I. Koordinátarendszerek a síkban és a térben, mátrixok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "I. Koordinátarendszerek a síkban és a térben, mátrixok"

Átírás

1 Koordiátaredszerek mátrixok 0 I Koordiátaredszerek a síkba és a térbe mátrixok Koordiátaredszerek A korábbi taulmáyaitok sorá megismerkedhettetek a sík aalitikus geometriájáak éháy alapfogalmával (koordiátaredszerek távolság szögek egyees egyeletei stb) E paragrafus célja általáosabb koordiátaredszerek bevezetése a síkba és a térbe A vektorok tulajdoságaiak vizsgálatakor láttuk hogy a sík tetszőleges vektora felbotható a síkba két em kollieáris vektor iráya szerit Potosabba ha v és v em kollieárisak akkor bármely v eseté létezek a λ λ valós számok amelyekre v λv+ λv () Ezt az ábra szemlélteti v λ ábra v y λ v ábra v v λ v Ha v és v az xo y derékszögű koordiátaredszer tegelyeiek egységvektorai akkor λ és λ az M pot koordiátái ahol OM a v szabad vektor O -ból kiiduló reprezetása (lásd a ábrát) Ez alapjá ha adott két em kollieáris vektor ( v és v ) és egy adott pot akkor a sík mide potját jellemezi tudjuk az ( ) összefüggésből adódó λ és λ számokkal Ezért a továbbiakba két em kollieáris v és v vektorból és egy rögzített O potból álló hármast síkbeli koordiátaredszerek tekitük Egy v vektor koordiátái- ak azokat a λ és λ számokat tekitjük amelyekre teljesül az ( ) összefüggés Megjegyzés Ez ugyaaz mitha két metsző egyeese rögzíteék egy-egy egységet és egy-egy iráyítást Az egyeesek a v és v O -ból kiiduló reprezetásaiak tartóegyeesei és v illetve v az egységek A fogalmak rögzítéséek céljából a következő értelmezéseket adjuk: Értelmezések Ha O egy rögzített pot a síkba és v v két em kollieáris vektor akkor az ( O v v ) hármast síkbeli koordiátaredszerek evezzük Ha ( O v v ) egy koordiátaredszer a síkba és v λ v + λv λλ akkor azt modjuk hogy v koordiátái az ( O v v ) redszerbe és λ v λ x λ

2 0 Koordiátaredszerek mátrixok Ha M egy pot a síkba és OM λv + λv λλ akkor azt modjuk hogy λ és λ az M pot koordiátái az ( O v v ) koordiátaredszerbe Hasolóképpe értelmezhetjük a térbeli koordiátaredszereket is Ha v v és v em egy síkba fekvő vektorok és v egy tetszőleges vektor a térbe akkor a v felírható v λ v + λ v + λ v alakba ahol λ λ λ Ezt a ábra szemlélteti ( az OM egy olya paralelepipedo testátlója amelyek O -ból kiiduló élei redre a v v és v iráyával egyezek meg) M λ v ábra v λ v v O v Ez alapjá a következő értelmezést adhatjuk: Értelmezés Ha O egy rögzített pot a térbe v v és v em egy síkba fekvő vektorok (az O -ból kiiduló reprezetásaikak végpotjai olya síkot határozak meg amely em halad át O -) akkor az ( O v v v ) égyest térbeli koordiátaredszerek evezzük Ha ( O v v v ) egy térbeli koordiátaredszer és v λ v v + λv + λ akkor azt modjuk hogy λ λ λ a v koordiátái az ( O v v v ) λ v koordiátaredszerbe Ha egy pot a térbe és OM λ v + λ v + λ v M λ O v v v akkor azt modjuk hogy λ és λ az M pot koordiátái az ( ) koordiátaredszerbe Tekitsük az α síkba az xo y derékszögű koordiátaredszert A v és v vektorok O kezdőpotú reprezetásáak végpotja ( 0) illetve (0 ) és tetszőleges M( x y) pot eseté OM x v + y v A koordiáták segítségével ez az összefüggés ( x y) x (0) + y (0) alakba írható ahol a számpárokkal a következő műveleteket végezzük (ezeket már taulmáyoztuk a komplex számok értelmezésekor): λ ( x y) ( λ x λy) x y λ ( x y ) + ( x y ) ( x + x y + y ) x x y y

3 Koordiátaredszerek mátrixok 0 Ezek a műveletek a vektorok skalárral való szorzásáak illetve a vektorok összeadásáak felelek meg A geometriai értelmük a 4 és 5 ábrá látható y ON λom OPOM+ON N( λx λy) y v + v ( x + x y + y ) y + y P M Mx ( y) y y N x x + x x O x x x 4 ábra 5 ábra Feladat Bizoyítsuk be hogy az előbbi műveletek geometriai értelme akkor is megmarad ha valamilye általáosabb síkbeli koordiátaredszerre voatkozak a koordiáták Bizoyítás Legye ( O v v ) egy tetszőleges síkbeli koordiátaredszer és az u illetve v vektorok koordiátái legyeek α α illetve β β Így u αv + αv és v β v v + β Ha λ tetszőleges szám akkor írhatjuk hogy λ u λ ( α ) ( ) ( ) ( ) ( ) v v+ αv λ αv + λ αv λα v+ λα és u + v ( αv+ αv) + ( βv+ βv) ( αv+ βv) + ( αv+ βv) ( α + β) v + ( α + β) v Tehát igaz a következő két állítás: ) ha az M pot koordiátái ( λ λ és ON λ OM akkor az N pot koordiátái ( λ λ λ λ ) ) ) ha az M pot koordiátái ( α α ) és az N pot koordiátái ( akkor az β β ) OP OM + ON összegvektor P végpotjáak koordiátái ( α + β α + β ) Hasolóképpe írhatjuk át a térbeli vektorokkal végzett művelteket is azok koordiátáira Legye ( O v v v ) egy tetszőleges térbeli koordiátaredszer az u és v koordiátái legyeek ( illetve ( Így α α α ) β β β ) u α v v v + αv + α és v βv+ βv+ β Tehát λ u λ ( αv + αv + αv ) λ ( αv) + λ ( αv) + λ ( αv) ( λα) v + ( λα) v + ( λα) v és u + v ( αv + αv + αv) + ( βv + βv + βv) ( αv + βv ) + ( αv + βv ) + + ( α + β ) ( α + β ) + ( α + β ) + ( α + β ) v v v v v Ez alapjá a koordiátákra értelmezhetjük a következő műveleteket: λ ( α α α ) ( λα λα λα ) α α α λ ( α α α ) + ( β β β ) ( α + β α + β α + β ) α α α β β β y v v

4 04 Koordiátaredszerek mátrixok Megjegyzések Kifejezhetjük koordiáták segítségével a skaláris szorzatot is Ha az u és v vektorok koordiátái az xoy derékszögű koordiátaredszerbe ( x y ) illetve ( x y ) tudva hogy az u és v vektorok skaláris szorzata u v u pr u v és hogy két azoos iráyú vektor szorzata egyelő a hosszúságuk szorzatával ha azoos iráyításúak illetve aak elletettjével ha elletétes iráyításúak kiszámítható hogy a pr v x ( x ) y ( x x yy koordiátái: x + yy + ) amiből azoal adódik hogy a x + y x + y skaláris szorzat: u v x x + yy Hasolóa igazolható hogy ha az u és v térbeli vektorok koordiátái az Ox yz Tudjuk hogy a skaláris szorzat ( ) derékszögű koordiátaredszerbe ( x yz ) illetve ( x y z ) akkor a skaláris szorzatuk: u v x x + yy +z z u v u v cos u v alakba is írható így a koordiáták ismeretébe kiszámíthatjuk a vektorok által bezárt szöget: u v cos ( uv ) u v M Feladat Bizoyítsuk be hogy tetszőleges térbeli v ( O v v v ) koordiátaredszer eseté egy v vektor N O koordiátái egyértelműe meghatározottak v Bizoyítás Feltételezzük hogy a ( α α α ) és a v ( β β β ) koordiáták ugyaazt a v vektort jelölik és P ( α α α ) ( β β β ) Így v αv + αv + αv βv 6 ábra + βv + βv tehát ( α β) v + ( α β) v + ( α β) v 0 ( ) Jelöljük M N és P -vel az ( α β ) v ( α β ) v és ( α β ) v vektorok O -ból kiiduló reprezetásaiak végpotját A ( ) reláció alapjá az MN P súlypotja O Ez em lehetséges mert a v v és v vektorok icseek egy síkba A jelölések egyszerűsítéséek céljából rögzített kezdőpot eseté a vektorokat azoosíthatjuk a koordiátáikból alkotott számhármassal (vagy számpárral) és elhagyhatjuk a vektorjelet Így a v ( ) jelölés az origó (O ) és az A ( ) koordiátájú potok által meghatározott OA szabad vektort jelöli Példák ( ) + ( ) ( ) ( 4 5) ( ) ( ) ( ) v v u

