Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha



Hasonló dokumentumok
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Divergens sorok. Szakdolgozat

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) FELADATOK Taylor- (Maclaurin-) sorok, hibabecslés

Jegyzetek a Matematika A2H tárgyhoz

Numerikus sorok, Taylor-sorok, Fourier-sorok Kidolgozott feladatok

Analízis I. gyakorlat

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

2. gyakorlat - Hatványsorok és Taylor-sorok

Metrikus terek. továbbra is.

Gyakorló feladatok II.

1. gyakorlat - Végtelen sorok

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

90 Folytonos függvények. IV. Folytonos függvények

Kalkulus II., második házi feladat

Kalkulus I. Első zárthelyi dolgozat szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l n 6n + 8

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

SOROK Feladatok és megoldások 1. Numerikus sorok

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Számelméleti alapfogalmak

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

1. feladatlap megoldása. Analízis II. 1. Vizsgálja meg az alábbi sorokat konvergencia szempontjából! a) n 2 n = 1 1X 1

Nevezetes sorozat-határértékek

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

FELADATOK A KALKULUS C. TÁRGYHOZ

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

VII. A határozatlan esetek kiküszöbölése

Számelméleti érdekességek dr. Kosztolányi József, Szeged

1. Komplex szám rendje

Kalkulus gyakorlat - Megoldásvázlatok

A fogótétel alkalmazása sorozatok határértékének kiszámolására

Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz. 2 dx = 1, cos nx dx = 2 π. sin nx dx = 2 π

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

Függvényhatárérték-számítás

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

A Secretary problem. Optimális választás megtalálása.

2. fejezet. Számsorozatok, számsorok

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Mőbiusz Nemzetközi Meghívásos Matematika Verseny Makó, március 26. MEGOLDÁSOK

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Bevezető analízis II. példatár

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában

( ) ; VI. FEJEZET. Polinomok és algebrai egyenletek. Polinomok és algebrai egyenletek 215. VI.2.7. Gyakorlatok és feladatok (241.

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

A1 Analízis minimumkérdések szóbelire 2014

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

V. Deriválható függvények

Draft version. Use at your own risk!

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

Speciális függvénysorok: Taylor-sorok

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

1. Hibaszámítás Hibaforrások A gépi számok

I. Sorozatok. I.1. Sorozatok megadása

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

Statisztika 1. zárthelyi dolgozat március 21.

10.M ALGEBRA < <

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Matematika I. 9. előadás

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Függvények határértéke 69. III. Függvények határértéke

Végtelen sorok konvergencia kritériumai

Eötvös Loránd Tudományegyetem Természettudományi Kar

Egy lehetséges tételsor megoldásokkal

Matematika B4 I. gyakorlat

18. Differenciálszámítás

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia április 7.

(a n A) 0 < ε. A két definícióbeli feltétel ugyanazt jelenti (az egyenlőtlenség mindkettőben a n A < ε), ezért a n A a n A 0.

Integrálszámítás (Gyakorló feladatok)

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

V. Oszthatóság a természetes számok halmazában

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

Andai Attila: november 13.

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

Tuzson Zoltán A Sturm-módszer és alkalmazása

Valószínûség számítás

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

A teveszabály és alkalmazásai

II. Valós számsorozatok

V. RADÓ FERENC EMLÉKVERSENY Kolozsvár, május 19. V. osztály

Sorok és hatványsorok vizsgálata Abel nyomán

3. Valószínűségszámítás

Átírás:

. Végtele soro. Bevezetés és defiíció Bevezetését próbálju meg az + + 4 + + +... végtele összege értelmet adi. Mivel végtele soszor em tudu összeadi, emiatt csa az első tagot adju össze: legye s = + + 4 + 8 + =, a mértai sor összegéplete szerit. Ha agy, aor már elhayagolhatóa icsi, s =, emiatt természetes azt modai, hogy A továbbiaba + + 4 + + + =. a + a + + a +... alaú ú. végtele soroat vizsgálu, ahol az a -e valós számo. Ezt a végtele mértai sort a övetezőéppe jelöljü: a.. defiíció Végtele sor overgeciája. A a végtele sor -edi részletösszege: s = a + a + + a. Ha a részletösszege sorozata az L számhoz overgál, s = L, aor azt modju, hogy a a végtele sor overges és összege L. Egyébét a végtele sort divergese modju. Példa:. Mutassa meg, hogy az + 3 + 3 4 + + + +... végtele sor overges és összege. Megoldás: Legye s = + 3 + 3 4 + + + Mivel + = +, s = + 3 + 3 4 = +. + + + Ie. Az s = + = + q + q + + q +... q < eseté overges, egyébét diverges, mert s = + q + q + + q = q q, ha q és q aor és csa aor, ha q <. Megjegyzés: A overgecia difiíciójából látszi, hogy a a végtele sor overgeciájá em változtat az, ha véges számú tagot hozzáadu vagy ha elveszü.. tétel Művelete soroal. Ha a és b overges soro, továbbá a = A és b = B, aor. a + b is overges és a + b = A + B. a b is overges és a b = A B 3. a is overges és a = A, ahol tetszőleges valós szám. Bizoyítás: Csa.-et bizoyítju. A a + b - edi részletösszege: s = a + b + a + b + + a + b = a + a + + a + b + b + + b = A + B. Mivel A A és B B, s A + B. Példa: Határozza meg a Megoldás: = + 3 6 = = = +3 6 sorozat összegét! 6 + 3 6 = = 3 + 6 3 = 3, 6 a mértai sor összegéplete alapjá.. Kovergeciaritériumo A a végtele sorral apcsolatba ét érdés fogalmazható meg:. Koverges-e a a végtele sor?. Ha a a végtele sor overges, aor mi az összege? Az alábbi tétel egy szüséges feltételt ad a a végtele sor overgeciájára:

