Halmazműveletek feladatok
|
|
- Magda Veres
- 9 évvel ezelőtt
- Látták:
Átírás
1 Halmazműveletek feladatok Soroljuk fel a {a; b; c} halmaz összes részhalmazát! Határozza meg az A és B halmazokat, ha tudja, hogy A B ={1;2;3;4;5}; A B ={3;5}; A\B={1}; B\A={2;4 A={-1; 0; 1; 2; 5; 7; 8} B={-9; -6; -2; -1; 0; 3; 7; 9} Határozzuk meg az A\B halmaz elemeit! A={27-nél nem nagyobb 5-tel osztható természetes számok} B={18-nál kisebb 3-mal nem osztható természetes számok} Határozzuk meg az AUB halmaz elemeit! A={-8; -6; -4; -1; 1; 3; 4} B={-9; -7; -6; -4; 0; 4; 5; 9} Határozzuk meg az A B halmaz elemeit! A={-5; -4; -3; 0; 1; 2; 4; 6; 9; 10} B={-10; -2; 2; 3; 5; 6; 9; 10} Határozzuk meg a B\A halmaz elemeit! A={25-nél kisebb páratlan természetes számok} B={15-nél nem nagyobb 4-gyel nem osztható természetes számok} Határozzuk meg az A\B halmaz elemeit!
2 1. Határozd meg az alábbi halmazokat a megfelelő számhalmaz jelöléssel vagy felsorolással N \ Z + = Q + Z = P \ R = ahol P {prím számok} és R {r Z r = 2k+1; k N} Z \ N = Z N = Q Q + = 2. Ábrázold a következő halmazokat Venn-diagramm segítségével: a, A 10-zel, a 15-tel és a 20-szal osztható számok halmazai b, A prím számok, a 3-mal és a 12-vel osztható számok halmazai c, A 6-tal, a 8-cal és a 24-gyel osztható számok halmazai 3. A := {4; 5; 6; 7; 8} B := {6; 8; 10; 12} C := {6; 7; 8; 9; 10; 11; 12} Határozd meg a következő halmazokat felsorolással: a, A B = { b, A C = { c, (C \ A) B = { d, (B \ A) (B \ C) = { 4. Adott a síkon az e szakasz és rajta az A pont. Ábrázold a két alábbi ponthalmazt: P := {P pontok dap 2 cm} és R := {R pontok der 1 cm} Ábrázold (ábrádon színessel emeld ki) az R \ P ponthalmazt. Egy 33 fős tankörben háromféle idegen nyelvet tudnak: 20 diák tud angolul, 16 németül és 6 franciául, 5 diák tud pontosan két nyelven és 2 diák tud mindhárom nyelven beszélni. Hányan nem tudnak egy idegen nyelvet sem, és hányan tudnak pontosan egy idegen nyelven beszélni? 1. Egy suliban 3 kirándulást szerveznek. Az elsőre 500-an, a másodikra 200-an, a harmadikra 250-en jelentkeztek. Tudjuk: 40-en gyerek jelentkezett mindhárom kirándulásra. 100 gyerek legalább két kirándulásra jelentkezett. Hány tanuló vett részt legalább egy kiránduláson? 2. Egy 28-as létszámú osztályban 3 szakkör van. Minden gyerek legalább egy szakkörre jár. Tudjuk: A matek-szakkörre 14 gyerek jár. Akik csak matek-szakkörre járnak, 6-an vannak. Akik csak fizika-szakkörre járnak, 4-en járnak. Akik csak történelem-szakkörre járnak, 7-en járnak.
3 Bármelyik két szakkörnek pontosan ugyanannyi közös tagja van. Hány gyerek jár mindhárom szakkörre? Mit értünk két halmaz unióján? Mi a jele? Mit értünk két halmaz metszetén? Mi a jele? Mit értünk A\ B halmazon? Mi a jele? Mit értünk B \ A halmazon? Mi a jele? Mit értünk részhalmazon? Mi a jele? Mikor egyenlő két halmaz? Mi az üreshalmaz? Mi a jele? Mit értünk valódi részhalmazon? 2. Add meg két különböző jelöléssel a kettőnél nagyobb és a 10-nél nem nagyobb pozitív egész számok halmazát. 3. Legyen A a jó tanuló fiatalok halmaza, B a jó sportoló fiatalok halmaza. Adja meg szavakkal az A B, A \ B, B \ A, A B, A B halmazt! 4. A = a;b;e;f;g;h;i B = c;d;f;g;h;i;j;k Határozza meg az A\ B; B \ A; A B; B A; A B; B A halmazokat! 5. Ábrázold a következő halmazokat, adott A,B és C halmazok esetén! - (A B)\C - A B C - (B A)\C - A\(B C) - (B A)\C - B\A - (A B)\C - B A C - (B A)\C - (A B) C - A\B - A\(B\C) - A\(B C) - (B A)\C 6. A 1; 2; 5; 7; 9 B 3; 4; 5; 6; C 5; 6; 8; 9 A (B C)? (A B) C? (A C) B? 7. Adja meg a színezett tartományt képlettel!