5 Koordiátaredszerek mátrixok 05 ( 4) + ( ) ( 0 ) + ( ) (0 0 ) ( ) ( ) + ( 0 0) ( ) + ( 5) + ( ) ( 8 9) (0 0 0) O ( ) ( ) + ( 0) tehát ha a koordiátaredszer kezdőpotja a v és v vektorok O kezdőpotú reprezetásaiak a végpotjai az A ( ) és B ( 0) potok akkor a 7 ábra C() C( ) pot koordiátái az ( O v v ) koordiátaredszerbe v O B(0) x és ( 7 ábra) (0 ) ( ) (0) + 7 () + ( 5 ) (4) tehát a v (0 ) Az előbbi műveletek -be ( ) is értelmezhetők y A() vektor koordiátái a v ( 0) v ( ) és v (4 ) vektorok valamit az origó által meghatározott koordiátaredszerbe 7 és 5 Ha x ( x x x ) és y ( y y y ) akkor + ( ) és λ x y x y x y x y Példák ( 4) + (0 ) ( 4 7) λ x ( λ x x λx ) λ ( 7 9) + ( ) ( ) ( 7) ( 6 9 ) A eddigiek alapjá éháy fotos probléma merülhet fel: Hogya döthetjük el hogy egy vektorredszerből (két síkbeli vagy három térbeli vektor) származtatható-e koordiátaredszer? Hogya határozhatjuk meg egy vektor koordiátáit egy koordiátaredszerhez viszoyítva? Hogya határozhatjuk meg egy vektor koordiátáit egy koordiátaredszerhez viszoyítva ha ismerjük egy más koordiátaredszerhez viszoyított koordiátáit? Ezekek a problémákak az általáos megoldása új matematikai eszközöket igéyel Próbáljuk megoldai éháy ilye problémát sajátos esetekbe Feladat Dötsük el hogy a v ( ) és v (4 a) vektorok az a paraméter milye értékeire határozak meg egy koordiátaredszert Megoldás A v és v vektorok potosa akkor kollieárisak ha létezik olya λ amelyre 4 λ és a λ Az első egyelőségből λ tehát a 6 eseté v és v egymás meghosszabbításába va ( v λ v ) míg a 6 eseté ( O v v ) egy koordiátaredszer v

6 06 Koordiátaredszerek mátrixok Általába a v ( a b ) és v ( a b ) vektorok potosa akkor esek egymás meghosszabbításába ha létezik olya λ amelyre v v azaz ha 0 Ellekező esetbe ( O v v ) λ ab ab egy koordiátaredszer Feladat Koordiátaredszer-e az ( O v v v ) redszer ha v ( ) v (0 ) és v ( )? Megoldás Elégséges azt megvizsgáli hogy a λ v + λ v + λ v (000) egyelőség teljesülhet-e ha λ λ és λ em mid egyelő ullával (Ha találuk ullától külöböző megoldásokat akkor em lehet koordiátaredszer mert az O koordiátái ( 000) és ezek egyértelműe meghatározottak míg ha em találuk akkor v és v O -ból kiiduló reprezetásaiak végpotjai által meghatározott v sík em tartalmazza O -t és így ( O v v v ) egy koordiátaredszer) λv ( λ λ λ ) λv (0 λ λ ) λv ( λ λ λ ) Összeadva az egyelőségek megfelelő oldalait kapjuk hogy λv + λv + λv ( λ + λ λ + λ + λ λ λ λ ) λ + λ 0 Tehát a λ + λ + λ 0 λ λ λ 0 egyeletredszerhez jutuk Ha az utolsó két egyelőség megfelelő oldalait összeadjuk a λ λ összefüggéshez jutuk Ez alapjá az első egyeletből következik hogy λ λ 0 tehát (a második egyelet alapjá) λ 0 és így ( O v v v ) egy koordiátaredszer Feladat Határozzuk meg a v (7 6) vektor koordiátáit az előbbi koordiátaredszerbe Megoldás A v λv + λv + λ v egyelőség ekvivales a λ + λ 7 λ + λ + λ λ λ λ 6 egyeletredszerrel A redszer megoldása λ λ és λ tehát v koordiátái és Feladat A V ( O v v ) koordiátaredszerbe az u és u vektor koordiátái ( α α ) és ( β β ) Írjuk fel egy összefüggést az u vektor U ( O u u ) redszerbeli ( λ λ és a V ( O v v ) redszerbeli ( λ λ ) koordiátái közt! )

7 Koordiátaredszerek mátrixok 07 Megoldás u λu + λu λ( αv + αv) + λ( βv + βv) ( λα + λβ ) v + ( λα + λβ ) v Tehát ha u koordiátái a V koordiátaredszerbe λ és λ akkor Ezek az összefüggések a λ és λ αλ + β és λ α + λ λ βλ λ ismeretleek függvéyébe megadják a λ -t és a λ -t míg az utóbbi két koordiáta ismeretébe egy egyeletredszert kell megoldauk λ és λ kiszámításához Az eddigiek alapjá látható hogy a vizsgált problémák midegyike bizoyos típusú egyeletredszerek megoldására (illetve a megoldás taulmáyozására) vezetődik vissza Gyakorlatok Dötsd el hogy az alábbi vektorredszerek koordiátaredszert alkotak-e az origóval? a) v ( ) v ( ) b) v ( ) v ( 4) c) v ( ) v ( ) d) v (0 ) v ( 7) e) v ( ) v ( ) v (0 7) f) v ( ) v ( 4) v ( 5) g) v ( ) v (0 ) v (4 4 5) h) v ( a b) v ( b c) v ( c a) ahol a b c és a b c a Írd fel az u ( 9) vektor koordiátáit az ( O v v ) koordiátaredszerbe ha a) v ( ) v (0 ) b) v ( ) v ( ) c) v ( ) v ( ) d) v ( a b) v ( b a) Írd fel az u ( 7) vektor koordiátáit az ( O v v v ) koordiátaredszerbe ha a) v ( 0 ) v ( 0) v (0 ) b) v ( ) v ( ) v ( Feladatok ) Létezek-e olya λ λ és λ természetes számok amelyekre teljesül a λ ( ) + λ ( ) + λ ( ) (45 4) egyelőség? Ha a jobb oldalt ( a b c) -re cseréljük mi a szükséges és elégséges feltétele a b c -re voatkozóa aak hogy létezze λ λ λ megoldás? 5 5 Az ( a b) számpárt mide lépésbe helyettesítjük a a + b a + b számpárral Bizoyítsuk be hogy csupa külöböző számpárokat kapuk!

8 08 Koordiátaredszerek mátrixok A sík ( i j) koordiátájú potjai i 0 j 0 ( i j) (0 0) egy-egy szöcske áll Mide pillaatba egy szöcske ugrik valamelyik másiko át a következő szabály szerit: ha az A potbeli sz öc ske a B potbeli szöcské ugrik át akkor egy olya C potba ugrik amelyre BC AB Lehetséges-e hogy egy idő utá a szöcskék az ( i j ) i j 0 ( i j) ( ) potoko legyeek? Áttérés két síkbeli koordiátaredszer között Az előbbi paragrafusba láttuk hogy ha a V ( O v v ) koordiátaredszerbe az u és u vektorok koordiátái ( α α ) és ( β β ) akkor egy tetszőleges u vektorak az U ( O u u ) koordiátaredszerbeli ( λ λ ) és a V ( O v v ) koordiátaredszerbeli ( λ λ ) koordiátái közt feállak a következő összefüggések: λ αλ + βλ és λ α λ + βλ A továbbiakba megvizsgáljuk hogy ezek az áttérési képletek milye geometriai tartalommal bírak azaz hogya ágyazódak az egyszerű geometriai traszformációk (forgatás yújtás) ezekbe az összefüggésekbe Ha a v és v vektorok helyett az u αv és u βv vektorokat választjuk a koordiátaredszer vektoraiak akkor az α α α 0 és β 0 β β koordiátákat kapjuk tehát λ αλ és λ β λ Ha α β akkor yújtásról vagy középpotos hasolóságról (homotétiáról) beszélük Forgassuk el a v vektort α szöggel és a v vektort β szöggel OE OB EB OB cos α BB ctg ϕ OB cos α OB si α ctg ϕ OB si( α ϕ) ( cos αsi ϕ si αcos ϕ) OB si ϕ si ϕ (ezt az OEB háromszögbe a sziusztételből is felírhattuk vola) u D u v F u 8 ábra β B ϕ M α B A O E v si α Hasoló godolatmeet alapjá írható hogy OF OB si ϕ si( ϕ α) tehát az u koordiátái az ( O v v ) redszerbe és si α si ϕ si ϕ A D - át húzzuk párhuzamosokat az OA és OC egyeesekhez A sziusztétel alapjá si β si( ϕ+ β) OM OD és ON OD si ϕ si ϕ C N