. tétel. Ha a a végtele sor overges, aor Bizoyítás: Nyilvá a =. a = a + a + + a + a a + a + + a = s s Mivel a a végtele sor overges, s = s = L valamely valós L szám eseté. Így a = s s = s s = L L = Követezméy: Ha a a em létezi vagy em véges, aor a a végtele sor diverges. Példá:. végtele sor diverges, mert =. = végtele sor diverges, mert em létezi a =. Ha a a végtele sor eseté a =, aor lehet, hogy a a végtele sor overges, de lehet, hogy diverges. Példá:. A = végtele sor overges és =.. A = végtele sor diverges, mert s = + + 3 + + 4 5 + 6 + 7 + +... 8 + + + + + + 4 + 4 8 + + = +, a részletösszege sorozata a + -hez tart. A sorozatoál taultu, hogy egy mooto övő sorozat potosa aor overges, ha orlátos. Ee a tétele a övetezméye az alábbi: 3. tétel. Legye a mide pozitív egész eseté. Eor a a végtele sor potosa aor overges, ha az s részletösszege sorozata orlátos. A övetező ritérium azt mutatja, hogy gyara a végtele sort egy alalmas improprius itegrállal összehasolítva megválaszolhatju a overgecia érdését. 4. tétel Itegráritérium. Legye a csupa pozitív tagból álló sorozat. Tegyü fel, hogy va olya pozitív egész N és az [N, félegyeese csöeő fx függvéy, amelyre a = f mide N eseté. Eor a a végtele sor és az fxdx improprius itegrál vagy egyszerre overges vagy egyszerre diverges. N Bizoyítás: A bizoyításba az N = esetre szorítozu az általáos eset bizoyítása hasolóa törtéi. Mivel fx csöeő, fxdx a + fxdx, ha. Ezért egyrészt a +a + +a másrészt a + fxdx+ + 3 fxdx fxdx+ + a + a + a 3 + + a fxdx + + 3 a + fxdx + + fxdx fxdx s a + fxdx + fxdx = fxdx = Ebből látszi, hogy ha az fxdx overges, ami most azt jeleti, hogy fxdx felülről orlátos, aor s is felülről orlátos lesz, tehát overges. Másrészt, ha + fxdx diverges, aor fxdx em lesz alulról orlátos, s sem, tehát a is diverges.

Példa: A = p ha p, mivel fx = x p ha x ; f = p overges, ha p > és diverges, függvéy mooto csöeő és az x dx improprius itegrál a p p-szabály alapjá overges, ha p > és diverges, ha < p. 5. tétel Összehasolító ritérium. Legye a olya végtele mértai sor, ahol a.. Ha va olya overges c sor és N pozitív egész, hogy mide > N eseté a c, aor a végtele sor is overges. Majorás ritérium. Ha va csupa emegatív tagból álló diverges d végtele sor és N pozitív egész szám, hogy mide > N eseté a d, aor a sor diverges. Miorás ritérium Bizoyítás:. Az s = a + + a, N részletösszegre felső orlát a a + a + + a N + =N+ overges végtele sor.. A a végtele sora ics felső orlátja, mert ha lee, aor a d + d + + d N + =N+ felső orlátja lee d részletösszegeie, tehát d is overges lee, ami elletmodás. Példa. A sor overges, mert + + < és. a = = végtele sor overges. végtele mértai sor diverges, mert + = + és a végtele sor diverges. = 6. tétel Limeszes összehasolító ritériumo. Tegyü fel, hogy valamely pozitív egész N-re igaz, hogy a > és b >, ha > N. Eor a. ha = c >, aor a és b egyszerre b overgese vagy egyszerre divergese. c a a. ha b overges. a 3. ha b diverges. = és b overges, aor a is = és b diverges, aor a is Bizoyítás. Csa.-et bizoyítju. A feltétel miatt létezi egy M egész, hogy > M eseté a b c < c, c < a c < c b, c < a b < 3c, c b < a < 3c b. Ha b overges, aor 3c b is az, az összehasolító ritérium alapjá a sor is az. Ha b sor diverges, aor c b is az, emiatt az összehasolító ritérium alapjá a is diverges. Példá. A l = és. A = overges. + 3 = + 3 sor overges, mert = és a l = végtele sor diverges, mert = végtele sor diverges. 7. tétel Háyadosritérium. Legye a csupa pozitív tagból álló végtele sor. Tegyü fel, hogy Eor a + = ρ. a. ha ρ <, aor a overgese;. ha ρ >, aor a diverges; 3. ha ρ =, aor a ritérium em alalmazható. Bizoyítás.. Tegyü fel, hogy ρ <. Eor létezi r, amelyre ρ < r < és N pozitív egész, hogy a+ a < r, ha N. Eor a N+ a N < r a N+ < ra N 3

a N+ a N+ < r a N+ < ra N+ < r a N és általába pozitív egész m eseté a N+m < r m a N. Eor az s részletösszeg felülről becsülhető a a + a + + a N + a N + ra N + r a N + = a + a + + a N + a N + r + r +... overges sorral, így a is overges.. Ha ρ >, aor létezi N, hogy N eseté 3. A a + a >, a N < a N+ < a N+ <... a sorozat tagjai em tartaa a -hoz, így a a végtele sor diverges. és = a + a = sorora teljesül, hogy ρ = = és az első egy diverges, a másodi pedig egy overges sor. Példá. A!. A = a + = + +!, = végtele sor overges, mert a =! és + +!! = + = <. végtele sor diverges, mert a = a + = + + és így + + = >. 8. tétel Györitérium. Legye a csupa pozitív tagból álló végtele sor. Tegyü fel, hogy Eor a = ρ.. ha ρ <, aor a overgese;. ha ρ >, aor a diverges; és 3. ha ρ =, aor a ritérium em alalmazható. Bizoyítás:. Ha a = ρ <, aor egy rögzített ρ < r < eseté létezi N, hogy a < r, a < r, ha N, alalmas pozitív egész N eseté. Meg ell mutatu, hogy az s, N részletösszege felülről orlátosa. Nyilvá:. Ha s = a + + a N + a N + a N+ + + a < a + + a N + r N + r N+ + + r a + + a N + r N + r N+ + a + + a N + rn r. a = ρ >, aor létezi N, hogy a >, ha N, a >, ha N és így a, a a végtele sor diverges. Példa: A végtele sor overges, mert = = <. A övetező tételbe ú. alteráló soroal foglalozu. Legyee a >. Eor az a a + a 3 a 4 + váltaozó előjelű végtele sort alteráló sora modju. 9. tétel Leibiz-ritérium. A feti alteráló sor overges, ha a mooto csöeő és a =. Bizoyítás. A m-edi részletösszeg: Eor s m = a a + a 3 a 4 + + a m a m. s m+ = s m + a m+ a m+, ahol a mooto csöeés miatt a m+ a m+. Igy az s m sorozat mooto övő. Másrészt s m = a a a 3 a 4 a 5 a m a m a m a, megit csa a mooto csöeés miatt. Mivel s m mooto ő és felülről orlátos, emiatt létezi a s m. De m s m+ = s m + a m+ = m m 4

s m + a m+ = m m létezi a véges s. m s m, Példa: A = + 3 4 + = alteráló sor overges, mert a = mooto csöeve tart a -hoz.. defiíció. A a végtele sor abszolút overges, ha a overges. Példa A = = 4 + 9 6 +... végtele sor a Leibiz ritérium szerit overges, és a tago abszolút értéét véve a = + 4 + 9 + 6 +... = is overges sor lesz az itegrál ritérium szerit, tehát az eredeti sor abszolút overges. 3. defiíció. A a overges végtele sor feltételese overges, ha a diverges. Példa A = = + 3 4 +... sor a Leibiz-ritérium szerit overges, de a tago abszolút értéét véve a = + + 3 + 4 +... = ú. harmoius sor már diverges lesz az itegrálritérium alapjá.. tétel. Ha a a végtele sor abszolút overges, aor overges is. Bizoyítás. Legye Eor c = a + a. c a Mivel a overges, emiatt a is overges és így az összehasolító ritérium alapjá c is overges végtele sor. De a = a + a a = c a és mivel ét overges végtele sor ülöbsége is overges, emiatt a is overges. 5

