... 1n n : mn tábláztot, hol ij H (i1,,m, j1,,n) H elemeiből képzett m n típusú vlós mátrixnk nevezzük. Továbbá zt mondjuk, hogy A-nk m sor és n oszlop

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük

Vektoralgebra. Ebben a részben a vektorokat aláhúzással jelöljük Vektorlger VE Vektorlger Een részen vektorokt láhúzássl jelöljük Vektorlger VE Szdvektorok Helyzetvektorok (kötött vektorok) Az irányított szkszok hlmzán z eltolás, mint ekvivlenci reláció, áltl generált

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás 7. feruár.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény folytonos z, intervllumon, vlmint létezik f()d htárérték

Részletesebben

F.I.1. Vektorok és vektorműveletek

F.I.1. Vektorok és vektorműveletek FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg

Részletesebben

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom:

Vektoralgebra előadás fóliák. Elméleti anyag tételek, definíciók, bizonyítás vázlatok. Bércesné Novák Ágnes 1. Források, ajánlott irodalom: Bevezetés számítástudomány mtemtiki lpji Vektorlger elődás fóliák Elméleti nyg tételek, definíciók, izonyítás vázltok Bércesné Novák Ágnes Források, jánlott irodlom: Hjós György: Bevezetés geometriá, Tnkönyvkidó,

Részletesebben

Improprius integrálás

Improprius integrálás Improprius integrálás. feruár 9.. Feldt: d Megoldás: Egy improprius integrált kell meghtározni, mivel fels integrálási htár. Deníció: H z f() függvény integrálhtó z, intervllum ármely, részin- tervllumán,

Részletesebben

2014/2015-ös tanév II. féléves tematika

2014/2015-ös tanév II. féléves tematika Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

2010/2011 es tanév II. féléves tematika

2010/2011 es tanév II. féléves tematika 2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási

Részletesebben

Frissítve: Síkidomok másodrendű nyomatékai. Egy kis elmélet 1 / 21

Frissítve: Síkidomok másodrendű nyomatékai. Egy kis elmélet 1 / 21 Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki Eg kis elmélet 1 / 21 Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki 1. péld: Számítsk ki súlponti és tengelekre számított másodrendű nomtékokt! Megjegzés:

Részletesebben

9. HATÁROZATLAN INTEGRÁL

9. HATÁROZATLAN INTEGRÁL 9. HATÁROZATLAN INTEGRÁL 9. Definíció és lpintegrálok. Definíció. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differenciálhtó

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van)

f függvény bijektív, ha injektív és szürjektív is (azaz minden képhalmazbeli elemnek pontosan egy ısképe van) Mgyr Eszter. tétel Függvények vizsgált elemi úton és dierenciálszámítás elhsználásávl Függvény: H egy A hlmz minden eleméhez hozzárendelünk egy B hlmz egy-egy elemét, kkor egy A-ból B-be rendelı üggvényt

Részletesebben

2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása

2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM

MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent

Részletesebben

Gazdasági matematika I. tanmenet

Gazdasági matematika I. tanmenet Gzdsági mtemtik I. tnmenet Mádi-Ngy Gergely A hivtkozásokbn z lábbi két tnkönyvre utlunk: Cs: Csernyák László (szerk.): Anlízis, Nemzeti Tnkönyvkidó 200. D: Denkinger Géz: Anlízis gykorltok, Nemzeti Tnkönyvkidó

Részletesebben

Absztrakt vektorterek

Absztrakt vektorterek Absztrkt vektorterek Összeállított: dr. Leitold Adrien egyetemi docens 213. 1. 8. Absztrkt vektorterek /1. Absztrkt vektortér definíciój Legyen V egy hlmz, egy test (pl. vlós vgy komplex számtest), és

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék

Fekete Mária. Matematika II. Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Matematika Tanszék Mtemtik II. Pollck jegzetek Fekete Mári Mtemtik II. Pécsi Tudománegetem Pollck Mihál Műszki Kr Mtemtik Tnszék Pécs, 2007 A jegzet PTE PMMK építőmérnök szk PMMANB312, PMMANB926 tntárgkódú Mtemtik II. kurzus

Részletesebben

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;