4 8. Határozza meg az A\ B és a B \ A halmazt, ha A a; b; c; d ; A B a; b; c; d ; A B a; c A \ B b; d és B \ A 9. Milyen kapcsolat van az alábbi esetekben az A és a B halmaz között? a) A\B és A B A b) A\B és A B A c) A\B és B\A 10. Az M a; b; c; d;e; f halmaz A, B és C részhalmazaiból az alábbiakat tudjuk: A B b ; (A B) C e; f ; A \ C b; c; d ; C \ B a; e. Határozza meg az A, B és a C halmazokat! 11. Határozza meg az A és a B halmazokat, ha tudja, hogy A B a; b; c; d; e ; A B c; f ; A \ B a ; B \ A b; d! 12. A = {2; 3; 5; 8}; B = {1; 3; 4; 8}; C = {1; 5; 6; 7} A B C =? (A B) C =? B \ (A B) =? A B C = {1; 2; 3; 4; 5; 6; 7; 8}
5 (A B) C = {5; 1} B \ (A B) = {4} 13. A = {a, d, e, f}; B = {a, c, d, g}; C = {b, c, d, f, g} (A \ B) C =? B \ (A C) =? (A \ B) C = {f} B \ (A C) = 14. Határozd meg az A, B és C halmazokat, ha tudod hogy : A B C = {2;4;5;6;7;8;9} A B C = {2}; A B = {2;4}; A \ B = {9;6}; B \ (A C) = {7}; A \ (B C) = {9} és (B C) \ (A (B C)) = {5} 15. Egy osztály 32 tanulója közül 8-an emelt matematikából, 6-an emelt fizikából, 4 tanuló emelt matematikából és emelt fizikából is érettségizik. Hányan nem érettségiztek egyik említett tantárgyból sem? Hányan tettek emelt érettségit csak az egyik tantárgyból? Hányan tettek emelt érettségit valamelyik tantárgyból? 16. Egy osztály létszáma 32. Az osztályban angolul és németül tanulnak, és mindenki tanul valamilyen nyelvet. Mindkét nyelvet huszonegyen tanulják. Bizonyítsa be, hogy az angolul és a németül tanuló diákok száma nem lehet egyenlő! tanuló indult matematika versenyen. Az első feladatot 19-en, a másodikat 15-en, a harmadikat 18-an oldották meg hibátlanul. Az első és a második feladatra 7-en, az első és a harmadik feladatra 9-en, a második és a harmadik feladatra 10-en adtak helyes megoldást. Mindhárom feladatot 3 tanuló oldotta meg jól. Hány tanulónak nem sikerült egy feladatot sem megoldani? 18. Igaz-e bármely A; B; C halmazok esetén? a) (A B) \ C = A (B \ C) b) (A B) \ C = A (B \ C) c) (A \ B) (B \ A) = (A B) \ (A B) d) C \ ( A B) = (C \ A) (C \ B) 19. Bizonyítsd be, hogy! 20. Bizonyítsd be, hogy! 21. Bizonyítsd be, hogy a metszet asszociatív művelet! 22. Bizonyítsd be, hogy az unió asszociatív művelet! 24. Tudjuk, hogy A B = 4; A \ B = 2; A B = 9. A =?; B =? 25. Adott a valós számok néhány részhalmaza. A = [ 2; 6] ; B = [ 4; 8] A B =? A B =? A \ B =? B \ A =? A B =? 26. Adott a valós számok néhány részhalmaza. A = ]2; 6[ ; B = ] 4; 8[ A B =? A B =? A \ B =? B \ A =? A B =? 27. Adott a valós számok néhány részhalmaza. A = [ 2; 6[ ; B = ]4; 8] A B =? A B =? A \ B =? B \ A =? A B =? 28. Adott a valós számok néhány részhalmaza. A = ] 2; 6] ; B = ] 4; 8] A B =? A B =? A \ B =? B \ A =? A B =? 29. Adott a valós számok néhány részhalmaza. A = [ 2; 6[ ; B = [ 4; 8]
6 A B =? A B =? A \ B =? B \ A =? A B =? 30. Adjon meg öt olyan számot, amelyek az intervallumba esnek. 31. Adja meg az alábbi műveletek eredményét intervallummal és számegyenesen is! a) [2;3] [4;5] b) [2;3] [4;5] c) [2;3] \ [4;5] 32. Adja meg az alábbi műveletek eredményét intervallummal és számegyenesen is! a) ] ; 4[ ]3; [ b) ] ; 4[ ]3; [ c) ] ; 4[ \ ]3; [ d) ] ; 4] [3; [ e) ] ; 4] [3; [ f) ] ; 4] \ [3; [ 1. Sorolja fel az A halmaz részhalmazait! A 0; 2; 4; 6; 8 2. Ábrázold a két halmazt Venn-diagrammon! A 1; 2; 3; 4; 7; 8 ; B 3; 4; 5; 6 Add meg a két halmaz közös elemeit! Add meg azt a halmazt, amelyben csak az A elemei vannak benne! Add meg azt a halmazt, amelyben csak a B elemei vannak benne! Add meg azt a halmazt,amely az A és a B összes elemét tartalmazza! 3. Ábrázold Venn-diagrammon a téglalapokat és a rombuszokat! Mik tartoznak bele mind a két halmazba? 4. Legyen A a páros számok halmaza, B a néggyel osztható egész számok halmaza. Mi a kapcsolat a halmazok között? 5. Keresse meg a következő halmazok között az egyenlőket! Halmazműveletek HALMAZOK 1. Adott két halmaz: A = kétjegyű pozitív, 3-mal osztható számok B = 10-nél nagyobb, de 30-nál nem nagyobb pozitív egész számok Határozza meg az A B halmaz elemeit! 2. Az A halamaz elemei a kétjegyű négyzetszámok, B = 3 k k N. Határozza meg az alábbi halmazokat! a) b) A\ B A B 3. Ha az A halmaz a B halmaznak részhalmaza, akkor az alábbi állítások közül melyik igaz és melyik hamis: a) A B= A b) A B B
7 4. Legyen az A halmaz a 15-nél nem nagyobb pozitív páros számok halmaza, a B halmaz a 15-nél nem nagyobb 3-mal osztható számok halmaza. Határozza meg az A \ B halmaz elemeit! 5. Adott két halmaz: A = húsznál kisebb, pozitív, hárommal osztható számok halmaza B = 1;4;9;16 Sorolja fel az elemeit! A B és az A\ B 6. Az A halmaz elemei a pozitív egész egyjegyű számok, a B halmaz elemei a prímszámok. Határozza meg az A B halmaz elemeit! 7. Az A halmaz elemei a 0-ra végződő kétjegyű természetes számok, B = 3 k k N. Határozza meg az alábbi halmazokat: a) b) A\ B! A B 8. Az A és a B halmazokról a következőket tudjuk: A B= 1;2, A B= 1;2;3;4;5;6;7, Adja meg az A és B halmaz elemeit! A \ B = 5;7. 9. A= trapézok ; B= deltoidok ; C= Húrnégyszögek. Határozza meg az alábbi halmazokat! a) b) B C c) (12 pont) A B A C Számegyenes, intervallumok 10. Legyen az A halmaz a -3;5 intervallumban levő valós számok halmaza, B pedig a 2;6 intervallumban levő valós számok halmaza. Adja meg és ábrázolja egy számegyenesen az A \ B halmaz elemeit! (3 pont) 11. Legyen az A halmaz 1-nél nem kisebb, de 9-nél kisebb számok halmaza, a B halmaz a 7-nél nem nagyobb pozitív számok halmaza. Ábrázolja egy számegyenesen az A és B halmazok metszetét! (3 pont) 12. A póknak 8 lába van. Szekrényfiókjában 10 db piros, 10 db kék, 10 db fehér és 10 db sárga zoknit tart. Legkevesebb hány db zoknit kell kivennie becsukott szemmel, hogy biztosan jusson minden lábára ugyanolyan színű zokni? (4 pont) 13. Az A és B halmazokról a következőket tudjuk: A B= 1;2;3;4;5;6;7 A B= 2;7 Határozza meg a B halmaz elemeit! A \ B = 1;3;5 14. Legyen az A halmaz azon x valós számok halmaza, melyekre x 10. A B halmaz azon x valós számok halmaza, melyekre -3 x, végül C halmaz azon x valós számok halmaza, melyekre -3 < x >20. Határozza meg az Halmazok számossága A B C halmaz elemeit! 15. Ha az A halmaznak 15 eleme van, a B halmaznak 9 eleme van, az eleme van az A\ B halmaznak? A B halmaz 6 elemű, akkor hány 16. Az A halmaz elemei a 20-nál kisebb pozitív egész számok. A B halmaz elemei a pozitív prímszámok. Hány eleme van az A\ B halmaznak? 17. Az A halmaznak 12 eleme van, a B halmaznak 18 eleme van. Az A B elemeinek a száma 7. Hány eleme van az A B halmaznak? 18. Egy matematikaversenyen két feladatot tűztek ki. Az első feladatot az indulók 80%-a, a másodikat pedig az indulók 40%-a oldotta meg. Minden résztvevő megoldott legalább egy feladatot, mindkét
8 feladatot 2 tanuló oldotta meg. Hányan indulhattak a versenyen? 19. Egy 10 tagú csoportban mindenki beszéli az angol és a német nyelv valamelyikét. Hatan beszélnek közülük németül, nyolcan angolul. Hányan beszélik mindkét nyelvet? Válaszát indokolja számítással, vagy szemléltesse Venn-diagrammal! (3 pont) 20. Egy zeneiskola egyik évfolyamán háromféle hangszeren tanulnak a diákok (mindenki tanul legalább egy hangszeren). Hegedülni 32-en, zongorázni 36-an, fuvolázni 28-an tanulnak. Három hangszeren senki sem tanul. Azok száma, akik pontosan két hangszeren játszanak 25, közülük hegedülni és zongorázni is tanulnak 8-an. a) Hányan tanulnak csak fuvolán? (6 pont) b) Hányan járnak erre az évfolyamra? (5 pont) c) Igaz-e, hogy van az évfolyamon legalább 11 olyan diák, akik születési dátuma a hétnek ugyanolyan napjára esik? (6 pont) 21. Egy 26 fős sportosztályban háromféle sportot űznek a diákok: 15-en atletizálnak, 14-en birkóznak és 12-en cselgáncsoznak. (Minden tanuló sportol valamit.) Azok száma, akik két sportot űznek háromszor annyi, mint azok száma, akik mindhárom sportot űzik. a) Hányan vannak, akik csak egy sportot űznek? (6 pont) b) A két sportágat űzők közül azok, akik atletizálnak és cselgáncsoznak, fele annyian vannak, mint a többiek, akik két sportágat űznek. Hányan járnak az osztályból csak birkózóedzésre? (6 pont) c)ha tudjuk, hogy legalább két olyan diák van, akik csak atletizál és birkózik, akkor legalább és legfeljebb hányan vannak azok, akik csak cselgáncsoznak? (5 pont) 22. Egy természettudományos tagozatú osztály létszáma 41 fő. E diákok 3 tárgyat választhatnak fakultációs tárgyként: biológiát, kémiát és fizikát. Azok a diákok, akik két tárgyat választottak pontosan kétszer annyian vannak, mint akik mindhárom tárgyat választották. a) András szerint 27 olyan diák van, akik csak egy tárgyból fakultáltak. Kati szerint András tévedett. Kinek van igaza? (6 pont) b) Ha 4 tanuló volt, aki csak biológiából és kémiából fakultált, és hárman mindhárom tárgyból fakultáltak, akkor hány olyan tanuló van, akik csak egy tárgyat választottak? (6 pont) c) Az osztály minden tanulója kiszámította egy öröknaptár segítségével, hogy születési dátuma a hétnek milyen napjára esett. Ezt mindenki felírta egy cetlire, majd a cetliket egy nagy kalapba tették. Igaz-e, hogy van legalább 6 olyan cédula, melyeken ugyanaz a nap szerepel? (5 pont) 23. Az iskolai Túra Szakosztály mind a 42 tagja részt vett az idei három túra valamelyikén. A második kiránduláson 1-gyel, a harmadikon pedig 5-tel többen vettek részt, mint az elsőn. Azok száma, akik két túrán vettek részt 3-szor, akik pedig egy túrán vettek részt 10-szer annyi, mint azok száma, akik mindhárom túrán részt vettek. a) Hányan vettek részt a kiránduláson? (6 pont) b) Hányan vettek részt az első, a második és a harmadik kiránduláson? (6 pont) Vegyes feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11, Tamás 15 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek. a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? (4 pont) Közben Enikő is elkezdte számolni az eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mindhárman megtaláltak. Egyeztetve kiderült, hogy az Enikő által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést
9 megtalálták. b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! (7 pont) c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést megtalált. d) Mennyi annak a valószínűsége, hogy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták? (4 pont) 2. Egy osztályban a következő háromféle sportkört hirdették meg: kosárlabda, foci és röplabda. Az osztály 30 tanulója közül kosárlabdára 14, focira 19, röplabdára 14 tanuló jelentkezett. Ketten egyik sportra sem jelentkeztek. Három gyerek kosárlabdázik és focizik, de nem röplabdázik, hatan fociznak és röplabdáznak, de nem kosaraznak, ketten pedig kosárlabdáznak és röplabdáznak, de nem fociznak. Négyen mind a háromféle sportot űzik. a) Írja be a megadott halmazábrába a szövegnek megfelelő számokat! (4 pont) b) Fogalmazza meg a következő állítás tagadását! A focira jelentkezett tanulók közül mindenkinek van testvére. c) A focira jelentkezett 19 tanulóból öten vehetnek részt egy edzőtáborban. Igazolja, hogy több, mint féleképpen lehet kiválasztani az öt tanulót! d) Az iskolák közötti labdarúgó-bajnokságra jelentkezett 6 csapat között lejátszott mérkőzéseket szemlélteti a 2. ábra. (3 pont) Hány mérkőzés van még hátra, ha minden csapat minden csapattal egy mérkőzést játszik a
10 bajnokságban? (Válaszát indokolja!) (3 pont) 3. Egy zeneiskola minden tanulója szerepelt a tanév során szervezett három hangverseny, az őszi, a téli, a tavaszi koncert valamelyikén. 20-an voltak, akik az őszi és a téli koncerten is, 23-an, akik a télin és a tavaszin is, és 18-an, akik az őszi és a tavaszi hangversenyen is szerepeltek. 10 olyan növendék volt, aki mindhárom hangversenyen fellépett. a) Írja be a halmazábrába a szövegben szereplő adatokat a megfelelő helyre! (4 pont) A zeneiskolába 188 tanuló jár. Azok közül, akik egy hangversenyen léptek fel, kétszer annyian szerepeltek tavasszal, mint télen, de csak negyedannyian ősszel, mint tavasszal. b) Számítsa ki, hogy hány olyan tanuló volt, aki csak télen szerepelt! (8 pont) c) 32 tanuló jár az A osztályba, 28 pedig a B-be. Egy ünnepélyen a két osztályból véletlenszerűen kiválasztott 10 tanulóból álló csoport képviseli az iskolát. Mennyi annak a valószínűsége, hogy mind a két osztályból pontosan 5-5 tanuló kerül a kiválasztott csoportba? (5 pont) 4. Egy középiskolába 700 tanuló jár. Közülük 10% sportol rendszeresen a két iskolai szakosztály közül legalább az egyikben. Az atlétikai szakosztályban 36 tanuló sportol rendszeresen, és pontosan 22 olyan diák van, aki az atlétikai és a kosárlabda szakosztály munkájában is részt vesz. a) Készítsen halmazábrát az iskola tanulóiról a feladat adatainak feltüntetésével! (4 pont) b) Hányan sportolnak a kosárlabda szakosztályban? (4 pont) c) Egy másik iskola sportegyesületében 50 kosaras sportol, közülük 17 atletizál is. Ebben az iskolában véletlenszerűen kiválasztunk egy kosarast. Mennyi a valószínűsége, hogy a kiválasztott tanuló atletizál is? (4 pont) Emelt szint 1. Egy sporttagozatos osztályban (ahol mindenki sportol), atletizálnak, birkóznak és cselgáncsoznak a tanulók. Három olyan diák van, aki mindhárom sportot űzi. Akik pontosan 2 sportot űznek, 10-zel kevesebben vannak, mint azok, akik pontosan egy sportot űznek. Akik csak birkóznak kétszer annyian vannak, mint azok akik csak atletizálnak, és fele annyian vannak, mint akik csak cselgáncsoznak. Melyik állítás igaz? a) Osztálylétszám: 31 fő.
11 b) Osztálylétszám: 33 fő. c) Osztálylétszám: 35 fő. (12 pont) 2. Legyen az A halmaz a 4-gyel osztható négyjegyű számok halmaza, a B halmaz pedig az 5-tel osztható négyjegyű számok halmaza. a) Hány eleme van az A és a B halmaznak? (6 pont) b) Egy urnában elhelyeztük az A halmaz elemeit, majd utána elhelyeztük ugyanebben az urnában a B halmaz elemeit. Ez után véletlenszerűen kivettünk az urnából egy számot. Mekkora a valószínűsége, hogy a kivett szám eleme az A B halmaznak? (7 pont) Halmazok számossága Egy 25 fős osztályban mindenki tanul angolt vagy németet. Angolul 18-an, németül 17-en tanulnak. Hányan tanulják mindkét nyelvet? Az alaphalmazban az osztály tanulói vannak, összesen 25-en. Az alaphalmaz számossága 25. Így jelöljük: U = 25. Két tulajdonságot különböztetünk meg: angolul tanulók, németül tanulók. Bármely tanuló legalább az egyik halmaznak eleme. Az angolul tanulók halmazának 18 eleme van, azaz számossága 18. Így jelöljük: A =18. A németül tanulók halmazának 17 eleme van, azaz számossága 17. Így jelöljük: B =17. Azok a tanulók, akik mindkét nyelvet tanulják a két halmaz metszetének elemei. A kérdés a metszet számossága. A összegben kétszer szerepel a metszet elemszáma: aki mindkét nyelvet tanulja arra igaz az is, hogy angolt tanul, és az is, hogy németet. Az osztálylétszámban viszont mindekinek egyszer kell szerepelnie. Hány tanulót számoltunk meg kétszer? = 10. Tehát 10 tanuló tanulja mindkét nyelvet. Egy osztály tanulóinak 2/3 része angolul tanul, 3/4 része pedig franciául. 10 tanuló mindkét nyelvet tanulja. Hányan járnak az osztályba, ha mindenki tanul legalább egy nyelvet? Ismét a metszet elemei szerepelnek mindkét halmazban, az angolul tanulók halmazában is, és a franciául tanulók halmazában is. 2/3 + 3/4 = 8/12 + 9/12 = 17/12. Ahányad résszel több ez az összeg az 1 egésznél, az osztály annyiad része van a metszetben: 1-17/12 = 12/12-7/12 = 5/12. Az osztály 5/12 része 10 fő. Így az 1/12 rész 2 fő. A 12/12 rész 24 fő. Tehát az osztályban 24 diák tanul. Egy 30 fős osztályban 20-an tanulnak angolul, nem tanulnak németet 17-en, és két olyan diák van, akik sem németül, sem angolul nem tanulnak. Hányan tanulják mindkét nyelvet? Az, hogy "nem tanulnak németet" azt jelenti, hogy a németül tanulók halmazának komplementere 17 főt
12 tartalmaz. Így a halmaz számossága = 13 fő. Tehát 13 fő tanul németet. Az idegen nyelvet tanulók száma: 30-2 = 28. Akik mindkét nyelvet tanulják: ( ) - 28 = 5. Tehát mindkét nyelvet 5 diák tanulja. MATEMATIKA GYAKORLÓ FELADATOK I. HALMAZOK 1. Legyen X = Z az alaphalmaz, továbbá A = a Z "a" páros B = b Z "a" páratlan C = 2, 3, 4, D = -2, 0, 4 a) Adjon meg részhalmazokat, diszjunkt halmazokat! b) Végezze el a műveleteket: A B, A D, A B, A D, A C, C\A, D\A! c) Adja meg a B és C halmazok számosságát! 2. Legyen az alaphalmazunk: X = R, azaz a valós számok halmaza. Legyenek A = N a természetes számok, B = Z az egész számok, C = Q a racionális, D = Q* az irracionális számok halmaza. Mivel egyenlő A B A B C D C D C D C A D-C A D 3. Írja le halmazelméleti jelölésekkel a halmazokat, ha X= a Pest megyei lakosok H = A típusú jogosítvánnyal rendelkezők K= B típusú jogosítvánnyal rendelkezők a) mindkettővel rendelkeznek: b) legalább az egyikkel rendelkeznek c) nincs A típusú jogosítványuk d) egyikkel sem rendelkeznek e) csak A típusú jogosítvánnyal nem rendelkeznek f) legalább egyikkel nem rendelkeznek g) pontosan az egyikkel rendelkeznek 4. Írja át tizedes tört formába a p/q alakú racionális számokat, illetve viszont! 4/5, 2/3, 3/2, -7/13-5, 4,16-0,058 62,333-0, ,
13
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Érettségi feladatok: Halmazok, logika
Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
1.1. Halmazok. 2. Minta - 5. feladat (2 pont) Adott két halmaz:
1.1. Halmazok 2009. május id. - 11. feladat (3 pont) A H halmaz elemei legyenek a KATALINKA szó betűi, a G halmaz elemei pedig a BICEBÓCA szó betűi. Írja fel a H U G halmaz elemeit! 2010. október - 1.
Érettségi feladatok: Halmazok, logika
Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám
HALMAZOK 2. Feladat Év Kész Nem ment. 1) Egy osztály tanulói valamennyien vettek. 2) Egy 10 tagú csoportban mindenki beszéli az
HALMAZOK 2 Feladat Év Kész Nem ment 1) Egy osztály tanulói valamennyien vettek színházjegyet. Kétféle előadásra rendeltek jegyeket: az elsőre 18-at, a másodikra 24-et. 16 tanuló csak a második előadásra
az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!
1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Halmazelméleti feladatok (középszint)
Halmazelméleti feladatok (középszint) (KSZÉV Minta (1) 2004.05/I/9) Adott két intervallum: ] 1; 3[ és [0; 4]. a) Ábrázolja számegyenesen a két intervallum metszetét! b) Adja meg a metszetintervallumot!
Érettségi feladatok: Halmazok, logika 1/5
Érettségi feladatok: Halmazok, logika 1/5 I. Halmazműveletek 2006. február/12. Az A és a B halmazokról a következőket tudjuk: A B = {1; 2}, A U B = {1; 2; 3; 4; 5; 6; 7}, A \ B = {5; 7}. Adja meg az A
Halmazok. d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták?
Halmazok Halmazok 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Halmazelméleti feladatok (középszint)
Halmazelméleti feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/9) Adott két intervallum: ] 1; 3[ és [0; 4]. a) Ábrázolja számegyenesen a két intervallum metszetét! b) Adja meg a metszetintervallumot!
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
Logika, gráfok. megtalált.
1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Halmazok Megoldások. c) Fogalmazza meg a következő állítás tagadását! Enikő minden eltérést
2005-20XX Középszint Halmazok Megoldások 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Halmazelmélet. 1 Halmazelmélet
Halmazelmélet 1. feladat 2006. május 1. (2 pont) idegennyelvi Az A halmaz elemei a 10-nél nem kisebb és a 20-nál nem nagyobb páros számok, a B halmaz elemei a néggyel osztható pozitív számok. Adja meg
3.Példa. Megoldás 4. Példa: Megoldás
Megoldott feladatok 3.Példa. Egy osztályban 30 tanuló van. Ezek háromféle sportkörre járnak: futballozni, kosarazni és úszni. 20 tanuló futballozik, 6 tanuló kosarazik, 0 tanuló úszik, -en futballoznak
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra
Alapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió.
HLMZOK 9. évfolyam lapfeladatok halmazábra készítésére, egyszerű halmazműveletekre: különbség, metszet, unió. 1.1. dott az = {1; 2; 3; 4; 5} és = {3; 4; 5; 6; 7} halmaz. Készíts halmazábrát, majd sorold
Készítette: Ernyei Kitti. Halmazok
Halmazok Jelölések: A halmazok jele általában nyomtatott nagybetű: A, B, C Az x eleme az A halmaznak: Az x nem eleme az A halmaznak: Az A halmaz az a, b, c elemekből áll: A halmazban egy elemet csak egyszer
Egy halmazt elemei megadásával tekintünk ismertnek. Az elemeket felsorolással,vagy ha lehet a rájuk jellemző közös tulajdonság megadásával adunk meg.
Halmazelmélet A matematikai halmazelmélet megalapítója Georg Cantor (1845 1918) matematikus. Cantor Oroszországban született, de életét Németországban töltötte. Egy halmazt elemei megadásával tekintünk
Logika, gráfok Megoldások
Logika, gráfok Megoldások 1) Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.
HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK
I. Témakör: feladatok 1 Huszk@ Jenő IX.TÉMAKÖR I.TÉMAKÖR HALMAZOK, SZÁMHALMAZOK, PONTHALMAZOK Téma A halmaz fogalma, alapfogalmak, elemek száma, üres halmaz, egyenlő halmazok, ábrázolás Venn-diagrammal
MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. A: József Attila hosszú versei D: az osztály legokosabb tanulója
Megoldások 1. Melyik határoz meg halmazt az alábbiak közül? A: József Attila hosszú versei D: az osztály legokosabb tanulója B: az első tíz prímszám E: Debrecen általános iskolái C: néhány darab páros
Gyakorló feladatsor 9. osztály
Gykorló feldtsor 9. osztály Hlmzok. Sorold fel z lábbi hlmzok elemeit! ) A={ legfeljebb kétjegyű 9-cel oszthtó páros pozitív számok} b) B={:prímszám, hol < 7} c) C={b=n+, hol nϵz és- n
Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A
Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam
Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész
Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
Matematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI,. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A:= { a csoport tanulói b) B:= { Magyarország városai ma c) C:=
9. évfolyam Javítóvizsga szóbeli. 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán!
9. évfolyam Javítóvizsga szóbeli 1. tétel 1. Mit ért két halmaz unióján? 2. Oldja meg a következő egyenletrendszert a valós számok halmazán! 3. Írja fel a és b hatványaiként a következő kifejezést! 4.
Halmazok. Gyakorló feladatsor a 9-es évfolyamdolgozathoz
Halmazok 1. Feladat. Adott négy halmaz: az alaphalmaz, melynek részhalmazai az A, a B és a C halmaz: U {1, 2,,..., 20}, az A elemei a páros számok, a B elemei a hárommal oszthatók, a C halmaz elemei pedig
PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,
FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül
1-A 1-B. francia. francia - 3 -
1-A A 11-B osztályban háromféle nyelvet lehet tanulni (,, ). Az osztály minden tanulója legalább egy idegen nyelvet tanul. Mindhárom nyelvet 14 gyerek tanulja. Angolt és franciát is 17, t és et is 1, et
Matematika kisérettségi
Matematika kisérettségi 2010. május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
1. Halmazok, számhalmazok, alapműveletek
1. Halmazok, számhalmazok, alapműveletek I. Nulladik ZH-ban láttuk: 1. Határozza meg az (A B)\C halmaz elemszámát, ha A tartalmazza az összes 19-nél kisebb természetes számot, továbbá B a prímszámok halmaza
KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE
KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2017.06.27. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
9, Adott az A és B halmaz: A = {a; b; c; d}, B = {a; b; d; e; f}. Adja meg elemeik felsorolásával az A B, A B, A\B és B\A halmazokat!
Gyakorlópéldák a pótvizsgához Az írásbeli 60 perc, 25% kell az elégséges szinthez, 12% és 25% között szóbelin még van lehetőség javítani. Ott 20 tétel van, mindegyikben 1 elméleti kérdés és 2 példa. A
Halmazelmélet alapfogalmai
1. Az A halmaz elemei a kétjegyű négyzetszámok. Adja meg az A halmaz elemeit felsorolással! 2. Adott három halmaz: A = {1; 3; 5; 7; 9}; B = {3; 5; 7}; C = {5;10;15} Ábrázolja Venn-diagrammal az adott halmazokat!
Érettségi feladatok: Szöveges feladatok
Érettségi feladatok: Szöveges feladatok 2005. május 10. 17. Anna és Zsuzsi is szeretné megvenni az újságosnál az egyik magazint, de egyik lánynak sincs elegendő pénze. Anna pénzéből hiányzik a magazin
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
Halmazok, intervallumok
Halmazok, intervallumok Alapfogalmak (nem definiált fogalmak): Halmaz, elem, eleme. Jelölés: x A (ejtsd: az x eleme az A halmaznak). Halmaz megadása: A vizsgálatok során mindig feltesszük, hogy a figyelembe
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Matematika javítóvizsga 2018. augusztus szóbeli 3 rövidebb (feladat, definíció, tétel) és 3 hosszabb feladat megoldása a 30 perces felkészülési idő alatt a megoldás ismertetése
MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.
MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.
) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet
1. Halmazok. I. Elméleti összefoglaló. Halmazok. Számhalmazok
1. Halmazok I. Elméleti összefoglaló Halmazok A halmaz és a halmaz eleme matematikai alapfogalmak, amelyeket külön nem definiálunk. A halmazokat általában latin nagybetűvel jelöljük, elemeiket kapcsos
2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!
Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p
Év végi ismétlés 9. - Érettségi feladatok
Halmazok, logika Év végi ismétlés 9. - Érettségi feladatok 1. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először
KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE
KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE KÉSZÍTETTE BRÓSCH ZOLTÁN 2015.08.29. Előszó,,Önmagáért szeretem a matematikát, s szeretem mindmáig, mert nem tűri a képmutatást és a homályt, azt
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
Színes érettségi feladatsorok matematikából középszint írásbeli
Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható
Halmazok Megoldások. Az osztály tanulóinak átlagmagassága 168,0 cm
005-0XX Emelt szint Halmazok Megoldások 1) Egy gimnázium egyik érettségiző osztályába 30 tanuló jár, közülük 1 lány. A lányok testmagassága centiméterben mérve az osztályozó naplóbeli sorrend szerint:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen
2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!
1. Egy 27 fős osztályban mindenki tesz érettségi vizsgát angolból vagy németből. 23 diák vizsgázik angolból, 12 diák pedig németből. Hány olyan diák van az osztályban, aki angolból és németből is tesz
Gráfelmélet Megoldások
Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
MATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 005. október 5. EMELT SZINT 1) Egy háromszög két csúcsa A B I. 8; ; 1;5 a C csúcs pedig illeszkedik az y tengelyre. A háromszög köré írt kör egyenlete: x y 6x 4y 1 0. a) Adja meg a
XVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Halmazok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára
Feladatok MATEMATIKÁBÓL a. évfolyam számára I.. Egy 35 fős osztályból mindenki részvett valamelyik iskolai kiránduláson. 5-en Debrecenbe utaztak, 8-an pedig Pécsre. Hányan utaztak mindkét városba?. Állapítsa
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Kisérettségi feladatgyűjtemény
Kisérettségi feladatgyűjtemény Halmazok 1. Egy fordítóiroda angol és német fordítást vállal. Az irodában 50 fordító dolgozik, akiknek 70%-a angol nyelven, 50%-a német nyelven fordít. Hány fordító dolgozik
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Gyakorló feladatok 9.évf. halmaznak, írd fel az öt elemű részhalmazokat!. Add meg a következő halmazokat és ábrázold Venn-diagrammal:
Gyakorló feladatok 9.évf.. Mennyi az összes részhalmaza az A a c; d; e; f halmaznak, írd fel az öt elemű részhalmazokat!. Legyen U ;;;;;6;7;8;9, A ;;6;7; és B ;;8. Add meg a következő halmazokat és ábrázold
Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x
Matematika érettségi emelt 8 október ( ) lg( 8) 8 8 nem megoldás lg( 8) 8 9 ] ; [ ] ; [, M {;} Matematika érettségi emelt 8 október 6 I. eset II. eset ;[ ] 5 5 6 ;[ ], [ [; 5 5 6 [ [; 4, {;} M Matematika
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY
Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 9. évfolyam I. forduló Pótlapok száma db Matematika 9. évfolyam 1. forduló 1. Írja be a megrajzolt halmazábrába az A és B halmazok
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam
01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat
Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
5. feladatsor megoldása
megoldása I. rész ( ) = 1. x x, azaz C) a helyes válasz, mivel a négyzetgyökvonás eredménye csak nemnegatív szám lehet.. A húrnégyszögek tétele szerint bármely húrnégyszög szemközti szögeinek összege 180.
Az egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Logika-Gráfok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉPSZINT Logika-Gráfok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
HALMAZOK. A racionális számok halmazát olyan számok alkotják, amelyek felírhatók b. jele:. A racionális számok halmazának végtelen sok eleme van.
HALMAZOK Tanulási cél Halmazok megadása, halmazműveletek megismerése és alkalmazása, halmazok ábrázolása Venn diagramon. Motivációs példa Egy fogyasztó 80 000 pénzegység jövedelmet fordít két termék, x
Dr. Vincze Szilvia;
2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika
törtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM
É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
jobban megmutató. Érdemes megismerni többféle, a gyakorlaban előforduló jelölést akkor is, ha a matematikaórán esetleg csak egyfajtát
Előszó E feladatgyűjtemény a gimnáziumok és a szakközépiskolák tanterveinek matematika tananyagához illeszkedik. Néhány fejezetben olyan feladatok találhatók, amelyek túlmutatnak a tananyagon. A különböző
Az emelt szintű érettségi vizsgán előforduló tananyagokat zölddel és apró betűvel jelöltük.
5 Jelmagyarázat Az A pont és az e egyenes távolsága: d(a; e) vagy Ae Az A és B pont távolsága: AB vagy AB vagy d(a; B) Az A és B pont összekötő egyenese: e(a; B) Az f 1 és f 2 egyenesek szöge: ( f1; f2)