. Függvéysoro. Bevezetés és defiíció A végtele soroál taultu, hogy az + x + x + + x +... végtele összeg x < eseté overges. A feti végtele összegre úgy is godolhatu, hogy végtele so függvéyt adu össze és ezt vizsgálju. Ez vezet el a övetező fogalomhoz:. defiíció. Legyee f x, =,,... olya függvéye, amelye özös értelmezési tartomáya I. Eor a belőlü épzett függvéysoro az f x + f x + + f x +... ifejezést értjü, ahol x I. Egy orét x I értéet behelyettesítve a övetező végtele sort apju: Ha cos x <, aor a vizsgált függvéysor abszolút overges, tehát oveges. Tudju, hogy cos x. Külö meg ell vizsgáli a cos x = és a cos x = eseteet. Ha cos x =, aor a függvéysor a övetező végtele sort adja: + + 3 + + +..., ami egy diverges sor. A cos x = egyelet potosa az x = eseté teljesül egész szám. Ha cos x =, aor a függvéysor a övetező alteráló sort adja: + 3 + 4 + + +..., ami egy overges sor a Leibiz-ritérium alapjá. A cos x = egyelet potosa az x = + eseté teljesül egész szám. Összefoglalva apju, hogy a overgeciatartomáy a valós számo halmaza ivéve a alaú számoat. f x + f x + + f x +.... Ez vagy overges vagy diverges.. defiíció. Azo x I számo halmazát, amelyere overges sor, az f x + f x + + f x +.... f x + f x + + f x +... függvéysor overgeciatartomáyáa modju. Példá:. Határozza meg az e x = e x + e x + e 3x + + e x +... = függvéysor overgeciatartomáyát! Megoldás: A feti függvéysor egy e x háyadosú mértai sor, ami potosa aor overges, ha e x <. Ez pedig potosa aor teljesül, ha x <, tehát a overgeciatartomáy a egatív számo halmaza.. Határozza meg az = cos x = cos x+ cos x + cos3 x 3 függvéysor overgeciatartomáyát! Megoldás: A györitériumot alalmazzu: cos x = cos x + cos x +.... Hatváysoro Ebbe a fejezetbe egy speciális, de alalmazás szempotjából alapvető fotosságú függvéysort tárgyalu. 3. defiíció. Az x = hely örüli hatváysora evezzü a c x = c + c x + c x + + c x +... = alaú függvéysort. Az x = a örüli hatváysor: c x a = = c + c x a + c x a + + c x a +.... Itt az a számot a hatváysor özéppotjáa, a c, c, c valós számoat pedig a hatváysor együtthatóia evezzü. Példa. Határozza meg az 3 x 3+ 9 x 3 + + 3 x 3 +... hatváysor overgeciatartomáyát és adja meg a feti sor által defiiált függvéyt a overgeciatartomáyba! Megoldás: A feti hatváysor egy olya mértai sor,

amelye első eleme és háyadosa x 3 3. Ez potosa aor overges, ha x 3 3 < < x < 6. Eor az előállított függvéy a mértai sor összegéplete szerit: x 3 = 3 x. 3. Határozza meg a = x! hatváysor overgeciatartomáyát! Megoldás: Az x valós szám aor lesz bee a overgeciatartomáyba, ha a = x! végtele sor overges. Alalmazzu a háyados ritériumot a overgecia eldötésére: x + = x + = <, +! x! mide valós x eseté overges sort apu, tehát a overgeciatartomáy a valós számo halmaza. 3. Határozza meg a = x hatváysor overgeciaratomáyát! Megoldás: Az x valós szám aor lesz bee a overgeciatartomáyba, ha a x = végtele sor overges. Alalmazzu a györitériumot a overgecia eldötésére: x = x = +, ha x, mide x eseté diverges sort apu, tehát a overgeciatartomáy a {} halmaz. Az alábbiaba azt mutatju meg, hogy éz i egy overgeciatartomáy és hogya lehet egyszerűe meghatározi azt.. tétel Hatváysoro overgeciatétele.. Ha a = a x hatváysor overges valamely x = c szám eseté, aor abszolút overges mide x eseté, ha x < c.. Ha a = a x hatváysor diverges valamely x = d szám eseté, aor diverges mide x eseté, ha x > d. Bizoyítás:. Ha = a c overges, aor tudju, hogy a c =, létezi N egész, hogy N eseté a c <, a < c. Ie apju, hogy ha x < c, aor N eseté a x < x. c Ezért a = a x végtele sorból formált s részletösszegre felső becslés feltehető, hogy N: a + a x + a x + + a N x N + a N x N + a N+ x N+ + + a x a + a x + a x + + a N x N + x N + x N+ +... c c overges végtele sor.. Ha valamely x eseté x > d és = a x overges lee, aor a Tétel első már bizoyított fele szerit = a d is overges lee, ami elletmodás. A feti tétel alapjá már öyű leíri a = a x hatváysor overgeciatartomáyát: Ha létezi olya c valós szám, amelyre = a c overges végtele sor és létezi d valós szám, amelyre = a d diverges végtele sor, aor R-rel jelölve a { c : a c = overges} halmaz legisebb felső orlátját apju, hogy olya x-re, amelyre x < R a a x = overges lesz, mivel R defiíciója szerit va olya c valós szám, amelyre x < c < R és = a c overges végtele sor, de eor az előző tétel. szerit = a x is overges lesz. Másrészt, ha valamely d valós szám eseté x > R, aor R defiíciója miatt = a x diverges lesz.

Ha em létezi olya c, amelyre = a c overges, aor ez azt jeleti, hogy a overgeciatartomáy a {} halmaz; míg ha olya d em létezi, amelyre = a d diverges, aor a overgeciatartomáy a valós számo halmaza. Összefoglalva és most már a özéppotú hatváysorora imodva apju, hogy:. tétel. A a x a = hatváysor overgeciatartomáya övetezőéppe ézhet i:. Létezi R >, hogy ha x a < R, aor overges a hatváysor, míg ha x a > R, aor overges. Külö ell meggodoli az x = a±r számo eseté a overgeciát; eszerit a overgeciatartomáy egy yílt vagy félig yílt, félig zárt vagy egy zárt itervallum lehet.. A sor csa az x = a eseté overges, egyébét diverges. 3. A sor mide valós szám eseté overges. A feti tételbe szereplő R-et overgeciasugára hívju. Ha létezi a a határérté, aor a overgeciasugarat öyű meghatározi: 3. tétel.. Ha létezi a < harérérté, aor. Ha R = a. a < a =, aor a overgeciatartomáy a valós számo halmaza. 3. Ha a =, aor a overgeciatartomáy az {a}, a hatváysor csa x = a eseté overges. Bizoyítás: Csa.-et bizoyítju: Ha a = a x a overges, aor a x a = x a a, x a a. Ha a = a x a diverges, aor a x a = x a a, Ie apju, hogy x a x a < a. a eseté overges a = a x a végetele sor, míg ha x a > a, aor diverges. Ez mutatja, hogy a overgeciasugár Az előző tétel mitájára meg lehet mu- Megjegyzés: tati, hogy R = a. R = a a +, ha ez a határérté létezi végtele is lehet. Összefoglalva: A a x a = hatváysor overgeciatartomáyáa meghatározása a övetezőéppe törtéi: Kiszámolju a R overgeciasugarat: Ez alapjá R = a = a a +. ha R =, aor a overgeciartamáy a {a} halmaz, csa x = a-ba overges a sor;. ha R = +, aor a overgeciartamáy a valós számo halmaza mideütt overges a hatváysor; 3. ha R pozitív valós szám, aor a hatváysor overges az ]a R, a + R[ yílt itervallumba és diverges a ], a R[ és ]a + R, [ yílt félegyeesee. Az x = a R potról a a R végtele sor overgeciája, míg az x = = a + R potról a döt. a R végtele sor overgeciája = 3

Példa: Határozza meg a = x = x + x + x3 3 +... hatváysor overgeciatartomáyát! Megoldás: Nyilvá a özéppot a = és az együttható a =. Emiatt R = =, a hatváysor overges a ], [ yílt itervallumba és diverges a ], [ és ], [ félegyeesee. Ha x =, aor a = = + + 3 +... harmoius sort apju, amiről tudju, hogy diverges. Ha x =, aor a = + 3 +... = alteráló sort apju, ami a Leibiz-ritérium alapjá overges. Így a overgeciatartomáy a [, [ balról zárt, jobbról yílt itervallum. A övetező tétel azt modja, hogy egy hatváysor által megadott függvéy deriválása és itegrálása a hatváysor tagjaia deriválását és itegrálását jeleti. 4. tétel.. Ha a c x a = hatváysor a R < x < a + R eseté overges, aor meghatároz egy ]a R, a+r[ yílt itervallumo lévő fx függvéyt, amelyre fx = c x a. = Ee a függvéye mide -re létezi a deriváltja, amit az eredeti sor tagjaia deriválásával apu meg: f x = c x a stb. f x = = c x a =. A ]a R, a + R[ yílt itervallumo a = c x a + + hatváysor szité overges lesz és mide a R < x < a + R egyelőtlesége eleget tevő x eseté fxdx = = c x a + + Példa: fx = arctgx hatváysora: + C. f x = + x = x = x + x 4 x 6 +..., de így f xdx = x + x 4 +... dx x x3 3 + x5 5 x7 7 + + C, = arctg = 3 3 + + C = C, arctx = x x3 3 + x5 5 x7 7 +..., ha x <, < x <. 3. Taylor-soro Az fx függvéyt aarju hatváysorét felíri, rögzített a mellett olya a -eet eresü, amelyere fx = a x a = = a + a x a + a x a + + a x a +... Tegyü fel, hogy fx végtele soszor differeciálható az a egy öryezetébe. Eor f x = f x = f x = a x a = a x a = a x a 3 =3 stb. Behelyettesítve a-t apju, hogy fa = a 4

és általába f a = a f a = a f a = 3a 3 f a =!a, a = f a.! és ez aor teljesül, ha x <, < x < 4. A övetezőbe arra eressü a választ, hogy a Taylorsor mior állítja elő a függvéyt. Ehhez az. félévbe tault Taylor-tétel yújtja az alapot: 4. defiíció. Legye fx egy olya függvéy, amelyi végtele soszor differeciálható egy olya itervallumba, amelye belső potja a. Az fx függvéy által geerált Taylor-sor az x = a helye: = f a x a =! fa + f ax a + f a x a + +! f a x a +....! Az fx függvéy által geerált Maclauri-sor az x = helye vett Taylor-sor: = f + f x + f! f x =! x + + f x +....! Példa: Határozza meg az fx = x függvéy a = -beli Taylor-sorát! Megoldás: Nyilvá és általába f x = x f x = x 3 f x = 3x 4 f x =!x +. Ezért f =! +!! tehát a Taylor-sor: = +, x x x 3 + 3 4 +..., ami egy egy x első tagú, háyadosú mértai sor. Ez yilvá megfelelő, mivel x = x, 5. tétel Taylor-tétel. Ha az fx függvéy az a I itervallumo aárháyszor differeciálható, aor mide pozitív egész és x A eseté ahol fx = fa + f ax a + f a x a +...! egy a és x özötti c-vel. + f a x a + R x,! R x = f + c x a+ +! Példa: Bizoyítsu be, hogy mide valós x eseté e x = = x! = + x + x! + x3 3! + + x! +... Megoldás: Írju fel az fx = ex függvéy Maclaurisorát! Eor a Taylor-tétel szerit ahol f x = e x f =, e x = + x + x! + + x! + R x, R x = egy és x özötti c-vel. Ezért, ha x <, aor Ha x >, aor R x x + +! R x e x x + +! Ezért tetszőleges valós x eseté e c +! x R x =,, ha, ha. 5

ahoa már övetezi az állítás. Követezméy: Ha x = az előző példába, aor azt apju, hogy e = e = + +! + 3! + +! + = =! A feti godolatmeetből adódó állítás a övetező tételbe fogalmazható meg: 6. tétel. Ha létezi M ostas, amellyel x és a özötti valameyi t eseté f + t M, aor a Taylor-tételbe szereplő R x maradétag ielégíti az x a + R x M +! egyelőtleséget. Ameyibe ez a feltétel teljesül mide -re, aor fx Taylor-sora fx-et állítja elő. Példa:. Mide valós x eseté Megoldás: Legye si x = x x3 3! x5 5! + x7 7! +.... fx = si x f = f x = cos x f = f x = si x f = f x = cos x f = f 4 x = si x f 4 = f 5 x = cos x f 5 = stb. Ie a Taylor sor: Mivel x x3 3! x5 5! + x7 7! +.... f + x = ± si x vagy ± cos x, ami bizoyítja az állítást. f + t,. Hasolóa bebizyítható, hogy mide valós x eseté cos x = x! + x4 4! x6 6! x8 8! +..., de úgyaez övetezi abból is, hogy és si x = cos x x x3 3! x5 5! + x7 7! +... = x! + x4 4! x6 6! +..., 3. A cos x Taylor-sorából, már a cos x Taylor-sorát öyű meghatározi, csa a cos x Taylor-sorába az x-et x-re ell cseréli: cos x = x! + x4 4! x6 6! +... 4. Határozzu meg az fx = +x m Taylor-sorát, ahol m valós szám. Megoldás: Köye igazolható, hogy tetszőleges pozitív egész eseté f x = mm... m + + x m, f = mm... m +, ahoa a Taylor sor + mx + mm x + + mm... m + x +....! Ha m emegatív egész, aor a Taylor-sor m + darab emulla tagot tartalmaz és biomiális tételt apju vissza. Ha m em emegatív egész, aor végtele so tagja va a Taylor-sora. Igazolható, hogy x < eseté overges a sor és előállítja + x m -et. Alalmazáso:. Határozza meg 3 potossággal az határozott itegrált! Megoldás: Az e x Taylor sorából apju, hogy e x e x dx = = x + x4! x6 3! + x8 4! +..., e x dx x + x4! x6 3! + x8 4! x +... dx = 5! 6

[x x3 3 + x5 x7 4 + x9 6 x 3 +... ] = 3 + 4 + 6 3 +..., ahoa apju, hogy egy megfelelő özelítés a 3 + 4 + 6. Valójába a hibát potosa meg ellee becsüli de ez a övetező ét tagra ráézve hihető.. Határozza meg a határértéet! Megoldás: Mivel si x x x x 3 si x = x x3 3! + x5 5! x7 7! +..., si x x x x 3 = x x x3 3! + x5 5! x7 7! +... x x 3 = x3 3! + x5 5! x7 7! +... x x 3 = x 3! + x 5! x4 7! + = 6. 7

. Fourier-soro. Bevezetés és defiíció Ee a fejezete a célja, hogy egy szerit periodius függvéyt felírju mit trigoometrius függvéyeből épzett függvéysorét. Nyilvá a cos x és a si x függvéye szerit periodius függvéye és általába tetszőleges egész szám eseté a cos x és a si x függvéye szité szerit periodius függvéye, továbbá az ezeből formált a + a cos x + si x = ú. trigoometrius poliomo is tetszőleges a, a, b valós számo eseté szerit periodius függvéyt ada. Ee a fejezete a célja a szerit periodius függvéyt felíri függvéysorét. a + a cos x + si x = A továbbiaba feltesszü, hogy a szerit peiodius fx Riema-itegrálható a [, ] itervallumba. Először az fx-et a a + a cos x + b si x = trigoometrius poliommal özelítjü. Az együtthatóat úgy válaszju, hogy a övetező, összese + feltétel teljesüljö:.. 3. fxdx = fx cos xdx = fx si xdx = f xdx f x cos xdx, f x si xdx, Az első feltételből a övetezőt apju: [ a x + fxdx = f xdx = a + = a cos x + b si xdx = = a si x =,,... =,,... ] cos x b = a, a = fxdx. Az a, b együttható meghatározásához szüségü lesz a övetező itegrálora:. Ha l pozitív egésze, aor a b c. Ha = l, aor a b c cos x cos lxdx = [ si + lx + + l si x si lxdx = [ si lx l si x cos lxdx = cos+lx+cos ldx = si lx l ] = cos lx cos+ldx = si + lx + l [ cos + lx + l cos xdx = [ si x x + 4 si xdx = [ si x x 4 si x cos xdx = [ cos x ] = si+lx+si ldx = ] cos lx = l + cos x dx = ] = ; cos x dx = ] ] =. si xdx = =

A fetieet haszálva már meg tudju határozi az a és b együtthatóat: fx cos xdx = f x cos xdx = a + a cos x+ a l cos lx + b l si lx cos xdx = l= a l cos lx cos x+b l si lx cos xdx = a, l= a = fx cos xdx Hasolóa apju a b együtthatóat: fx si xdx = f x si xdx = a + a si x+ a l cos lx + b l si lx si xdx = l= a l cos lx si x+b l si lx si xdx = b, l= b = fx si xdx. Az előbb apott együttható em függe -től, emiatt természetes a övetező szerit periodius függvéyel özelítei a szerit periodius fx-et:. defiíció. A szerit periodius fx Fourier-sora: ahol és a + a cos x + b si x, = a = a = b = fxdx, fx cos xdx fx si xdx. Példa: Fejtsü Fourier-sorba az {, < x <, fx =, < x függvéyt! Megoldás: Nyilvá és a = fxdx = a = dx + dx = 3 ; fx cos xdx = cos xdx + cos xdx = [si x b = [ ] [ si x + ] fx si xdx = = si xdx + si xdx = ] [ cos x + cos Így a emulla együttható: a = 3, b = a Fourier sor: 3 cos x ] =. =, =,,..., si 3x si 5x si x + + +... 3 5. Fourier-sor részletösszegei. A övetező tétel azt modja i, hogy a Fouriersor részletösszege a legisebb átlagos hibaégyzet tulajdoságú.

. tétel. Legye az fx szerit periodius függvéy, az -edi részletösszege: s x. Legye t x = α + α cos x + β si x = tetszőleges α, α, β valós együtthatóal. Eor mide eseté fx s x dx fx t x dx és egyelőség csa aor teljesül, ha α = a, α = a, β = b. De Bizoyítás: Nyilvá fx t x dx = f xdx + t xdx fxt xdx. = fx α α + fxt xdx = α cos x + β si x dx = = α fxdx+ fx cos xdx + β α a + α a + β b. = fx si xdx = A t x defiíciójából öyű elleőrizi, hogy: t xdx = α + α + β. = Ezért fx t x dx = f xdx+α+ α a + α+β = α a + β b = = f xdx+α a + a + α a + β b = a + b, = amie a miimuma α = a, α = a, β = b eseté lesz, ahoa már övetezi a tétel. A miimum eseté: fx s x dx = f xdx ahoa apju, hogy a + fx dx a + a + b, = a + b. = Mivel ez mide eseté igaz, fx dx a + a + b. = A övetező, itt em bizoyított állítás azt modja i, hogy itt egyelőség áll:. tétel Parseval-formula. Ha a szerit periodius fx Riema-itegrálható a [, ] itervallumba, aor fx dx = a + a + b. = Ebből már övetezi, hogy égyzetes átlagba a részletösszeg özel va az fx függvéyhez: fx s x dx =. Példa: A Parseval formulát haszálju az {, < x <, fx =, < x függvéy eseté! Megoldás: Tudju, hogy a em-ulla Fourieregyüttható: a = 3, b =, =,,.... 3

Ezért 5 = fx dx = a + a + b = ahoa redezés utá = 4, 5 4 + 3 + 5 +..., 8 = + 3 + 5 +... 3. Fourier-sor potoéti overgeciája A övetezőbe arra eressü választ, hogy a fet apott Fourier-sor milye feltétele eseté állítja elő az fx periodius függvéyt. Ehhez szüség va a övetező defiicióra:. defiíció. Az fx függvéy szaaszosa folytoos az I itervallumo, ha véges so pot ivételével az fx folytoos és ahol szaadása va, ott létezi a bal és jobboldali határérté. A feti defiícióra támaszodva már megadhatju, hogy a Fourier-sor milye apcsolatba va az fx-szel. 3. tétel. Tegyü fel, hogy az fx és f x függvéye szaaszosa folytoosa a [, ]-be. Eor a Fouriersor értée az fx folytoossági potjaiba megegyezi fx-szel, míg szaadási potoba a bal és jobboldali határérté átlagát veszi fel. A feti, em bizoyított tétel övetezméye: Követezméy: Ha a szerit peiodius fx függvéy olya, hogy a [, ] itervallum felbotható véges so itervallumra úgy, hogy egy részitervallumo a függvéy mooto és folytoos, a szaadási potoba létezi a bal ill. jobboldali határérté, aor a Fourier-sor előállítja a függvéyt az fx folytoossági potjaiba és a szaadási helyee a Fourier-sor az fx ottai bal és jobboldali határérté átlagát veszi fel. Példá:. a Fejtsü Fourier-sorba az fx = x, ha < x < szerit periodius függvéyt! b Határozza meg f értéleit úgy, hogy fx midehol folytoos legye! Megoldás: A határozott itegrál defiíciója alapjá: továbbá és [ x [ x a = a = ] si x b = [ cos x ] cos x cos + xdx =, x cos xdx = ] si x =, x si xdx = [ si x cos x ] dx = dx = =. Így a Fourier-sor: si x si 3x si x + + +.... 3 A overgeciáról szóló tétel alapjá az f = választás ell ahhoz, hogy a Fourier-sor előállítsa a függvéyt a szaadási helye. Megjegyezzü, hogy az x = helyettesítés a övetezőt adja: = f si si 3 = si + + +... = 3 3 + 5 +..., 4 = 3 + 5 +..., ami em olya meglepő, mivel taultu, hogy arctgx = x x3 3 + x5 +... ha < x <, 5 ami a fetie alapjá x = és x = eseté is igaz. 4

. Fejtsü Fourier-sorba az függvéyt! fx = si 3 x Olya a, a, b valós számoat ell találu, amelyeel si 3 x = a + a cos x + b si x. = A liearizációs formulá szerit: si 3 x = si x si x = cos x si x = si x si x cos x = si x 4 si 3x + si x = 3 4 si x si 3x, 4 a emulla Fourier-együtthatóá: b = 3 4 és b 3 = 4. 4. Páros és páratla függvéye Az alábbiaba azt godolju meg, hogy páros és páratla függvéye eseté hogya egyszerűsödi le az együttható iszámítása. A továbbiaba felhaszálju, hogy ha gx egy szerit periodius függvéy, aor a [, ] itervallumo vett itegrál megegyezi a [, ] itervallumo vett itegrállal, gxdx = gxdx.. Legye fx egy páros függvéy. Eor fx párossága miatt a = fxdx = fxdx = továbbá fx cos x párossága miatt a = fx cos xdx = fx cos xdx. Mivel fx si x páratla, b = fx si xdx = fxdx, fx cos xdx = fx si xdx =., tehát a Fourier-sor em tartalmaz sziuszos tagoat, emiatt ezt a Fourier-sort tiszta osziuszos Fouriersora modju.. Most legye fx egy páratla függvéy. Eor fx páratlasága miatt a = fxdx = fxdx =, továbbá fx cos x páratlasága miatt a = fx cos xdx = fx cos xdx = Mivel fx si x páros, b = fx si xdx = fx si xdx, fx si xdx = emiatt ez a Fourier-sor csa sziuszos tagoat tartalmaz, ezt tiszta sziuszos Fourier-sora modju. Példá:. Fejtsü tiszta sziuszos Fourier-sorba az függvéyt! fx = x x x Megoldás: A függvéyt a [, ] itervallumo úgy egészítjü i, hogy a [, ] itervallumba páratla legye. Erre a függvéyre már alalmazhatom a feti épleteet. A részleteet mellőzve a övetezőt apju b = b = fx = 8 x x si xdx = 8 3, si 3x si 5x si x + 3 3 + 5 3 +.... Magyarázza meg, hogy a orábba iszámolt fx = x, < x < szerit periodius függvéy Fourier-sora miért em tartalmaz osziuszos tagot! Megoldás: Teitsü a gx = fx függvéyt. Ez már páratla lesz, emiatt az ő Fourier-sora csa sziuszos tagoat tartalmaz. Ehhez a Fourier-sorhoz hozzáadva -et megapju fx Fourier-sorát. 5

5. T szerit periodius függvéye Fourier-sora Tegyü fel, hogy fx egy T szerit periodius, a [, T ]-be Riema itegrálható függvéy. Eor őt a övetező alaú Fourier-sorba fejthetjü: ahol és a + = a = T b = T a cos T x + b si T x, a = T T T T fxdx, fx cos T xdx fx si T xdx. A overgeciára hasoló tétel modható i, mit ami a szrit periodius függvéyere voatozi. A részleteet mellőzzü. 6