Részletesebben

12. Határozatlan és határozott integrál

12. Határozatlan és határozott integrál . Htároztln és htározott integrál Tnulási cél: Megismerni htároztln és htározott integrál foglmát. Elsjátítni z lpintegrálokt, és z egyszerű integrálási tételeket, vlmint Newton-Leiniz-formulát. Ezen ismereteket

Részletesebben

Többváltozós analízis gyakorlat

Többváltozós analízis gyakorlat Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete

Részletesebben

Függvények, 7 8. évfolyam

Függvények, 7 8. évfolyam Függvének, 7 8. évfolm Orosz Gul 01. június 8. TARTALOMJEGYZÉK Trtlomjegzék Feldtok 7 1. Grfikonok................................... 7. Geometrii trnszformáiók.......................... 19 3. Geometrii

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben.

( x) XI. fejezet. Határozott integrál, terület és térfogat számítás. Elméleti áttekintés. A határozott integrál definícióját ld. a jegyzetben. Htározott integrál, terület és térogt számítás XI. ejezet Htározott integrál, terület és térogt számítás Elméleti áttekintés A htározott integrál deinícióját ld. jegzeten. Newton-Leiniz tétel: ( ) d [

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Vektorok (folytatás)

Vektorok (folytatás) Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket,

1. Végezd el a kijelölt mûveleteket a betûk helyére írt számokkal! Húzd alá azokat a mûveleteket, Számok és mûveletek + b b + Összedásnál tgok felcserélhetõk. (kommuttív tuljdonság) ( + b) + c + (b + c) Összedásnál tgok csoportosíthtók. (sszocitív tuljdonság) b b ( b) c (b c) 1. Végezd el kijelölt

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3.

Az f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3. 0-06, II. félév. FELADATLAP Eredmének. Van határértéke, illetve foltonos az f függvén az alábbi pontokban? (a) = Az f függvénnek van határértéke az = pontban és ez a határérték -mal egenl½o f() =.! Az

Részletesebben

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC

6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC 6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

N-ed rendű polinomiális illesztés

N-ed rendű polinomiális illesztés ed rendű polinomiális illesztés 1 oldl Tegük fel, hog dottk vlmilen fiziki menniség függvénében mért értékek, zz mérési értékpárok, hlmz ( db mérési pont) A mérés mindig trtlmz vlmekkor bizontlnságot mért

Részletesebben

Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Lineáris algebra LI 1. Lineáris algebra. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! LI Definíció: mátri LI Legyen m és n pozitív egész szám. Az : m : m......... n n : mn tábláztot m n típusú mártink nevezzük, és zt mondjuk, hogy A-nk m sor és n oszlop vn. ij z A mátri i-deik soránk j-edik

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit.

A lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit. 2 modul: Erőrendserek 21 lecke: Erő és nomték lecke célj: tnng felhsnálój megismerje erő, nomték és erőrendserek jellemőit Követelmének: Ön kkor sjátított el megfelelően tnngot, h sját svivl meg tudj htároni

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése

Házi feladatok megoldása. Harmadik típusú nyelvek és véges automaták. Házi feladatok megoldása. VDA-hoz 3NF nyelvtan készítése Hrmdik típusú nyelvek és véges utomták Formális nyelvek, 10. gykorlt Házi feldtok megoldás 1. feldt Melyik nyelvet fogdj el következő utomt? c q 0 q 1 q 2 q 3 q 1 q 4 q 2 q 4 q 2 q 0 q 4 q 3 q 3 q 4 q

Részletesebben

A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL

A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL MŰSZAKI ISKOLA ÉRETTSÉGI VIZSGA ADA, 06jnuár 0/06-ös iskolév, júniusi vizsgidőszk A VIZSGAKÉRDÉSEK LISTÁJA A VÁLASZTHATÓ TANTÁRGYBÓL Munkterület: GÉPÉSZET, ELEKTROTECHNIKA, ÉPITÉSZET Tntárg: MATEMATIKA

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok

7. HATÁROZATLAN INTEGRÁL. 7.1 Definíció és alapintegrálok 7. HATÁROZATLAN INTEGRÁL 7. efiníió és lpintegrálok efiníió. Legyen f : I R dott függvény (I R egy intervllum). A F : I R függvényt f függvény primitív függvényének nevezzük I-n, h F differeniálhtó I-n,

Részletesebben

Geometriai transzformációk, transzformációs egyenletek és alkalmazásuk a geoinformatikában

Geometriai transzformációk, transzformációs egyenletek és alkalmazásuk a geoinformatikában Geometrii trnszformációk, trnszformációs egenletek és lklmzásuk geoinformtikán Szkdolgozt Bódis Ktlin Szeged 999 Trtlomjegzék Trtlomjegzék Bevezetés.... Feldtok...5. A Föld felszínének sík vló leképezése...5.