9 Koordiátaredszerek mátrixok 09 tehát u koordiátái az ( O v v ) koordiátaredszerbe si β si( ϕ+ β) és si ϕ si ϕ Az általáos áttérési képlet és az előbbi összefüggések alapjá si ( ) si λ ϕ α α si β si( ϕ β) λ + λ λ + λ + λ si ϕ si ϕ si ϕ si ϕ Ha α β akkor midkét vektort ugyaakkora szöggel forgatjuk el tehát a koordiátaredszert forgatjuk el α szöggel Ebbe az esetbe az áttérési képletek si ( ) si λ ϕ α α si α si ( ϕ α) λ + λ λ + λ + λ si ϕ si ϕ si ϕ si ϕ π Ezekből az összefüggésekből ϕ eseté visszakapjuk a derékszögű koordiátaredszerek forgatásából már ismert összefüggéseket (lásd a komplex számok geometriai alkalmazásait) λ cos α λ + si α λ λ si α λ + cos α λ Gyakorlatok Mi az egyelete az y x + egyeletű egyeesek az ( O v v ) koordiátaredszerbe ha a) v ( ) v ( ) b) v ( ) v ( 4) Bizoyítsd be hogy az egyees egyelete mide ( O v v ) koordiátaredszerbe y ax + b alakú! Háy olya ( x x pot létezik amelyek a koordiátái a koordiátaredszer ) elforgatásával em változak? 4 Bizoyítsd be hogy az O középpotú körök ivariásak az összes O középpotú forgatásra ézve 5 Bizoyítsd be hogy a v v + v és u λ u 0 összefüggések függetleek a koordiátaredszerek megválasztásától Feladatok Bizoyítsd be hogy az előbbi paragrafusba tárgyalt traszformációk segítségével tetszőleges ( O v v ) koordiátaredszer átvihető egy ( O u u ) koordiátaredszerbe a) Írd fel az M( x y) pot koordiátáit egy α majd egy β szögű O körüli forgatás utá kapott redszerbe b) Az előbbi tulajdoság alapjá vezesd le a következő trigoometriai képleteket: cos( α+ β) cos αcos β si αsi β si ( α + β) si αcos β + cos αsi β

10 0 Koordiátaredszerek mátrixok Lieáris leképezések és mátrixok Az eddig vizsgált koordiáta-traszformációk függvéykét is értelmezhetők ugyais az mide eleméek (az új koordiátákak) megfeleltetük egy elemet az -ből (az eredeti koordiátákat) Így az f : f ( λ λ ) ( αλ + βλ α λ + β λ ) függvéyt defiiáltuk Korábba már láttuk hogy a koordiáta-traszformációk kompatibilisek az -be értelmezett két művelettel (a skalárral való szorzással és az összeadással) Potosabba az összeg képe a képelemek összege és a szorzat képe a képelemek ugyaazzal a skalárral való szorzata Ezek a tulajdoságok szimbólumok segítségével a következőképpe fejezhetők ki: f ( x + y) f ( x) + f ( y) x y f ( λx) λf ( x) x λ A továbbiakba az ilye tulajdoságú függvéyeket lieáris leképezésekek evezzük m * Értelmezés Az f : függvéyt ( m ) lieárisak evezzük ha f ( x + y) f ( x) + f ( y) x y f ( λx) λf ( x) x λ Az értelmezésbe szereplő két feltétel egybeolvasztható a következő módo: m Tulajdoság Az f : függvéy potosa akkor lieáris ha f ( αx + βy) αf ( x) + βf ( y) x y α β Bizoyítás Ha f lieáris akkor f ( αx + βy) f ( αx) + f ( βy) αf ( x) + βf ( y) bármely x y és bármely α β eseté Ha teljesül az adott összefüggés akkor β 0 eseté az f ( αx) αf ( x) x és α összefüggéshez jutuk míg α β eseté az f ( x + y) f ( x) + f ( y ) x y összefüggéshez Tehát f lieáris Ez a tulajdoság általáosabba is igaz m Tulajdoság Ha az f : leképezés lieáris akkor p p f αkx k αkf ( k) x k k x k αk k p p Bizoyítás p eseté már bizoyítottuk tehát a matematikai idukció elve alapjá elégséges bizoyítai hogy ha igaz p -re akkor igaz ( p + ) eseté is p+ p p f αkxk f αkxk αp x + + p+ f αkx k + f ( αp+ xp+ ) k k k p p+ αkf ( xk) αp+ f ( xp+ ) αkf ( xk) + k k

11 Koordiátaredszerek mátrixok A lieáris leképezések éháy alaptulajdoságát köye igazolhatjuk: m Tétel Ha f f : lieáris leképezések akkor az f f+ f leképezés is lieáris m Ha az f 0 : leképezés lieáris akkor az f λ f0 leképezés is lieáris bármely λ eseté m m p Ha f : és f : lieáris leképezések akkor f f is lieáris m 4 Ha az f : lieáris leképezés bektív akkor az iverze is lieáris Bizoyítás f ( αx + βy) αf ( x) + βf ( y) x y és α β f ( αx + βy) αf ( x) + βf ( y) Összeadva az egyelőségek megfelelő oldalait kapjuk hogy f ( αx + βy) αf ( x) + βf ( y) x y és α β Tehát f lieáris f ( αx + βy) αf ( x) + βf 0 ( y) x y és α β 0 0 λf ( ) ( ( ) 0 αx + βy α λf0 x ) + β( λf0( y) ) x y és α β λ tehát f lieáris ( f )( ) ( ( )) ( ) f αx + βy f f αx + βy f( αf x + βf( y) ) αf ( ( )) ( ( )) ( )( ) f x + βf f y α f f x + β( f f)( y) bármely x y és bármely α β eseté tehát f lieáris 4 Ha f : m lieáris és bektív akkor f z x f x ( ) ( ) f : z m és Eszerit ha f ( αx + βy) αf ( x) + βf ( y) x y és α β akkor αx + βy f ( αf ( x) + βf ( y) ) x y és α β m De f bektív tehát bármely uv eseté létezik x y úgy hogy u f és v f ( y) Ezekkel a jelölésekkel írhatjuk hogy f ( u ) α + βv αx + βy αf ( u) + βf ( v) Tehát f lieáris ( x) m u v és α β m E paragrafus célja meghatározi az összes f : lieáris függvéy alakját ha m { } eset m Az f : lieáris függvéyekre f ( x ) f ( x ) x f ( ) tehát f ( x) ax x ahol a rögzített szám eset és m A második összefüggés alapjá f ( x ) f ( x ) xf ( ) x ( a b) x ahol a b rögzítettek

12 Koordiátaredszerek mátrixok eset és m A második összefüggés alapjá f ( x) f ( x ) xf ( ) x ( a b c) x ahol a b c rögzített számok 4 eset és m f ( x x ) f ( x 0) + (0 x ) f( x 0)) + f( (0 x ) fx ( ( 0) ) + fx ( (0 ) ) x f( ( 0 ) + xf( (0 ) ) x a+ x b ahol a és b rögzített valós számok 5 eset és m f(( x x )) x f( ( 0) ) + x f( (0 ) ) x ( a b ) + x ( a b ) ( xa + xa xb + xb) ( x x ) 6 eset és m f(( x x ) x f( ( 0) ) + x f( (0 ) ) x ( a b c ) + x ( a b c ) ( xa + xa xb + xb xc + xc) ( x x ) 7 eset és m f( ( x x x )) f( ( x 0 0) + (0 x x )) f( x ( 0 0) ) + f(0 x x ) fx ( (00)) + fx ( (00)) + fx ( (00)) x f( (00)) + x f( (00)) + x f( (00)) xa + xb + xc ( x x x ) ahol a b c rögzített 8 eset és m f(( x x x )) x f( (00)) + x f( (00)) + x f( (00)) x ( a b ) + x ( a b ) + x ( a b ) ( xa + xa + xa xb + xb + xb) ( x x x ) ahol a a b b c c rögzített 9 eset és m f(( x x x )) x f( (00)) + x f( (00)) + x f( (00)) x ( a b c ) + x ( a b c ) + x ( a b c ) ( xa + xa + xa xb + xb + xb xc + xc + xc) ( x x x ) ahol ai b i ci (i ) rögzített valós számok Látható hogy tetszőleges m és eseté hasoló a helyzet Ha e ( ) i i i akkor x ( x x x x ) felírható alakba és ezáltal x xi i i tehát ha ( ) i e f ( x) f x i ei xif ( ei) i i f e -ek a j -edik kompoese ( j m ) a azaz fe ( ) ( a a a a ) i i i im

13 Koordiátaredszerek mátrixok ( ) i j i akkor az f ( x ) j -edik kompoese x a Ha f x -el jelöljük az f ( x ) j -edik kompoesét akkor az f ( x) x a ( j m ) összefüggéshez jutuk j i i A köyebb megértés valamit az írásmód egyszerűsítése céljából újabb jelöléseket vezetük be Az előbbi összefüggéseket írhatjuk a következő alakba: f ( x) a x + a x + a x + + a x f ( x) a x + a x + a x + + a x fm( x) a x + a x + a x + + a m m m mx Látható hogy előyösebb f ( x) kompoeseit oszlopba íri mert így köyebbe át lehet láti az egyes tagok idexeit Ebbe az esetbe az elemeit is oszlopba kell írjuk (mert f ( x ) is egy ilye elem) tehát az f ( x) f ( ) j x illetve j m x [ x ] i i jelölés a következőket jeleti: f ( x) x f ( x) x f ( x) és x f ( ) m x x m (azért írjuk szögletes zárójelbe hogy az eddigi jelöléstől meg tudjuk külöbözteti) Az a számokat egy táblázatba redezhetjük úgy hogy az i -edik oszlop j - i j m edik sorába kerüljö az a Ez a táblázat az f ( e ) j f ( e ) j m j f ( e ) j m j j m m oszlopokból áll és egy-egy ilye táblázat egyértelműe jellemzi az f : lieáris leképezést A továbbiakba ezt a táblázatot az a ji j m szimbólummal jelöljük i ( m sora és oszlopa va) és az f mátrixáak evezzük Kisebb táblázatok eseté kiírjuk aak mide elemét Példák Az f : f(( x x )) ( x + x x + x ) függvéy mátrixa M Az f : f(( x x )) 7 x x x + x x + x 7 függvéy mátrixa M

14 4 Koordiátaredszerek mátrixok Az f : f(( x x x )) ( x + x + x x + x x ) függvéy mátrixa M Értelmezés Az m sort és oszlopot tartalmazó valós elemű táblázatok halmazát M ( )-rel jelöljük és m -es valós mátrixokak evezzük m Hasolóa M m ( X ) azo az m -es mátrixok halmazát jelöli amelyekek mide eleme X -ből va Az -es mátrixot égyzetes mátrixak evezzük és az M ( ) jelölést haszáljuk Megjegyzés Egy m -es X -beli elemeket tartalmazó mátrix felfogható egy F : { } { m} X függvéykét is Gyakorlatok Melyek lieárisak az alábbi leképezések közül? a) f : f ( x) x + x b) f : f ( x) ( x x ) x c) f : d) f : e) f : Írd fel az f : f( ( x x )) x + x x ( x x ) f( ( x x x )) ( x x x x x ) ( x x x ) f( ( x x )) ( x + x x x x + x ) ( x x ) és g lieáris leképezések mátrixát ha + + : a) fx ( x) (x x x + x x + x) ( x x ) b) g ( x x x ) (x + x x x x + x x + x + x ) ( x x x ) Írd fel a következő mátrixokhoz tartozó lieáris leképezéseket: a b a) M 0 b) M c) M b a d) M Megjegyzés Látható hogy rögzített koordiátaredszer eseté a lieáris leképezés mátrixa egyértelműe meghatározott 4 Műveletek mátrixokkal m Feladat Milye szabály szerit kapható meg a g : g( x) λ f ( x) m lieáris függvéy mátrixa az f : lieáris függvéy mátrixából ha λ Megoldás A ge () λ fe () i egyelőségek alapjá az f mátrixáak i i mide elemét kell λ -val szorozi Ez a tulajdoság képezi a következő értelmezés alapját: Értelmezés Ha A a i és λ akkor λa λ a i j m j m

15 Koordiátaredszerek mátrixok 5 Feladat Számítsuk ki az : m f lieáris leképezések mátrixaiak m függvéyébe az f : f f + f lieáris leképezés mátrixát Megoldás Az f ( e ) f ( e ) + f ( e ) i egyelőségek alapjá az f mátrixát i i i megkapjuk az és f leképezések mátrixaiból ha a megfelelő elemeket összeadjuk f Ez a tulajdoság képezi a következő értelmezés alapját: Értelmezés Ha A és B Mm ( ) A a i A+ B a b + B b és i j m j m i j m akkor Feladat Számítsuk ki az f f( x x x ) a x + bx + cx és f : ( ) f x ( a x b x c x : lieáris függvéyek összetett függvéyeiek mátrixát ) a Megoldás Az f + mátrixa M a b c míg az f mátrixa M b c f( f ( x ) f( ( ax bx cx) ) a ax+ b bx+ b bx ( aa + bb + cc) x f ( f ( x x x )) f ( a x + bx + c x ) ( aax + abx + acx bax + bbx + bcx cax + cbx + ccx ) tehát f f mátrixa -es és M [ ] aa + bb + cc alakú míg f f mátrixa ab ac aa -as és M ba bb bc alakú cb cc ca Ez a tulajdoság szolgál a mátrixok szorzásáak alapjául Azt fogjuk modai hogy M M M és M M M Általába az A és B mátrix szorzatát akkor értelmezzük ha a hozzájuk tartozó f A és f B lieáris leképezések összetehetők és az fa fb lieáris leképezés mátrixát evezzük A B szorzatak Ez az értelmezés agyo boyolult ezért olya szabályt kell levezetük amely csak a mátrixok elemeit haszálja Az előbbi feladat alapjá írható hogy a a aa ab ac a b c b [ aa + bb + cc ] (*) és b a b c ba bb bc c c ca cb cc Megjegyzés Látható hogy általába A B B A Próbáljuk további sajátos esetek vizsgálatából rájöi az általáos szabályra Az első kérdés amelyre választ keresük az hogy mikor szorozható össze egy A mátrix egy m B mátrixszal Ha A M ( ) akkor létezik olya f : amelyek A a mátrixa Hasolóa ha B m M p ( ) akkor létezik egy olya q A f B : q p amelyhez

16 6 Koordiátaredszerek mátrixok redelt mátrix éppe a B Az A B szorzat akkor létezik ha az fa fb összetett függvéy értelmezett vagyis ha p Eszerit az A B szorzat csakis akkor létezik ha az A oszlopaiak száma egyelő a B soraiak számával Ebből az is látszik hogy egy m -es és egy q-s méretű mátrix szorzata egy m q -s mátrix a Tekitsük az A B és b mátrixokat Az eddigiek alapjá az A B c szorzat létezik és egy -es mátrix Az : : A A B A B fa ( ) ) f ( x x x ) (x + x + x x + x + ) és f ) ( ax bx cx össze- x (x ) B tettje f f : f f ( x) ( a + b + c) x ( a + b + c x) tehát a + b + c A B a + b + c Ebből látszik hogy előbb az A első sorát szoroztuk a (* ) szabály szerit a B -vel (ebből kaptuk a szorzat első sorát) majd az A második sorát szoroztuk (* ) szabály szerit B -vel és így kaptuk a szorzat második sorát Ez a tulajdoság általáosítható: Tétel Ha A M m () és B M p( ) akkor a C A B mátrixra igazak a következők: C M m p () c a ikbkj (c az A -edik soráak ( a ) és a B j -edik oszlopáak ( b b b ) a i j skaláris szorzata) i ai i k a j j Példák 0 0 ( ) ( ) + 0( 4) + ( ) ( ) + + ( 4) + ( 4) + ( 4) ( ) ( ) A továbbiakba szükségük lesz éháy sajátos mátrixra Értelmezés Az f : f ( x ) x bármely x eseté leképezés mátrixát egységmátrixak evezzük és I -el jelöljük Tulajdoság I 0 0 tehát ha δ az I i -edik soráak és j -edik oszlopáak f B

17 Koordiátaredszerek mátrixok 7 ha i j eleme akkor δ (ezt Kroecker szimbólumak is evezzük) 0 ha i j A I I A A bármely A M ( ) eseté Bizoyítás 0 f ( e i ) e i tehát ha e i akkor f ( e i ) i -edik kompoese és a többi 0 0 A szorzás értelmezése alapjá a C A mátrix elemei c I a δ ik kj k alakúak A Kroecker szimbólum értelmezése alapjá ebbe az összegbe csak egy tag marad az amelybe k j Így c a i j tehát C A (valós mátrixok esetébe a mátrixokhoz tartozó lieáris leképezések segítségével az f f f azoosságra vezetődik vissza a vizsgált tulajdoság ) m Értelmezés Az f : f ( x ) (0000) bármely x -re leképezés mátrixát ullmátrixak evezzük és 0 -el jelöljük (Ha m akkor egyszerűe csak 0 Tulajdoság 0 m mide eleme 0 m -et íruk) Nyilvávaló a következő három tulajdoság: A A A bármely A M ( ) eseté m m m m A+ ( A ) ( A) + A 0 m A Mm ( ) ahol A A Az értelmezett műveletek segítségével most már kelethetjük a következő tételt: Tétel Ha f : lieáris leképezés akkor létezik olya A M m ( ) mátrix amelyre f ( x) A x bármely x eseté Az A mátrix oszlopai az f ( e i ) vektorok Ugyaakkor látható hogy a koordiáta-traszformációk és lieáris leképezések taulmáyozásáál A x B m alakú egyeletredszerekhez jutuk ahol A M ( ) adott mátrix b adott vektor és x ismeretle Az ilye redszereket evezzük lieáris egyeletredszerek 5 A műveletek tulajdoságai A mátrixokkal végzett műveleteket a függvéyekkel végzett műveletek segítségével értelmezhetjük Az értelmezések alapjá a műveletek tulajdoságai (kommutativitás asszociativitás stb) átöröklődek a mátrixokra is Ezek a tulajdoságok igazolhatók a függvéyek felhaszálása élkül is A továbbiakba felsoroljuk ezeket a tulajdoságokat és éháyat be is bizoyítuk m

18 8 Koordiátaredszerek mátrixok Tétel A+ B B + A A B M ( ) m ( A+ B) + C A+ ( B + C) A B C M m ( ) A+ + A A A M ( ) 0m 0m m 4 A+ ( A ) ( A) + A 0 m A M m ( ) 5 α ( β A) ( αβ) A α β A M ( ) 6 α ( A+ B) α A+ αb m α A B M ( ) m 7 ( α+ β) A αa+ βa α β A M ( ) 8 A ( B C) ( A B) C A M ( ) B M ( ) C M ( ) m 9 A ( B + C) AB + AC A M ( ) BC M ( ) m m p pq m 0 ( B + C) A BA+ CA A M ( ) B C M ( ) A I I A A A M ( ) p m Bizoyítás () Legye D A + () B és D B + A Az értelmezés alapjá () () d a + b és d a + b ha i és j m De a + b b + a () tehát d ( d ) és így D () D ( ) Hasolóa igazolható a 4 5 és 6 tulajdoság (mert az itt szereplő műveleteket elemekét értelmeztük) Első bizoyítás (csak valós mátrixok esetébe) m p q p Tekitsük azokat az fa : fb : és fc : lieáris leképezéseket amelyekhez az A B és C mátrixok tartozak Az ( A B) C mátrix az ( fa fb) fc függvéyhez tartozik míg az A ( B C) mátrix az fa( fb fc) függvéyhez tartozik Mivel a függvéyek összetétele asszociatív ( f f ) f f f f Tehát ( A B) C A ( B C) A B C A ( B C) () Második bizoyítás Bevezetjük a következő jelöléseket A B D () () () () D () () D C E () E Mm q B C és A D Világos hogy E E ( ) () Az értelmezés alapjá () () dik ailblk e dik c kj p p () Tehát e ailb lk ckj ailblkckj l () Hasoló módo d lj blkckj () és így e a b c p k k l k l p () () e aildlj k l p il lk kj l k

19 Koordiátaredszerek mátrixok 9 Tehát az a kérdés hogy egy i j felcserélhető-e vagyis írhatjuk-e hogy x m x alakú összegbe az összegzési sorred x () * i j j i Vizsgáljuk meg midkét oldalát külö-külö Redezzük az ( i j m ) egy táblázatba úgy hogy az X x i m x j j m m x elemeket mátrixhoz jussuk -az i -edik sor elemeiek összege tehát x a sorösszegek összege i j vagyis a táblázat elemeiek összege m x -az j -edik sor elemeiek összege tehát x a oszlopösszegek összege i j i Mivel ebbe az esetbe is a mátrix elemeiek összegét számoltuk ki a (*) egyelőség () igaz Tehát e () e i m j q és így ( A B) C A ( B C) Értelmezés Ha A M ( ) akkor értelmezhetjük az A mátrix hatváyait a következő módo: 0 A I A A A A A A A A A A A A A 4 A A A A A A A A A A A + és általába A A A A szorzás asszociativitása biztosítja hogy a hatváyokra érvéyesek legyeek a következő tulajdoságok: m p m A A A + p m p A M ( ) m p m p ( A ) A m p A M ( ) m m m * ( λ A) λ A m A M ( ) λ Megoldott feladatok a b Bizoyítsuk be hogy ha A akkor A ( a + d) A+ ( ad bc) I c d O Bizoyítás a b a b a + bc ab + bd A A A c d c d ac + dc bc + d tehát a + bc ab + bd ( a + d) a ( a + d) b A ( a + d) A+ ( ad bc) I ac dc bc d + ( a + d) c ( a + d) d + + ad bc ad bc 0 0 0

20 0 Koordiátaredszerek mátrixok Megjegyzés Általába aza égyzetes mátrix főátlójá levő elemek összegét az A mátrix yomáak evezzük és TrA -val jelöljük Tehát ha A a akkor i j a b TrA aii Az ad bc külöbséget az A c d mátrix determiásáak i evezzük és deta -val jelöljük Így a feladatbeli egyelőség A ( Tr A) A+ ( deta) I 0 alakba írható A későbbiekbe erre az egyelőségre Cayley-Hamilto tétel ( ) éve foguk hivatkozi Oldjuk meg a egyeletredszert ha X Y M ( ) 8 5 X Y X + Y Megoldás Beszorozzuk az első egyelet midkét oldalát -vel és a második egyelet midkét oldalát -mal majd összeadjuk a kapott egyelőségek megfelelő oldalait: 6 0 4X 6Y 0 6 Így X Hasoló módo kapjuk hogy 9X + 6Y Y 4 X Megjegyzés A megoldásból látható hogy éha érdemes a mátrixokkal végzett műveletek tulajdoságát haszáli és em érdemes visszatéri a mátrix elemeire (Ha ugyais felírtuk vola hogy X x i és Y y i akkor hat darab -es j j egyeletredszert kellett vola megoldauk) Ezek a tulajdoságok a szorzás kommutativitásától és az osztástól eltekitve ugyaazok mit a valós (komplex) számokkal végzett műveletek tulajdoságai Bizoyítsuk be hogy ha A B M ( ) és AB BA akkor ( ) A+ B A + AB + B és A B ( A+ B)( B A)

21 Koordiátaredszerek mátrixok Bizoyítás ( A+ B) ( A+ B)( A+ B) ( A+ B) A+ ( A+ B) B A + BA+ AB + B A + AB + B ( A B)( A B) ( A B) A ( A B) B A BA AB B A B Megjegyzés Mivel a mátrixokkal végzett összeadás és szorzás a kommutativitástól eltekitve ugyaazokkal a tulajdoságokkal redelkezik ha egy feladat biztosítja a két mátrix szorzatáak felcserélhetőségét akkor az illető mátrixokkal ugyaolya algebrai műveleteket végezhetük mit a valós (komplex) számokkal (egyelőre az ivertálhatóságtól eltekitük) Így például Newto biomiális tételéek bizoyítása meg egyéb rövidített számolási szabályok is érvéyesek leszek Érvéyes tehát a következő tétel: Tétel Ha A B M ( ) és AB BA akkor ( ) k k k k k k a) A B A B ( A + A B + + AB + B ) k + k + k k k b) A + B ( A+ B) ( A A B + AB + B k ) k k k k k k k c) ( A+ B) A + CkA B + CkA B + + Ck AB + B A a A i j aii i 4 Ha akkor Tr Bizoyítsuk be a következő tulajdoságokat: a) Tr ( λ A) λ Tr A A M ( ) b) Tr( A+ B) Tr A+ Tr B A B M ( ) c) Tr ( A B) Tr( B A) A B M ( ) Bizoyítás ( ii ) a) Tr ( λ A) λa λ a λtr A i i b) Tr( A+ B) ( a + b ) a + b Tr A+ Tr B ii ii ii ii i i i c) Jelöljük C -vel és D -vel az A B illetve B A szorzatot ii Tr( AB) TrC c a b De a kettős összegzés eseté az összegzési sorred megcserélhető így sajátos esetbe Tr ( AB) Tr( BA) ii ji i i j Tr( BA) Tr D djj bjia j j i Alkalmazás Bizoyítsuk be hogy ha A B M ( ) akkor az AB BA I egyelőség em teljesülhet Bizoyítás Ha két mátrix egyelő akkor a yomuk is egyelő De Tr I és Tr( AB BA) Tr( AB) Tr( BA) 0 tehát az egyelőség em állhat fe

22 Koordiátaredszerek mátrixok 5 Tekitsük az lim A mátrixot Megoldás Az ( ) A a + A mátrixokat ha Számítsuk ki a A ( ) i j a ( ) mátrixsorozatról potosa akkor modjuk hogy koverges ha az ( sorozatok kovergesek i j eseté lim + lim 0 és lim lim 0 tehát lim A 0 Gyakorlatok Számítsd ki az A+ B A B A+ B mátrixokat ha A 0 és B 0 Oldd meg a következő egyeleteket: 7 5 a) + X 0 b) X Végezd el a kelölt műveleteket: 0 a) b) c) d) a a e) + 4 [ ] f) a b c b b 4 5 a b c c c a b c g) b c a ε ε ε ahol ε és ε a harmadredű egységgyökök ε c a b ε ε ε h) a b a b b a b a

23 Koordiátaredszerek mátrixok 4 Számítsd ki az A 0 mátrix -edik hatváyát ha {4} 5 Számítsd ki az A 5A+ 6I kifejezést ha A 5 6 Oldd meg a következő egyeletredszereket: 0 a) X Y b) X + Y I 4 4 X Y 0 X + Y Számítsd ki az A A és A mátrixokat ha A ε ε ε ε és ε egy harmadredű egységgyök 8 Oldd meg a következő egyeleteket: 0 a) X 0 X M ( ) b) X I X M ( ) 7 6 c) X 0 X M ( ) d) X 8 7 X M ( ) 9 Bizoyítsd be hogy végtele sok olya X M mátrix létezik amelyre A I 0 Határozd meg azokat az X M ( ) mátrixokat amelyekre X X k k ε ε Számítsd ki a összeget ahol ε harmadredű egységgyök és ε k 0 k k k ε ε ε Feladatok Határozd meg az A M ( ) mátrix alakját ha A X X A bármely X M ( ) k Bizoyítsd be hogy ha A 0 ( A M ( ) ) és k \{ } akkor A 0 Bizoyítsd be hogy ha A M ( ) akkor bármely k eseté létezik k α β úgy hogy A A k k k k I 4 Bizoyítsd be hogy ha A B M ( ) BA B és 4AB + I BA akkor AB BA

24 4 Koordiátaredszerek mátrixok a a b b 5 Adott az a a egyelőség Bizoyítsd be hogy ha a a a a számtai haladváyba va akkor b b b 4 b b 4 4 b és b 4 b is számtai haladváyt alkot 6 Bizoyítsd be hogy ha A M ( ) akkor végtele sok olya X M ( ) mátrix létezik amelyre X ( Tr A) X + ( det A) I 0 7 Bizoyítsd be hogy ha A B M ( ) és Tr A Tr B 0 valamit A + B A B akkor AB BA 8 Bizoyítsd be hogy ha A A A ( ) akkor a B A I mátrixra teljesül a B I egyelőség 9 Bizoyítsd be hogy ha A B M ( ) mátrixok mide sorába az elemek ( ) M összege akkor az A B szorzat is redelkezik ezzel a tulajdosággal 0 Ha A a t i akkor A -vel jelöljük a a ji i mátrixot és A j m j m traszpoáltjáak evezzük (úgy kapjuk az A mátrixból hogy az elemeit tükrözzük a főátlóra ézve) Bizoyítsd be hogy ( ) t t t A+ B A + B ( ) t t t A B B A t Egy A M ( ) mátrixot akkor evezük ortogoálisak ha A A I Határozd meg az összes M ( ) -beli ortogoális mátrixot Milye traszformáció mátrixa lehet ez? Bizoyítsd be hogy két ortogoális mátrix szorzata is ortogoális Az X M ( ) mátrixot főátlós mátrixak evezzük ha x 0 bármely i j eseté Bizoyítsd be hogy X potosa akkor főátlós mátrix ha X A A X bármely főátlós A mátrix eseté 4 Háy olya A Mm ( ) mátrix létezik amelyek mide eleme a { 0 } halmazba va? 5 Háy olya m -es mátrix létezik amelyek mide eleme + vagy és mide sorába és oszlopába az elemek szorzata 6 Mátrixok hatváyozása 6 Heurisztikus godolatmeetek A műveletek tulajdoságaiak vizsgálatakor láttuk hogy ha A Mm ( ) akkor bármely eseté rekurzíva értelmezhető az A -edik hatváya Gyakra szükségük lehet az A explicit alakjára (elemeire) Ebbe a paragrafusba olya módszereket ismertetük amelyekek segítségével külöösebb találékoyság élkül is ki tudjuk számítai az A -t ha A M ( ) vagy A M ( ) Előbb próbáljuk éháy ilye feladatot megoldai mide egyéb előismeret élkül

25 Koordiátaredszerek mátrixok * Feladat Számítsuk ki A -t ( ) ha A Megoldás Kiszámítjuk A éháy hatváyát és megpróbáluk valamilye szabályszerűséget észrevei A A A A A 0 A 0 A A A 0 A 0 és így A 0 bármely Tehát ha A ha ha Feladat Számítsuk ki A -t ha A 0 Megoldás A A A A kiszámított hatváyok alapjá megsejthetjük hogy k k A 0 k Ezt matematikai idukció módszerével bizoyítjuk Feltételezzük hogy A A A A tehát a matematikai idukció elve alapjá A 0 bármely eseté a b * Feladat Számítsuk ki az A 0 a+ b (a b ) mátrix -edik hatváyát ( )

26 6 Koordiátaredszerek mátrixok Megoldás a b a b a ab + b A 0 a b 0 a b ( a + b) a ab b a b + a a b + ab + b A 0 ( a b) 0 a b ( a + b) 4 4 a a b + ab + b a b a 4a b + 6a b + 4ab + b 4 A 4 0 ( a b) 0 a b ( a + b) Az eddigi eredméyek alapjá megsejthetjük hogy bármely eseté a ( a + b) a A 0 ( a + b) () * Ezt a matematikai idukció módszerével igazolhatjuk A bizoyítás teljességéhez csak + az szükséges hogy A -et kiszámítsuk ha A a feltételezett egyelőséget teljesíti a ( a + b) a a b a a b + ( a + b) a a b + A + 0 ( a b) 0 a b ( a + b) a ( a + b) a + 0 ( a + b) tehát a matematikai idukció elve alapjá (*) teljesül Gyakorlatok Számítsd ki a következő mátrixok -edik hatváyát: x x 0 e e a 0 a 0 a x a) A e 0 0 b) A b c) A d) A a a 0 a 0 e) A 0 f) A 0 g) A 0 h) A i) A j) A A rekurzív sorozatok módszere Láthatjuk hogy ha A alakját megsejtjük akkor a bizoyítás a megoldás köyebb része Néha azoba em tudjuk azoal felíri az A alakját csak éháy elemét vagy az elemek közti összefüggést vesszük észre Ilyekor érdemes a hiáyzó elemek helyett sorozatokat bevezeti és ezekek a tulajdoságait vizsgáli

27 Koordiátaredszerek mátrixok 7 Feladat Számítsuk ki A -t ha A Megoldás Kiszámítuk éháy hatváyt: A 0 A 0 A Az eddigi számolások alapjá sejtésük körülbelül így éz ki:? A Persze a jobbik eset az amikor látjuk hogy az 6 0 számsorozatba az egymásutái számok külöbsége 4 Ez alapjá ugyais a jobb felső sarokba ( + ) áll Ha ezt valaki mégsem veszi észre akkor a következőképpe segítheti az idukcióját: a Feltételezhetjük hogy A 0 bármely eseté ahol ( a ) egy 0 0 sorozat A szorzás elvégzése sorá az a + a A A A egyelőséghez jutuk Ez bizoyítja hogy a feltételezésük helyes (tehát a főátló alatt valóba 0 áll a főátló -esek és felette ) és bármely eseté a a + + ( + ) A rekurzió alapjá a a + a a + ( ) a a + ( ) a a a + a + ( + ) a a ( ) + +

28 8 Koordiátaredszerek mátrixok ( + ) Tehát bármely eseté A Megjegyzés Ha a jobb felső sarok eleme sejtésből származott akkor ezt idukcióval szükséges igazoli míg a sorozat haszálata eseté az idukció felesleges (mert az idukciós lépést már elvégeztük!) Feladat Számítsuk ki az A mátrixot ha A 0 Megoldás A A A A 5 A 8 5 Az előbbi számok alapjá ehéz megmodai az -edik tag alakját viszot mideféle szabályosságot észlelhetük Például a mellékátló két eleme egyelő egymással a bal felső sarokbeli elem egyelő a mellékátló levő szám és a jobb alsó sarokba levő szám összegével ( ) az A elemeiből éháy átkerül A + -be a következő módo: az A bal felső + sarkába levő elem az A mellékátlójára kerül az A mellékátlójá levő pedig az A + jobb alsó sarkába a + b b Észrevételeik alapjá A b a alakú és a + b illetve b a + + b Ezekkel az idukciós feltevésekkel a + b b a + b a + b + A b a 0 a + b b tehát a matematikai idukció elve alapjá feltevésük helyes Így b a és a + b a + + b összefüggésből a+ a+ + a bármely eseté Ez egy lieáris rekurzió és az általáos tagja a c r + c r alakú ahol r az r r 0 karakterisztikus egyelet gyökei Az a és a 0 feltételekből a 5 a+ a+ és így A a a + Megjegyzés Az F a + jelöléssel a Fiboacci sorozat jelet meg tehát F F + A F F A következő módszerél láti fogjuk hogy egyáltalá em véletle hogy az A mátrix mide eleme ugyaabból a rekurzióból származik +

29 Koordiátaredszerek mátrixok 9 Gyakorlatok Számítsd ki a következő mátrixok -edik hatváyát a a a a 0 a a) A a a a b) A 0 b 0 c) A 0 a a a a 0 a 0 a a b a d) A b 0 b e) A f) A b a b 0 a 0 a b a 6 A karakterisztikus egyelet módszere a b A Cayley-Hamilto ( ) tétel alapjá ha A akkor c d A ( a + d) A ( ad bc) I Így bármely eseté + A ( a + d) A ( ad bc) A a b Tehát ha A bármely eseté akkor c d a+ b+ a+ b+ a b ( a + d) ( ad bc) c+ d + c+ d + c d Eszerit az ( a ) ( b ) ( c ) és ( d ) sorozatok ugyaazt az x ( a + d) x ( ad bc rekurziót teljesítik (csak a kezdőértékek mások) + + ) x Ez egy másodredű lieáris rekurzió amelyek megoldását cr + cr ha > 0 a ( c + c) r ha 0 r ( c cos ϕ+ c si ϕ) ha < 0 alakba keressük ahol az r ( a + d) r + ( ad bc) 0 egyelet diszkrimiása r r az egyelet gyökei > 0 eseté r az egyelet gyöke 0 eseté és r ( cos ϕ ± isi ϕ) a gyökök < 0 eseté (lásd az aalízis részt!) Az előbbiek alapjá bármely -es mátrix -edik hatváya kiszámolható Megjegyzés A Cayley-Hamilto tétel általáos ( -es mátrixokra voatkozó) alakjáak bizoyítása utá ezt a módszert kiterjeszthetjük tetszőleges mátrixokra is

30 0 Koordiátaredszerek mátrixok Megoldott feladatok 7 Számítsuk ki A -t ha A 4 Megoldás Tr A deta tehát a karakterisztikus egyelet r 8r és a gyökök r 5 valamit r a b A tehát ha A akkor c d a k 5 + k b k 5 + k4 c k5 5 + k6 d k7 5 + k8 ahol a k k k8 kostasokat a kezdeti feltételekből határozzuk meg Az a 7 és a 6 egyelőségek alapjá 5k + k 7 5k + 69k 6 tehát k és k Hasoló módo kapjuk a k k 4 k k 6 k 7 és k 8 értékeket tehát bármely eseté ( 5 ) 4 8 A Számítsuk ki A -t ha A Megoldás Tr A 4 deta ( ) 4 tehát a karakterisztikus egyelet a b r 4r és a gyökök r Ha A bármely eseté c d akkor az ( a ) ( b ) ( c ) és ( d ) sorozatok általáos tagjai ( k+ k) 0 4 alakba keresedők A 4 8 tehát a és a 0 alapjá k + k k + k 0 Ebből következik hogy k k Tehát a ( ) bármely eseté Hasoló számolások alapjá b c és d + ( + ) tehát bármely eseté

31 Koordiátaredszerek mátrixok ( ) A ( + ) 0 Számítsuk ki A -t ha A 4 Megoldás Tr A deta 4 tehát a karakterisztikus egyelet r r és a gyökök r ± i π π cos + isi Az a b A jelöléssel c d a π π cos + k si k Mivel A a k + k 0 redszerhez jutuk A megoldások k k tehát k + k π π a cos si Hasoló számolások eredméyekét π si + π b c si cos si d π π + Tehát π π π cos si si A 4 π π π si cos + si Megjegyzés Ezt az eredméyt köye meg is sejthetjük mert + 6 -ra a mellett megjeleő mátrix ugyaaz mit -re Ez a módszer alkalmas mide -es (sőt megfelelő kiterjesztéssel -es) mátrix hatváyozására Bizoyos feladatok esetébe létezek egyszerűbb lehetőségek A következő két módszer ilye egyszerűbb lehetőséget tár fel Gyakorlatok Számítsd ki a következő mátrixok -edik hatváyát: 4 a) A b) A 5 5 c) A

32 Koordiátaredszerek mátrixok a b 64 Az alakú mátrixok hatváyozása b a A koordiáta-traszformációk taulmáyozásáál láttuk hogy az α szögű forgatás mátrixa ilye alakú Sőt ha egy ilye forgatást egy yújtással összeteszük akkor bármilye ilye alakú mátrixot megkapuk mert a b a b cos si a b a b ϕ ϕ + + a b a b b a + + b a si ϕ cos ϕ a + b a + b ahol ϕ arctg b De darab ϕ szögű forgatás összetétele egy ϕ szögű forgatás és a cos ϕ si ϕ cos ϕ si ϕ így si ϕ osϕ si ϕ cosϕ () * c Megjegyzés A trigoometriai összefüggések alkalmazásával ez számolással is elleőrizhető ugyais cos ϕ si ϕ cos ϕ si ϕ si ϕ cosϕ si ϕ cosϕ cosϕcosϕ siϕ siϕ cosϕsiϕ + siϕcosϕ ( cos ϕ si ϕ si ϕ cos ϕ) cosϕ cos ϕ si ϕsiϕ cos( ϕ + ϕ) si ( ϕ + ϕ) si( ϕ + ϕ) cos( ϕ + ϕ) A (*) egyelőség alapjá a b cos ϕ si ϕ ( a b ) + b a si ϕ cos ϕ 65 A felbotás módszere ahol ϕ arctg b a A műveletek tulajdoságaiak vizsgálata sorá láttuk hogy ha AB BA ( A B M ( ) ) akkor k k k k k k ( A+ B) A + C A B + C A B + + C AB + B k k k k Tehát ha az X mátrix felbotható két egymással felcserélhető mátrix összegére akkor elégséges ezeket a mátrixokat hatváyozuk és a megjeleő kombiatorikus összegeket kiszámoluk A legegyszerűbb ha a felbotás egyik tagja α I alakú mert ekkor az α I B B αi egyelőség teljesül

33 Koordiátaredszerek mátrixok a b c a b Feladat Ezzel a módszerrel számítsuk ki az X 0 a + b és Y 0 a b 0 0 a mátrixok -edik hatváyát 0 b 0 b X a I + 0 b tehát szükséges megvizsgáli a B 0 b mátrix hatváyait 0 b 0 b 0 b B B és így azt sejthetjük hogy általába B 0 b 0 b 0 b + 0 b 0 b 0 b bármely eseté Mivel + 0 b 0 b az előbbi egyelőség helyes 0 b (a matematikai idukció elve alapjá) Másrészt ( a I ) a I tehát 0 X a I + Ca B + Ca B + Ca B + + Ca B a Ca b + Ca b + + C ab + b 0 a + Ca b + Ca b + + C ab + b Newto biomiális tétele alapjá a + C a b + C a b + + C ab + b ( a + b) a ( a + b) a és így X 0 ( a + b) 0 b c 0 b c Y a I b tehát C 0 0 b mátrix hatváyait érdemes kiszámítai 0 0 b Kapjuk hogy C és C tehát Y a I + C a C + C a C 0 a 0 0 Ca b Ca c 0 0 Ca b 0 a Ca b a

34 4 Koordiátaredszerek mátrixok ( ) a a b a c + a b 0 a a b 0 0 a Gyakorlatok Számítsd ki a következő mátrixok -edik hatváyát: a + b 0 a a 0 b a) A 0 b 0 b) A 0 a + b 0 a 0 a + b b 0 a c) A 0 d) A Feladatok cos x si x Számítsd ki az A mátrix -edik hatváyát és bizoyítsd be si x cos x hogy lim A Oldd meg az alábbi egyeleteket ha X M ( ) : a) X 4 6 b) X 0 0 6x + Számítsd ki az f : \ { } f ( x) függvéy edik iteráltját x + (az f f f függvéyt) 4 Az A M ( ) mátrix eseté jelöljük a b c és d -el az A mátrix elemeit Mi a szükséges és elégséges feltétele aak hogy az ( a ) ( b ) ( c ) és ( d ) sorozatok kovergesek legyeek?

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Koordinátageometria összefoglalás. d x x y y

Koordinátageometria összefoglalás. d x x y y Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA

MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA 1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Bevezetés az algebrába komplex számok

Bevezetés az algebrába komplex számok Bevezetés az algebrába komplex számok Wettl Ferec Algebra Taszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december 6.

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február II.forduló -10. osztály Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 016. február 11

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

Mátrixok 2017 Mátrixok

Mátrixok 2017 Mátrixok 2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4

Részletesebben

I. VEKTOROK, MÁTRIXOK

I. VEKTOROK, MÁTRIXOK 217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER 2004. október 15. Irodalom A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: ezek egyrészt elhangzanak az előadáson, másrészt megtalálják

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Függvények határértéke 69. III. Függvények határértéke

Függvények határértéke 69. III. Függvények határértéke Függvéyek határértéke 69 A határérték értelmezése III Függvéyek határértéke Ebbe a fejezetbe taulmáyozi fogjuk a függvéy határértékét egy potba A feladat így fogalmazható meg: Ha adott az f : D valós változójú

Részletesebben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!! 4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe

Részletesebben

Vektorok, mátrixok, lineáris egyenletrendszerek

Vektorok, mátrixok, lineáris egyenletrendszerek a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest

Algebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba

Részletesebben

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0

Irodalom. (a) A T, B T, (b) A + B, C + D, D C, (c) 3A, (d) AD, DA, B T A, 1 2 B = 1 C = A = 1 0 D = (a) 1 1 3, B T = = ( ) ; A T = 1 0 Irodalom ezek egyrészt el- A fogalmakat, definíciókat illetően két forrásra támaszkodhatnak: hangzanak az előadáson, másrészt megtalálják a jegyzetben: Szabó László: Bevezetés a lineáris algebrába, Polygon

Részletesebben

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1 Lieáris kódok Defiíció. Legye SF q. Ekkor S az F q test feletti vektortér. K lieáris kód, ha K az S k-dimeziós altere. [,k] q vagy [,k,d] q. Jelölések: F u eseté u oszlopvektor, u T (, k ) q sorvektor.

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Kalkulus gyakorlat - Megoldásvázlatok

Kalkulus gyakorlat - Megoldásvázlatok Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő

Részletesebben

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok

Algebra gyakorlat, 3. feladatsor, megoldásvázlatok Algebra gyakorlat, 3. feladatsor, megoldásvázlatok 1. a) Z(G), mert az egységelem yilvá felcserélhet mide G-beli elemmel. Továbbá Z(G) zárt a szorzásra, mert ha a, b Z(G), akkor tetsz leges g G-re (ab)g

Részletesebben

FELVÉTELI VIZSGA, szeptember 12.

FELVÉTELI VIZSGA, szeptember 12. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Matematika A2 tételek

Matematika A2 tételek Matematika A2 tételek. Tétel Csoport: Defiíció: Legye A olya halamaz, amelye értelmezve va egy * művelet. Akkor modjuk, hogy A csoportot akkor a * műveletre ézve, ha Gyűrű: - a * művelet asszociatív -

Részletesebben

A primitív függvény és a határozatlan integrál 7

A primitív függvény és a határozatlan integrál 7 A primitív függvéy és a határozatla itegrál 7 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Korábbi taulmáyaitok sorá láthattátok, hogy sok műveletek, függvéyek va fordított művelete, iverz függvéye

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben

3.4. gyakorlat. Matematika B1X február 1819.

3.4. gyakorlat. Matematika B1X február 1819. 3.4. gyakorlat Matematika B1X 2003. február 1819. 1. A harmadik el adás (II. 17.) 1.1. Számosság Egyel számosságú halmazok. Véges, megszámlálhatóa végtele és kotiuum számosságú halmazok. Hatváyhalmaz számossága

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK Kitűzött feladatok Ijektivitás és egyéb tulajdoságok 69 1. KITŰZÖTT FELADATOK Határozd meg az összes szigorúa mooto f:z Z függvéyt, amely teljesíti az f ( xy) = f ( y), x, y Z összefüggést és létezik k

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl).

Bizonyítások. 1) a) Értelmezzük a valós számok halmazán az f függvényt az képlettel! (A k paraméter valós számot jelöl). ) a) Értelmezzük a valós számok halmazá az f függvéyt az f x = x + kx + 9x képlettel! (A k paraméter valós számot jelöl) ( ) Számítsa ki, hogy k mely értéke eseté lesz x = a függvéyek lokális szélsőértékhelye

Részletesebben

I. rész. Valós számok

I. rész. Valós számok I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =

Részletesebben

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Vektorterek. =a gyakorlatokon megoldásra ajánlott Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

BSc Analízis I. előadásjegyzet

BSc Analízis I. előadásjegyzet BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ

Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854):  ' #$ * $ ( ' $*  ' #µ Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből

Részletesebben

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február osztály -- I. forduló

XXVI. Erdélyi Magyar Matematikaverseny Zilah, február osztály -- I. forduló Miisterul Educaţiei Națioale și Cercetării Știițifice Subiecte petru Etapa aţioală a Cocursului de Matematică al Liceelor Maghiare di Româia XXVI. Erdélyi Magyar Matematikaversey Zilah, 06. február 4..

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

B1 teszt 87. 1, x = 0 sorozat határértéke

B1 teszt 87. 1, x = 0 sorozat határértéke B teszt 87 B teszt A világot csak hat szám vezérli. (Marti Rees) Ezt a köyvet öt betű.. Az = + +,, = sorozat határértéke ( + ) a) ; b) ; c) d) ; e) em létezik.. A lim{ e } határérték ({ } az törtrésze)

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz

Műveletek mátrixokkal. Kalkulus. 2018/2019 ősz 2018/2019 ősz Elérhetőségek Előadó: (safaro@math.bme.hu) Fogadóóra: hétfő 9-10 (H épület 3. emelet 310-es ajtó) A pontos tárgykövetelmények a www.math.bme.hu/~safaro/kalkulus oldalon találhatóak. A mátrix

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben