A Venn-Euler- diagram és a logikai szita
|
|
- Attila Kocsis
- 9 évvel ezelőtt
- Látták:
Átírás
1 A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak emcsak a geometriába va fotos szerepük, haem a legkülöbözőbb feladatok megoldásába is segíthetik a kiidulási adatok elredezését, összefüggések felismerését, megköyíthetik a feltárt összefüggések későbbi felidézését és elleőrzését. A matematika külöböző területei már régóta haszálatosak az úgyevezett Ve- és Ve-Euler-diagramok, a halmazok közötti kapcsolatok, viszoyok tükrözésére, adott tulajdosággal redelkező halmazok és azok számosságáak (elemei számáak) meghatározására, valamit egyes állítások logikai értékéek megállapítására, logikai következtetések vizsgálatára (ezért is evezik ezeket még halmazábrákak is). Egy Ve-diagramot körökkel, vagy más zárt görbékkel, vagy eél általáosabb alakzatokkal, például egyszerű zárt görbével aduk meg a síko. Mide görbe belseje valamilye halmazt ábrázol, a zárt görbé kívül eső rész pedig aak komplemeterét. Az {A, A 2,..., A } görbecsaládot Ve-diagramak evezzük, ha a görbék a síkot potosa 2 diszjukt tartomáyra botják, és a tartomáyok megegyezek az összes lehetséges X X 2... X k alakú halmazzal, k {, 2,..., }, ahol mide X i helyére az A i egyszerű, zárt görbe belsejét vagy külsejét írhatjuk, i {, 2,..., }. A körvoalakról az egyszerű zárt görbékre törtéő általáosítás okára yomba rávilágít az alábbi észrevétel, mely már Ve 880-as dolgozatába megtalálható: Bármely diagramba legfeljebb három körvoal fordulhat elő. A bizoyítás léyege: darab körvoal a síkot legfeljebb részre osztja. Ezért a Ve-diagram értelmezése alapjá következik: 3. Az =, = 2 és = 3 esetekek megfelelő diagramok a síkot redre 2, 2 2, 2 3 részre osztják, lásd a következő ábrákat: Másfajta görbékkel bármely értékre lehet görbét tartalmazó Ve-diagramot készítei (lásd ugyaott). A probléma ellebe ott va, hogy az >3 szám övekedésével az ábrák egyre boyolultabbak, eheze haszálhatók feladatok megoldására. Nézzük éháyat = 4 eseté:
2 Mid a égy ábra a síkot 6 diszjuk tartomáyra osztja, mid a égy eset általáosítható > 4 eseté is, a második talá a legegyszerűbb és a legközelebb áll a körrel alkotott diagramokhoz, hisze ez ellipszisekkel készült. A harmadik a kifli alak miatt általáosítható, a mellékelt ábrá látható az =5 eset. A egyediket téglalapokból készítettük. Említésre méltók Edwards kostrukciói, aki a Vediagramot gömbfelszíe készíti el, majd kivetíti a síkba. Az első három halmazt három egymást metsző főkör határolja, a egyediké meg úgy kayarog, mit teiszlabdá a varrat. A visszavetítés utá fogaskerék alakú halmazok keletkezek, ahol mide egyes további halmazak egyre több foga va. Íme éháy kostrukció: Köye belátható, hogy > 3 eseté az egyes tartomáyok azoosítása már körülméyes. Térjük vissza a Ve-diagramok beidított taulmáyozásához. Az X X 2... X k alakú halmazokat atomokak evezzük. Ha a síkot görbe p síkdarabra vágja és a létrejövő atomok száma a, akkor yilvávalóa a p. A Ve-diagramokra teljesül: a = p = 2. Ezekívül az a p 2 esetekbe is haszált diagramokkal is gyakra találkozhatuk. Íme éháy példa: Az első esetbe a p 2 (a = 7, hisze a 6-os számmal jelölt síkdarabok ugyaahhoz az atomhoz tartozak), a második esetbe 5 = a = p 2. Az ilye típusú diagramot általába Ve Euler-diagramak evezik. Ez a megevezés ikább hazákba hoosodott meg, más országokba ikább tágabb értelembe vett, ugyacsak Ve-diagramokak evezik. Érdemes megjegyezi, hogy az értelmezés szeriti Ve-diagram görbéje által határolt síkbeli részek között mide lehetséges atom létezik. Más szóval a Ve-diagram eseté midegyik X X 2... X k alakú halmaz létezik, míg a Ve Euler-diagram eseté ez em föltétleül igaz. Tehát a Ve-diagramok az úgyevezett Ve Euler-diagramok részhalmazát képezik. Az elkövetkezőkbe bemutatjuk e diagramok éháy alkalmazási lehetőségét. Egyik azoali alkalmazását az úgyevezett logikai szita-formulák képezik. A továbbiakba jelöljük X vagy card( X ) az X halmaz elemeiek a számát (számosságát). A kétkörös Ve-Euler diagramról leolvasható, hogy két halmaz eseté igaz, hogy A B = A + B A B (). Továbbá, ha X S, akkor yilvávaló, hogy S X = S X, és most az X = A B választással, az A, B S feltételekkel, az () alapjá kapjuk, hogy S ( A B) = S A B + A B ( ). Az () és ( ) összefüggéseket 2
3 másodredű szita-formuláak, vagy egyszerűe logikai szitáak hívjuk (a logikai szitára még haszálatos a befoglalás-kizárás formula elevezés is). Hasoló összefüggést állapíthatuk meg három halmaz eseté is, ha a három körös Vediagramot követjük. Ez alapjá felírható, hogy A B C = A + B + C A B B C C A + A B C (2). Az előbbiek mitájára, az A, B, C S feltételek mellett levezethető a következő összefüggés is: S ( A B C) = S A B C + A B + B C + C A A B C (2 ). A (2) és a (2 ) képezik a harmadredű szita-formulákat. Természetese a szita-formula érvéyes marad háromál több tag eseté is. Eek az általáos alakja: Ai = Ai Ai Aj + Ai Aj Ak ( ) Ai i= i= j< j j< j< k i= U (3) és továbbá + S U Ai = S Ai + Ai Aj Ai Aj Ak ( ) Ai (3 ). i= i= j< j j< j< k i= A (3) és a (3 ) -ed redű szita-formulákat a matematikai idukcióval is bizoyíthatjuk. A továbbiakba olya alkalmazásokat mutatuk be, amelyekek a megoldása Ve- Euler diagrammal és a szita-formulával egyarát elvégezhetők, de mutatuk be olya feladatokat is, amelyekél az egyik vagy a másik módszer előyösebb.. feladat: Egy fagyisál kétféle fagyiból lehet választai: csoki és vaília. -e állak sorba a fagyisál 5-e kértek csokis fagyit. Vaíliát 3-mal többe kértek mit csak csokist. Háya kértek csokis és vaíliás fagyit is? Megoldás: Jelölje Cs illetve V azok halmazát akik csokis illetve vaíliás fagyit vásároltak. Készítsük el a mellékelt ábrá látható Ve-Euler diagramot. Jelölje Cs V = x akkor Cs V = 5 x és V Cs = 8 x, ezért az (5-x)+x+(8-x)= egyeletből x=2. 2. feladat: Háy darab olya kétjegyű pozitív egész szám va, amely osztható 5-tel, vagy 6-tal, esetleg mid a kettővel? Megoldás: Összese 99-9=90 kétjegyű szám va, ebből kiszámoljuk, hogy háy 5-tel és 6-tal osztható kétjegyű szám va. Legye A= {0,5,,95} az 5-tel osztható kétjegyű számok halmaza és B= {2,8,24,,96} a 6-tal osztható kétjegyű számok halmaza. Tehát A B = {30, 60,90} a 30-cal osztható kétjegyű számok halmaza. 99 Ekkor A 99 = = 9 = 8 5, 6 5 B = = = 6 (ki kellett veük az 5 és a 6 99 egyjegyű számokat), továbbá A B = = Az ()-es szita-formula alapjá felírható, hogy A B = A + B A B = = 30. Tehát 30 kétjegyű szám osztható 5-tel vagy 6-tal. 3. feladat: Háy darab olya kétjegyű pozitív egész szám va, amely em osztható sem 5-tel, sem 6-tal? Megoldás: Erre a kérdésre úgy is válaszolhatuk, hogy figyelembe vesszük, hogy az előbbi feladat alapjá 30 szám osztható 5-tel vagy 6-tal, tehát 90-30=60 em osztható egyikkel sem. Ellebe a feladat megoldható a komplemeter szita-formulával: 3
4 99 S ( A B) = S A B + A B, ahol A = = 9 = 8 5, B 99 = = 6 = 5 6, A B = 3, és a kétjegyű számok száma S = 90. Tehát S ( A B) = = feladat: Háyféle képpe alakíthatuk ki 6 betűs szavakat az a, e, m, o, u, y betűkkel úgy, hogy e tartalmazzák a me és you szavakat? Megoldás: Legyeek S= az összes szó, A= a me-t tartalmazó szavak, B= a you-t tartalmazó szavak. A komplemeter szitaképlet: S ( A B) = S A B + A B. De S =6!, A =5! (mert me, a, o, u, y száma 5), B =4! (mert you, a, m, e száma 4), A B =3! (mert a me, you, a száma 3). Tehát a válasz: = feladat: Az egyeteme 200-a taulak agolt, 50-e spayolt és 40-e fraciát. 80-a agolt és fraciát, 20-a agolt és spayolt, 0-e spayolt és fraciát, 5-e pedig midhárom yelvet taulják. Háya taulak összese yelvet? Megoldás: Betről kifele haladva töltjük ki a halmazábrát. Először a belső 5- öt írjuk be. Ezutá a 80-5= 75-öt, a 20-5= 5-öt, végül a 80-5= 75-öt. Ezutá kitöltjük a legkülső tartomáyokat: 200- (5+5+75)= 05, 50- (5+5+5)=25, 40- (5+5+75)= 55. Ezutá összeadva a tartomáyokba levő számokat 385 adódik. A feladatot a szita-formulával is megoldhatjuk: legyeek A={agolul tudók}, S={spayolul tudók}, F={fraciául tudók}. Tehát: A S F = A + S + F A S S F F A + A S F = = = 385. Tehát eyie taulják valamelyik yelvet. 6. feladat: Egy osztály 32 taulója közül 6-a taulak agolul, 3-a fraciául, 3-a émetül. Az említett yelvek közül 5-e émetül és fraciául is, 7-e émetül és agolul is, 6-a agolul és fraciául is taulak. Négye midhárom yelvet taulják. Háya em taulják az említett yelvek egyikét sem? Megoldás: Betről kifele haladva töltjük ki a halmazábrát. Először a belső 4-est írtuk be, azutá 5-4=, 7-4=3, 6-4=2, majd 6-(3+4+2)= 7, 3- (+4+2)= 6, )= 5. Az ábrá látható összes számok összege 28, és mivel 32-28= 4, ezért ez a válasz. A szita-formulával S ( A F N) = = S A F N + A F + F N + N A A F N = = = 4, vagyis eyi tauló em taulja a három yelv közül egyiket sem. 7. feladat: Az osztályba 38 tauló va. Mideki űzi a következő sportágak valamelyikét: atlétika, röplabda, úszás. 9-e atletizálak, 2-e röplabdázak, 2 tauló úszik; 7 tauló atletizál és röplabdázik, 6 tauló atletizál és úszik, 3 tauló röplabdázik és úszik. Háy tauló űzi midhárom sportot? Megoldás: Legye A B C = x és betről kifele haladva töltjük ki a halmazábrát, majd összegezzük a bee látható kifejezéseket: + x x + 3+ x + 7 x + 3 x + 6 x + x = 38 x=2 ( ) ( ) ( ) ( ) ( ) ( ) Szita-formulával is dolgozhatuk. Legyeek: A={atletizálók}, R={röplabdázók}, U={úszók}. Tehát felírható, hogy: 4
5 A R U = A + R + U A R R U U A + A R U. Beírva a számosságokat kapjuk, hogy: 38 = A R U, vagyis A R U = 2 tauló űzi midhárom sportot. 8. feladat: Egy osztály létszáma 30. Az osztályba három yelvet taulak: agolt, oroszt és fraciát, és mide diák taulja legalább az egyik yelvet. Agolul 4-e, oroszul 5-e, fraciául 25-e taulak. Potosa két yelvet összese 6 diák taul. Háya taulják midhárom yelvet? Megoldás: Legye redre Fr, A, Or a fraciául, agolul, illetve oroszul beszélő taulók halmaza; F, A, O a csak fraciául, csak agolul, csak oroszul beszélő taulók száma. Az x, y, z, t számok jeletése a diagramról leolvasható. A feltételek alapjá: F + A + O + x + y + z +t = 30; x + y + z = 6; F + x + y + t = 25; A + x + z + t = 4; O + y + z + t = 5. Ezért F + A + O = 30 6, F + A + O t = 54, ahoa t = 9. Tehát eyie taulják midhárom yelvet. 9. feladat: Egy 29 fős osztályak három kérdést tettek fel, mideki igeel vagy emmel válaszolhatott. A szereted-e a mateket kérdésre 22 ige, a szereted-e a fagyit kérdésre 8 ige, a szereted a palacsitát kérdésre 8 ige érkezett. Tudva azt, hogy azok közül akik szeretika mateket 7-e em szeretik a fagyit és 8-a em szeretik a palacsitát, valamit 2-e szeretik a fagyit és a palacsitát, de közülük 2 em szereti a mateket. Háya modtak emet midhárom kérdésre? Megoldás: Jelölje: S= az osztály taulói, M= {szeretik a mateket}, F= {szeretik a fagyit}, P= {szeretik a palacsitát}. Tehát S = 29, M = 22, F = 8, P = 8. Vegyük észre, hogy: M F = 22 7 = 5, M P = 22 8 = 4, F P = 2 és F P M = 2 2 = 0. A szita-formula alapjá S ( M F P) S= M F P M + F F P+ P M + M F P ahoa kapjuk, hogy S ( A B C) = 29 ( ) + ( ) 0 = 2 vagyis eyie modtak emet midhárom kérdésre. A feladatot a Ve-diagrammal is megoldhatjuk, ha először a 0-et írjuk be, aztá a 4-0=4, 5-0=5, 2-0=2, majd sorra a 22-(4+0+5)=3, 8-(2+0+5)=, és végül a 8-(4+0+2)=2 értékeket. Ez összese 27, így 29-27=2 a felelet. 0. feladat: A matematika dolgozatba 4 feladatot kellett megoldai. a) Az. feladatot 30, a 2.-at 32, a 3.-at 34, a 4.-et 32 oldotta meg jól. b) Az. és 2.-at 2, az. és a 3.-at 2, az. és a 4.-et 2, a 2. és a 3.-at 5, a 2. és a 4.-et, a 3. és 4.-et 0-e oldották meg helyese. c) Az., 2., 3. feladatokat 6-o, az., 2., 4. feladatokat 5-e, az., 3., 4. feladatokat 3-a, a 2., 3., 4. feladatokat 4-e oldották meg helyese. d) Az összes feladatot 3-a oldották meg hibátlaul. e) Voltak 0-e akikek egyetle feladatot sem sikerült megoldai. Háya írtak dolgozatot matematikából? Megoldás: A szita formulát alkalmazzuk 4 tagra, miszerit 4 4 U i i= i= A = A A A + A A A A A A A = i i j i j k = ( ) ( ) + ( ) 3 = 7. Tehát 7+0=8 tauló írt dolgozatot matematikából. A feladatot 5
6 Ve-Euler diagrammal is megoldhatjuk, ha belülről kifele haladva töltjük ki a halmazábrát, de hamar rájövük, hogy ez sokkal körülméyesebb mit a három kör eseté.. feladat: Egy 24-es létszámú sportosztály taulói égy sportágba szerepelek: kézilabdázak, focizak, jégkorogozak és kosárlabdázak. Mide tauló sportol, de seki sem szerepel kettőél több sportágba. Tudjuk, hogy 9-e em kézilabdázak, -e em focizak, 6-a em jégkorogozak, 2-e pedig em kosárlabdázak. Tudjuk még, hogy 0-e focizak, de em kosarazak, -e pedig kézilabdázak, de ők sem kosarazak. Háya, és milye összetételbe űzek két-két sportágat? Megoldás: A feltevésből azt kapjuk, hogy 24 9 = 5-e kézilabdázak, 24 = 3-a focizak, 24 6 = 8-a jégkorogozak, 24 2 = 2-e pedig kosárlabdázak. Mivel = 48, és ez az összes taulók számáak a 2-szerese, következik, hogy mideki potosa két sportágba vesz részt, mert seki sem szerepel 2-él több sportágba. Az ábrá látható halmazok az egyes sportágakba szereplő taulókat jelölik, a betűk pedig a két-két sportágat űzők számát jeletik, a következőképpe: a kézilabda-foci; b kézilabda-jégkorog; c foci-jégkorog; d kézilabda-kosárlabda; e jégkorog-kosárlabda; f foci-kosárlabda. a + b + d = 5 (), a + c + f = 3 (2), b + c + e = 8 (3), d + e + f = 2 (4), a + c = 0 (5), a + b = (6). Az. és 6. egyelőségből azt kapjuk, hogy d = 4, a 2. és 5. alapjá f = 3, a 4. alapjá e = 5. De 2-e em kosarazak, tehát a + b + c = 2, de a + c = 0 b = 2, a = 9 és c =. 6
EGY ÖTLET. A Venn-diagram és a logikai szita alkalmazásai
XXII/1 2. szám, 2014. máj. EGY ÖTLET A Venn-diagram és a logikai szita alkalmazásai Tuzson Zoltán Az ábráknak nemcsak a geometriában van fontos szerepük, hanem a legkülönbözőbb feladatok megoldásában is
RészletesebbenA figurális számokról (IV.)
A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe
RészletesebbenSZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo
SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő
RészletesebbenVII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
RészletesebbenHiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai
közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet
RészletesebbenEGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a
Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe
Részletesebben(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
RészletesebbenHalmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A
Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,
Részletesebbenaz Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!
1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két
Részletesebben1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:
1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.
RészletesebbenKalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8
Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először
Részletesebben3.Példa. Megoldás 4. Példa: Megoldás
Megoldott feladatok 3.Példa. Egy osztályban 30 tanuló van. Ezek háromféle sportkörre járnak: futballozni, kosarazni és úszni. 20 tanuló futballozik, 6 tanuló kosarazik, 0 tanuló úszik, -en futballoznak
Részletesebben( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
RészletesebbenSorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
RészletesebbenMAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA
1 MAGASABBFOKÚ MÁTRIXEGYENLETEK MEGOLDÁSA Tuzso Zoltá Akár a régebbi, akár az alteratív XI. osztályos algebra taköyveket lapozva, akár példatárakba vagy matematikai verseyeke gyakra találkozuk egyél magasabb
RészletesebbenHalmazműveletek feladatok
Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8}
RészletesebbenDiszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Részletesebben24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
RészletesebbenV. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
RészletesebbenSzámsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
RészletesebbenEGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z
Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése
RészletesebbenKombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.
Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenKalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
RészletesebbenA figurális számokról (II.)
A figurális számokról (II.) Tuzso Zoltá, Székelyudvarhely A figurális számok jelölése em egységes, ugyais mide yelve más-más féle képpe jelölik, legtöbb esetbe a megevez szó els betjével. A továbbiakba
Részletesebben2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
Részletesebben3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
RészletesebbenEseményalgebra, kombinatorika
Eseméyalgebra, kombiatorika Eseméyalgebra Defiíció. Véletle kísérletek evezük mide olya megfigyelést, melyek több kimeetele lehetséges, és a véletletől függ, (azaz az általuk figyelembevett feltételek
Részletesebben2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
Részletesebben3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló
. Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV
RészletesebbenDr. Tóth László, Kombinatorika (PTE TTK, 2007) nem vagyunk tekintettel a kiválasztott elemek sorrendjére. Mennyi a lehetőségek száma?
Dr Tóth László, Kombiatoria (PTE TTK, 7 5 Kombiáció 5 Feladat Az,, 3, 4 számo özül válasszu i ettőt (ét ülöbözőt és írju fel ezeet úgy, hogy em vagyu teitettel a iválasztott eleme sorredjére Meyi a lehetősége
Részletesebben2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
RészletesebbenVéges matematika 1. feladatsor megoldások
Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a
Részletesebben1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
RészletesebbenRudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
Részletesebben5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?
5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra
RészletesebbenPl.: hányféleképpen lehet egy n elemű halmazból k elemű részhalmazt kiválasztani, n tárgyat hányféleképpen lehet szétosztani k személy között stb.?
Dr. Vicze Szilvia A kombiatorika a véges halmazokkal foglalkozik. A véges halmazokkal kapcsolatba számos olya probléma vethető fel, amely függetle a halmazok elemeitől. Pl.: háyféleképpe lehet egy elemű
RészletesebbenA Cauchy függvényegyenlet és néhány rokon probléma
A Cauchy függvéyegyelet és éháy roko probléma Tuzso Zoltá, Székelyudvarhely A függvéyegyeletek egyik alapegyelete a Cauchy függvéyegyelet, amely a következő: Melyek azok az f : R R folytoos függvéyek,
RészletesebbenKomplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
RészletesebbenAlgebrai egyenlőtlenségek versenyeken Dr. Kiss Géza, Budapest
Magas szitű matematikai tehetséggodozás Algebrai egyelőtleségek verseyeke Dr Kiss Géza, Budapest Néháy helyettesítési módszer és a Cauchy-Schwarz-egyelőtleség speciális esetéek alkalmazása bizoyítási feladatokba
Részletesebben2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
RészletesebbenFeladatok megoldása. Diszkrét matematika I. Beadandó feladatok. Bujtás Ferenc (CZU7KZ) December 14, feladat: (A B A A \ C = B)
Diszkrét matematika I. Beadadó feladatok Bujtás Ferec (CZU7KZ) December 14 014 Feladatok megoldása 1..1-6. feladat: (A B A A \ C = B) A B A = A \ C = B igazolása: A B A = B \A = Ø = B = A B (Mivel a B-ek
RészletesebbenNevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
RészletesebbenMatematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
RészletesebbenMinta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenÉrettségi feladatok: Halmazok, logika
Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám
RészletesebbenHALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az
HALMAZOK 2 Feladat Év Kész Nem ment 1) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra
RészletesebbenEötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév
Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor
RészletesebbenPályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
Részletesebbenn akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!
KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:
RészletesebbenMatematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok
RészletesebbenVÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
RészletesebbenMatematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenKOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,
KOMBINATORIKA ELŐADÁS osztatla matematkataár hallgatók számára Szta formula Előadó: Hajal Péter 2018 1. Bevezető példák 1. Feladat. Háy olya sorbaállítása va a {a,b,c,d,e} halmazak, amelybe a és b em kerül
RészletesebbenII. INTEGRÁLÁSI MÓDSZEREK
Itegrálási módszerek 5 II INTEGRÁLÁSI MÓDSZEREK A parciális itegrálás módszere Ha az f, g : D (D em degeerált itervallumok egyesítése) függvéyek deriválhatók a D halmazo, akkor tudjuk, hogy a szorzatuk
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
RészletesebbenI. FEJEZET BICIKLIHIÁNYBAN
I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük
RészletesebbenDiszkrét matematika KOMBINATORIKA KOMBINATORIKA
A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját
RészletesebbenINJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK
Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy
RészletesebbenHALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
RészletesebbenFibonacci nyulai. 2. A második hónap végén születik 1 új pár, így most már 2 pár van
1 A Fiboacci- számok Leoardo di Pisa, ismertebb evé Fiboacci (1170-1250? olasz kereskedő és matematikus. Üzleti útjai lehetősége yílt megismerkedi az arab és hidu matematikával. Fiboacci legikább arról
RészletesebbenGyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenHatárértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12
Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma
Részletesebben2.1. A sorozat fogalma, megadása és ábrázolása
59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,
RészletesebbenEgy lehetséges tételsor megoldásokkal
Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe
Részletesebben= +, n + n + n... + n 3 6n = + = n + n (n 1) n(n 1)(2n 1)
MATEMATIKAI INDUKCIÓ Michael Lambrou. Fejezet. Matematikatörtéeti bevezető A filozófiába és az alkalmazott tudomáyokba az idukció fogalma azt jeleti, hogy egyedi esetekből általáos következtetésre jutuk.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenHALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK
I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal
RészletesebbenVariációk egy egyenlőtlenség kapcsán
Variációk egy egyelőtleség kapcsá Tuzso Zoltá, Székelyudvarhely Mit a régebbi, mit az újabb alteratív taköyvekbe valamit számos feladatgyűjteméybe, a matematikai idukció taítása fejezetbe megtalálható
RészletesebbenI. rész. Valós számok
I. rész Valós számok Feladatok 3 4 Teljes idukció Igazolja a teljes idukcióval a következ állítások helyességét!.. k 2 = k= ( + )(2 + ). 6.2. 4 + 2 7 + + (3 + ) = ( + ) 2..3. a) b) ( + ) = +. k ( ) =
RészletesebbenEseme nyalgebra e s kombinatorika feladatok, megolda sok
Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható
RészletesebbenPrímszámok a Fibonacci sorozatban
www.titokta.hu D é e s T a m á s matematikus-kriptográfus e-mail: tdeest@freemail.hu Prímszámok a Fiboacci sorozatba A továbbiakba Fiboacci sorozato az alapsorozatot (u,,,3,5,...), Fiboacci számo az alapsorozat
RészletesebbenKomplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós
Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.
RészletesebbenKombinatorika feladatok
Kombiatorika feladatok 1. Tüdérországba csak 2 magáhagzót és 2 mássalhagzót haszálak. A szavakba legalább 1 mássalhagzó és legalább 1 magáhagzó va. Háy külöböző hárombetűs szó létezik Tüdérországba, ha
Részletesebben16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:
6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú
Részletesebben1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:
1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét
RészletesebbenI. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
RészletesebbenKalkulus gyakorlat - Megoldásvázlatok
Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális
RészletesebbenGAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
RészletesebbenTartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13
Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8
Részletesebbenfestményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:
Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit
RészletesebbenKvantum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus
LOGO Kvatum párhuzamosság Deutsch algoritmus Deutsch-Jozsa algoritmus Gyögyösi László BME Villamosméröki és Iormatikai Kar Bevezető Kvatum párhuzamosság Bármilye biáris üggvéyre, ahol { } { } : 0, 0,,
RészletesebbenHanka László. Fejezetek a matematikából
Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet
RészletesebbenSzámelméleti alapfogalmak
Számelméleti alapfogalma A maradéos osztás tétele Legye a és b ét természetes szám, b, és a>b Aor egyértelme léteze q és r természetes számo, amelyere igaz: a b q r, r b Megevezés: a osztadó b osztó q
RészletesebbenHalmazok. d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták?
Halmazok Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen
RészletesebbenKombinatorika. A permutációk számának megállapítása: -a helyek sorszáma: I. II. III.
ombiatorika A kombiatorikába csak redezett halmazokkal foglalkozuk. Azt modjuk, hogy az A ( a, a,..., a ) halmaz egy redezett halmaz, ha az elemek bármely sorredcseréjére új halmazt kapuk (úgy modjuk:
RészletesebbenOrosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
RészletesebbenKétoldali hibás Monte Carlo algoritmus: mindkét válasz esetén hibázhat az algoritmus, de adott alsó korlát a hibázás valószínűségére.
Véletleített algoritmusok Tegyük fel, hogy va két doboz (A,B), amely egyike 1000 Ft-ot tartalmaz, a másik üres. 500 Ft-ért választhatuk egy dobozt, amelyek a tartalmát megkapjuk. A feladat megoldására
RészletesebbenHalmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz
Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók
RészletesebbenA függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
Részletesebben