Részletesebben

4. előadás: A vetületek általános elmélete

4. előadás: A vetületek általános elmélete 4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

5.1. A határozatlan integrál fogalma

5.1. A határozatlan integrál fogalma 9 5. Egyváltozós vlós függvények integrálszámítás 5.. A htároztln integrál foglm Az eddigiekben megismertük differenciálás műveletét, melynek lpfeldt: dott f függvényhez megkeresni z f derivált függvényt.

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

A közönséges geometriai tér vektorai. 1. Alapfogalmak

A közönséges geometriai tér vektorai. 1. Alapfogalmak VEKTORALGEBRA A közönséges geometrii tér vektori 1. Alpfoglmk A hétköznpi tér z elemi geometri háromdimenziós euklideszi tere két különöző pontj, z A és B közti szksznk kétféleképpen dhtunk irányítást.

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása) Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei

Részletesebben

VI. Kétismeretlenes egyenletrendszerek

VI. Kétismeretlenes egyenletrendszerek Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

2014. november Dr. Vincze Szilvia

2014. november Dr. Vincze Szilvia 24. november 2-4. Dr. Vincze Szilvia Tartalomjegyzék. Meredekség, szelő, szelő meredeksége 2. Differencia-hányados fogalma 3. Differenciál-hányados fogalma 5. Folytonosság és differenciálhatóság kapcsolata

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása

Házi feladatok megoldása. Automaták analízise, szintézise és minimalizálása. Házi feladatok megoldása. Házi feladatok megoldása Automták nlízise, szintézise és minimlizálás Formális nyelvek, 11. gykorlt Célj: Az utomták nlízisének és szintézisének gykorlás, utomt minimlizáió Foglmk: Anlízis és szintézis, nyelvi egyenlet és egyenletrendszer

Részletesebben

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok

Informatika alapjai Tantárgyhoz Kidolgozott Excel feladatok SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Informtik lpji Tntárgyhoz Kidolgozott Ecel feldtok Gödöllı, 8. Bevezetı Ez feldtgyőjtemény összefogllj z Informtik lpji tntárgy keretében okttott,

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

SZENT ISTVÁN EGYETEM Gépészmérnöki Kar. Orova Lászlóné dr. Számítástechnika I. Tantárgyhoz Kidolgozott Excel feladatok. Gödöllő, 2004.

SZENT ISTVÁN EGYETEM Gépészmérnöki Kar. Orova Lászlóné dr. Számítástechnika I. Tantárgyhoz Kidolgozott Excel feladatok. Gödöllő, 2004. SZENT ISTVÁN EGYETEM Gépészmérnöki Kr Orov Lászlóné dr. Számítástechnik I. Tntárgyhoz Kidolgozott Ecel feldtok Gödöllő,. SZIE Informtik Tnszék Ecel - kidolgozott feldtok Bevezető A Számítástechnik I. tntárgy

Részletesebben

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

A határozott integrál fogalma és tulajdonságai

A határozott integrál fogalma és tulajdonságai . fejezet Htározott integrál A htározott integrál foglm és tuljdonsági D. Legyen f z [, b] intervllumon legfeljebb véges számú pont kivételével mindenütt értelmezett korlátos vlós függvény, továbbá legyen

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6

Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6 Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja

Részletesebben

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1

Differenciálszámítás. 8. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Differenciálszámítás p. 1/1 Differenciálszámítás 8. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Differenciálszámítás p. 1/1 Egyenes meredeksége Egyenes meredekségén az egyenes és az X-tengely pozitív iránya

Részletesebben

12. Határozatlan és határozott integrál

12. Határozatlan és határozott integrál . Htároztln és htározott integrál Tnulási cél: Megismerni htároztln és htározott integrál oglmát. Elsjátítni z lpintegrálokt, és z egyszerűbb integrálási tételeket, vlmint Newton-Leibniz-ormulát. Ezen

Részletesebben

Egyetlen menetben folyó állandó áram által létrehozott mágneses tér

Egyetlen menetben folyó állandó áram által létrehozott mágneses tér 3. FORGÓ MÁGNESES TÉR LÉTREHOZÁSA Állndó ármú geresztés mezőeloszlás A geresztési törvény szerint: Hdl = JdA = I. A τ p állórész É D É légrés forgórész I H H 1 t x Egyetlen meneten folyó állndó árm áltl

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

Gyökvonás. Hatvány, gyök, logaritmus áttekintés

Gyökvonás. Hatvány, gyök, logaritmus áttekintés Htvány, gyök, logritmus áttekintés. osztály Gyökvonás Négyzetgyök: Vlmely nem negtív vlós szám négyzetgyöke olyn nem negtív vlós szám, melynek négyzete z szám. Mgj.: R = Azonosságok: b ; b k ;, h, b R

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Lineáris egyenletrendszerek Összeállított: dr. Leitold Adrien egyetemi docens 2008.09.08. Leontieff-modellek Leontieff-modellek: input-output modellek gzdság leírásár legyen n féle, egymássl összefüggésben

Részletesebben

Haladó lineáris algebra

Haladó lineáris algebra B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e)

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e) . Egenletek I. Feldtok. Oldj meg z lábbi egenleteket egenletrendszereket vlós számok hlmzán. ) b) ( ) ( ) 8 Klmár László Mtemtik Versen döntője 99. 8. osztál c) ( ) ( ) ( ) ( ) OKTV II. ktegóri. forduló

Részletesebben

Alkalmazott matematika, II. félév Összefoglaló feladatok I.

Alkalmazott matematika, II. félév Összefoglaló feladatok I. lklmott mtemtik II. félé Össefoglló feldtok I. Műeletek mátriokkl determináns meghtároás mátri foglm. Neeetes mátriok. Mátriok egenlősége. Műeletek mátriokkl (össedás sklárrl ló sorás mátriok lineáris

Részletesebben

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van.

Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van. 19. tétel: Vektrk. Szkszk krdinátsíkn. Vektr: Iráníttt szksz, melnek állás, irán és hssz vn. Jele: v = AB Vektr bszlút értéke: A vektrt meghtárzó iráníttt szksz ngság. Jele: v = AB Vektrk kölcsönös helzete:

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium űszki folymtok közgzdsági elemzése Elődásvázlt 3 októer onoólium A tökéletesen versenyző válllt számár ici ár dottság, így teljes evétele termékmennyiség esetén TR () = ínálti monoólium: egyetlen termelő

Részletesebben

14. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts.

14. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Németh Imre óraadó tanár, Bojtár Gergely egyetemi ts., Szüle Veronika, egy. ts. SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4 MECHANIKA-MOZGÁSTAN GYAKOLAT (kidolgozt: Németh Imre órdó tnár Bojtár Gergel egetemi t Szüle Veronik eg t) 4/ feldt: Emelő zerkezet kinetikáj ()

Részletesebben

IV. Algebra. Algebrai átalakítások. Polinomok

IV. Algebra. Algebrai átalakítások. Polinomok Alger Algeri átlkítások olinomok 6 ) Öttel oszthtó számok pl: -0-5 0 5 áltlánosn 5 $ l lkú, hol l tetszôleges egész szám Mtemtiki jelöléssel: 5 $ l hol l! Z ) $ k+ vgy$ k- hol k! Z $ m- vgy $ m+ lkú, hol

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek

Részletesebben

Az integrálszámítás néhány alkalmazása

Az integrálszámítás néhány alkalmazása Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8

Részletesebben

Analízis II. harmadik, javított kiadás

Analízis II. harmadik, javított kiadás Ljkó Károly Anlízis II. hrmdik, jvított kidás Debreceni Egyetem Mtemtiki és Informtiki Intézet 2003 c Ljkó Károly ljko @ mth.klte.hu Amennyiben hibát tlál jegyzetben, kérjük jelezze szerzőnek! A jegyzet

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben