Matematika kisérettségi
|
|
- Márta Szabóné
- 10 évvel ezelőtt
- Látták:
Átírás
1 Matematika kisérettségi május 11. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot használhatja, más elektronikus vagy írásos segédeszköz használata tilos! 4. A feladatok végeredményét az erre a célra szolgáló keretbe írja, a megoldást csak akkor kell részleteznie, ha erre a feladat szövege utasítást ad! 5. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 6. Minden feladatnál csak egy megoldás értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 7. Kérjük, hogy a szürkített téglalapokba semmit ne írjon! 8. Munkája végeztével adja meg a tisztázati és piszkozati pótlapok számát az alábbi táblázat kitöltésével! Pótlapok száma Tisztázati Piszkozati
2 1. Mivel egyenlő? (A halmazt jelöl.) (a) A (b) A A Név:...osztály:... I. rész (a) kifejezés: (b) kifejezés: 2. Egy szám felének 75%-a 24. Melyik ez a szám? Ez a szám a: 2 pont 3. A Hold sugara 3 11 része a Föld sugarának. Hányad része a térfogata a Földének? A Hold térfogata a Földének... része 2 pont 4. Egy Ft-ba kerülő termék árát előbb 15%-kal emelték, majd - mivel így nagyon keveset tudtak belőle eladni - csökkentették 15%-kal. Mennyibe kerül most? Állítását számítással indokolja! A termék ára most:
3 5. Melyik igaz, melyik hamis? (a) Minden másodfokú egyenletnek legfeljebb két valós gyöke van. (b) A háromszög bármely két szögének összege nagyobb a harmadik szögénél. (c) Minden trapéz konvex. (a) (b) (c) 6. Mekkorák a szögei annak a háromszögnek, amelyet egyik súlyvonala egy szabályos és egy egyenlő szárú háromszögre bont? Állítását indokolja! 3 pont A háromszög szögei: 7. Mennyi a valószínűsége annak, hogy egy szabályos hatoldalú dobókockával prímszámot dobunk? Válaszát indokolja! Válasz: 8. Egy összejövetelen 5 fiú és 5 lány vesz részt. A táncoló pároknak hányféle összetétele lehetséges, ha mindenki egyszerre táncol, és a lányok egymással illetve a fiúk egymással nem táncolnak? Válasz: 2 pont
4 9. Igazolja a következő állítást: (a b jelentése: a osztója b-nek) Gondolatmenetét részletesen fejtse ki! 10 ( ) 3pont 10. A valós számoknak melyik az a legbővebb részhalmaza, amelyen a következő kifejezés értelmezhető? Állítását indokolja! 2 3x 1 3pont 11. A következő hozzárendelések közül melyek adnak meg egyenes és melyek fordított arányosságot? a) x 2x 1 b) f(x) = 3 x c) x 4x d) g(x) = 1 x + 2 Egyenes arányosság: Fordított arányosság: 12. Mely valós számpárok elégítik ki a következő egyenletrendszert? Megoldásának ellenőrzéséért most nem jár pont. Állítását indokolja! x 2y = 3 3x + 2y = 5 Megoldás: 2 pont
5 Matematika kisérettségi május 11. II. Időtartam: 90 perc Pótlapok száma Tisztázati Piszkozati
6
7 II. rész Fontos tudnivalók 1. A feladatok megoldására 90 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3. A B részben kitűzött feladatok közül csak kettőt kell megoldania. A nem választott feladat sorszámát írja be a dolgozat befejezésekor az alábbi téglalapba! Ha a javító tanár részére nem derül ki egyértelműen, hogy melyik feladat értékelését nem kéri, akkor a 18. feladatra nem kap pontot. 4. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot használhatja, más elektronikus vagy írásos segédeszköz használata tilos! 5. A megoldások gondolatmenetét minden esetben írja le, mert a feladatra adható pontszám jelentős része erre jár! 6. Ügyeljen arra, hogy a lényegesebb részszámítások is nyomon követhetőek legyenek! 7. A feladatok megoldásánál használt tételek közül az iskolában tanult, névvel ellátott tételeket (pl. Pitagorasz-tétel, magasság-tétel) nem kell pontosan megfogalmazva kimondania, elég csak a tétel megnevezését említenie, de alkalmazhatóságát röviden indokolnia kell. 8. A feladatok végeredményét (a feltett kérdésre adandó választ) szöveges megfogalmazásban is közölje! 9. A dolgozatot tollal írja, az ábrákat ceruzával is rajzolhatja. Az ábrákon kívül ceruzával írt részeket a javító tanár nem értékelheti. Ha valamilyen megoldást vagy megoldásrészletet áthúz, akkor az nem értékelhető. 10. Minden feladatnál csak egy megoldás értékelhető. Több megoldási próbálkozás esetén egyértelműen jelölje, hogy melyiket tartja érvényesnek! 11. Kérjük, hogy a szürkített téglalapokba semmit ne írjon!
8 II. A 13. (a) Oldja meg grafikusan az alábbi egyenlőtlenséget: 2 x > 1 x. (b) Oldja meg az egyenlőtlenséget a valós számok halmazán: 2 + 3x x 5 0. (c) Adja meg a fenti két egyenlőtlenség megoldáshalmazainak metszetét intervallumjelöléssel! (a) 5 pont (b) 5 pont (c) 2 pont Ö 12 pont y x
9
10 14. A fizika órai tanulókísérlet egy tömegmérési feladat volt. A mérést 19 tanuló végezte el. A következő adatokat kapták: 37g, 33g, 37g, 36g, 35g, 36g, 37g, 40g, 38g, 33g, 37g, 36g, 35g, 35g, 38g, 37g, 36g, 35g, 37g. (a) Készítse el a mért adatok gyakorisági táblázatát! (b) Mennyi a mérési adatok átlaga 1 tizedesjegyre kerekítve? (c) Mekkora a kapott eredmények mediánja, módusza? (d) Készítsen oszlopdiagramot a mérési eredményekről! tengelyeken ábrázolt mennyiségeket! Egyértelműen jelölje a (a) 3 pont (b) 3 pont (c) 2 pont (d) 4 pont Ö 12 pont
11
12 15. Egy derékszögű háromszög átfogójához tartozó magasság az átfogót egy 4 cm-es és egy 12 cm-es darabra osztja. (a) Készítsen ábrát! Jelölje rajta a feladatban szereplő ismert és ismeretlen menynyiségeket! (b) Mekkora az átfogóhoz tartozó magasság? (c) Mekkorák a befogók? (d) Mekkora a háromszög legkisebb szöge? Állításait indokolja részletesen! Válaszait egy tizedesjegy pontossággal adja meg! (a) 3 pont (b) 3 pont (c) 4 pont (d) 2 pont Ö 12 pont
13
14 II. B A feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be az 1. oldalon az üres négyzetbe! 16. Egy téglalap alapterületű étkező hosszúsága 5,25 m, szélessége 2,75 m. (a) A tervrajzon a hosszabbik oldalnak 20 cm felel meg. Milyen hosszú a tervrajzon a rövidebbik oldal? (Pontos értékkel válaszoljon!) (b) Az étkezőt egybevágó téglalap alakú járólapokkal szeretnénk lefedni úgy, hogy járólapokat nem vágunk el. A járólapok oldalai egész cm hosszúak, a lapok közötti hézagoktól eltekintünk. Az étkező hosszabb és rövidebb oldala mentén ugyanannyi lapot szeretnénk lerakni. Add meg annak a járólapnak a méreteit, amelyből ilyen módon a legtöbbre van szükség! (c) Legalább hány darab egész cm oldalhosszúságú négyzetlappal burkolható le az étkező? (a) 4 pont (b) 7 pont (c) 6 pont Ö 17 pont
15
16 A feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be az 1. oldalon az üres négyzetbe! 17. (a) Adja meg a következő egyenlet megoldáshalmazát! 2x = x (b) Az x 2 bx 15 = 0 másodfokú egyenlet egyik megoldása x 1 = 3. (i) Határozd meg a b paraméter értékét! (ii) Oldd meg az egyenletet! (iii) Add meg az x 2 bx 15 < 0 egyenlőtlenség egész megoldásait! (a) 8 pont (b) (i) 2 pont (ii) 3 pont (iii) 4 pont Ö 17 pont
17
18 A feladatok közül tetszés szerint választott kettőt kell megoldania, a kihagyott feladat sorszámát írja be az 1. oldalon az üres négyzetbe! 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám és Tamás nézték meg figyelmesen az ábrákat: Ádám 11, Tamás 15 eltérést talált, de csak 7 olyan volt, amelyet mindketten észrevettek. (a) Hány olyan eltérés volt, amelyet egyikük sem vett észre? Közben Margó is elkezdte számolni az eltéréseket, de ő sem találta meg az összeset. Mindössze 4 olyan volt, amelyet mind a hárman megtaláltak. Egyeztetve kiderült, hogy a Margó által bejelöltekből hatot Ádám is, kilencet Tamás is észrevett, és örömmel látták, hogy hárman együtt az összes eltérést megtalálták. (b) A feladat szövege alapján töltse ki az alábbi halmazábrát arról, hogy ki hányat talált meg! Ádám Tamás Margó (c) Fogalmazza meg a következő állítás tagadását! Margó minden eltérést megtalált. (d) Mennyi annak a valószínűsége, hogy egy eltérést véletlenszerűen kiválasztva, azt legalább ketten megtalálták? (a) 4 pont (b) 7 pont (c) 2 pont (d) 4 pont Ö 17 pont
19
20 II./A rész a feladat sorszáma elért pontszám összesen maximális pontszám II.B rész 17 nem választott feladat ÖSSZESEN 70 elért pontszám maximális pontszám I. rész 30 II. rész 70 MINDÖSSZESEN 100
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.
MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet
Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
PRÓBAÉRETTSÉGI VIZSGA
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2013. április január 7. 19. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
MATEMATIKA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. 2014. április január 7. 18. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA
MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA október október 25. 8:00 MINISZTÉRIUM. Idtartam: 135 perc.
a feladat sorszáma elért összesen maximális II./A rész 13. 12 14. 12 15. 12 II./ B rész m nem választott feladat 17 17 ÖSSZESEN 70 maximáli s elért I. rész 30 II. rész 70 MINDÖSSZESEN 100 dátum javító
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc
PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
MATEMATIKA ÍRÁSBELI VIZSGA KÖZÉPSZINT% II. ÉRETTSÉGI VIZSGA május 3. MINISZTÉRIUM NEMZETI ERFORRÁS május 3. 8:00. Idtartam: 135 perc
a feladat sorszáma maximális elért összesen II./A rész 13. 12 14. 12 15. 12 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
ÍRÁSBELI VIZSGA május 7. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 7. pontszám. pontszám. II. rész 70. I.
a feladat sorszáma maximális elért összesen II. A rész 13. 12 14. 12 15. 12 II. B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
PRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. II. Az írásbeli próbavizsga időtartama: 135 perc Kérjük, nyomtatott
Azonosító jel: MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
PRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. Az írásbeli próbavizsga időtartama: 240 perc Kérjük, nyomtatott,
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Matematika kisérettségi május 24. I. rész
Matematika kisérettségi 2007. május 24. I. rész Fontos tudnivalók 1. A feladatok megoldására 30 percet fordíthat, az idő elteltével a munkát be kell fejeznie. 2. A megoldások sorrendje tetszőleges. 3.
PRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2017. február 18. I. Időtartam: 45 perc Kérjük, nyomtatott, nagy betűkkel töltse
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2005. október 25., 8:00. Az írásbeli vizsga időtartama: 240 perc OKTATÁSI MINISZTÉRIUM
É RETTSÉGI VIZSGA 2005. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2005. október 25., 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
ÍRÁSBELI VIZSGA május 5. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 5. dátum javító tanár. II. rész 70
a feladat sorszáma maximális elért összesen II./A rész 13. 1 14. 1 15. 1 II./B rész 17 17 m nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
MATEMATIKA EMELT SZINTŰ. PRÓBAÉRETTSÉGI VIZSGA február 14. Az írásbeli próbavizsga időtartama: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. Az írásbeli próbavizsga időtartama: 240 perc Név E-mail cím Tanárok
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B
3. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
2. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 2. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
ÉRETTSÉGI VIZSGA október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00. Időtartam: 45 perc
ÉRETTSÉGI VIZSGA 2016. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Matematika középszint Név:... osztály:... MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Időtartam: 45 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM I. összetevő 1
MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2009. május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
PRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2015. február 14. I. Időtartam: 45 perc STUDIUM
Azonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA
EMIR azonosító: TÁMOP-3.1.8-09/1-2010-0004 Név: MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA I. ÍRÁSBELI VIZSGA 1412 Ideje: 2014. április 24. 14:00 Időtartama: 45 perc Fontos tudnivalók 1. A feladatok
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2008. október 21. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
PRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. I. Az írásbeli próbavizsga időtartama: 45 perc Kérjük, nyomtatott
ÉRETTSÉGI VIZSGA október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 45 perc
ÉRETTSÉGI VIZSGA 2017. október 17. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. október 17. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli
ÍRÁSBELI VIZSGA május 6. 8:00 II. Idtartam: 135 perc. ÉRETTSÉGI VIZSGA május 6. pontszám. pontszám. II. rész 70. I.
a feladat sorszáma maximális elért összesen II. A rész 13. 12 14. 12 15. 12 II. B rész 17 17 nem választott feladat ÖSSZESEN 70 maximális elért I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
PRÓBAÉRETTSÉGI VIZSGA
PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA 2018. február 10. I. Az írásbeli próbavizsga időtartama: 45 perc Kérjük, nyomtatott
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. október 13. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. február 21. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. február 21. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 5. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA
II. A rész II. B rész a feladat sorszáma maximális 13. 10 14. 14 15. 12 17 17 ÖSSZESEN 70 elért nem választott feladat maximális I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum javító tanár összesen
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2013. október 15. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2013. október 15. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. október 15. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 28. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
PRÓBAÉRETTSÉGI VIZSGA február 16.
PRÓBAÉRETTSÉGI VIZSGA 2019. február 16. MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINT 2019. február 16. I. Az írásbeli vizsga időtartama: 45 perc Név Teremszám* Pontszám E-mail cím Kérjük nyomtatott nagybetűvel
MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. 2010. május 4. 8:00. Időtartam: 45 perc OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2010. május 4. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2010. május 4. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
Azonosító jel: ÉRETTSÉGI VIZSGA október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 18. 8:00
ÉRETTSÉGI VIZSGA 2016. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2016. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
PRÓBAÉRETTSÉGI VIZSGA január 19.
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2013. január 19. EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Pontszám 2013. január 19. Időtartam: 240 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ Fontos tudnivalók
MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA május május 5. 8:00 MINISZTÉRIUM. Az írásbeli vizsga idtartama: 240 perc
I. rész II. rész a feladat sorszáma maximális 1. 10 2. 14 3. 13 4. 14 16 elért 16 16 16 8 nem választott feladat maximális 51 64 Az írásbeli vizsgarész a 115 elért dátum javító tanár elért programba beírt
MATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2010. október 19. MINISZTÉRIUM NEMZETI ERFORRÁS. 2010. október 19. 8:00
I. rész II. rész a feladat sorszáma maximális pontszám 1. 14 2. 10 3. 13 4. 14 elért pontszám maximális pontszám 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 51 elért pontszám
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2013. május 7. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI VIZSGA II. É R E T T S É G I V I Z S G A május május 5. 8:00 EMBERI ERFORRÁSOK MINISZTÉRIUMA
II. A rész II. B rész a feladat sorszáma maximális 13. 11 14. 13 15. 12 17 17 ÖSSZESEN 70 elért nem választott feladat maximális I. rész 30 II. rész 70 Az írásbeli vizsgarész a 100 dátum javító tanár összesen
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2012. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Azonosító jel: ÉRETTSÉGI VIZSGA május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 240 perc
ÉRETTSÉGI VIZSGA 2019. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2019. május 7. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli vizsga 1912
Érettségi feladatok: Halmazok, logika
Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2014. október 14. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2014. október 14. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2014. október 14. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
PRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2015. február 14. II. Időtartam: 135 perc STUDIUM
Azonosító jel: ÉRETTSÉGI VIZSGA október 17. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA október 17. 8:00. Időtartam: 240 perc
ÉRETTSÉGI VIZSGA 2017. október 17. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. október 17. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli
PRÓBAÉRETTSÉGI VIZSGA 2014. január 18.
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2014. január 18. Matematika KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2014. január 18. I. Időtartam: 45 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ
Próba érettségi feladatsor április 09. I. RÉSZ. 1. Hány fokos az a konkáv szög, amelyiknek koszinusza: 2
Név: osztály: Próba érettségi feladatsor 010 április 09 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti fehér hátterű
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 6. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 6. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
1. MINTAFELADATSOR EMELT SZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR EMELT SZINT 2015 Az írásbeli vizsga időtartama:
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2012. október 16. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2012. október 16. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 16. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
1. MINTAFELADATSOR KÖZÉPSZINT
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz MATEMATIKA 1. MINTAFELADATSOR KÖZÉPSZINT 2015 I. Időtartam: 45 perc Oktatáskutató
ÉRETTSÉGI VIZSGA május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 7. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2019. május 7. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2019. május 7. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA írásbeli vizsga 1813
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
MATEMATIKA II Január 21. PRÓBAÉRETTSÉGI VIZSGA KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA Január 21. STUDIUM GENERALE MATEMATIKA SZEKCIÓ
MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2012. Január 21. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név Tanárok neve Email Pontszám 2012. Január 21. II. Időtartam: 135 perc STUDIUM GENERALE MATEMATIKA SZEKCIÓ írásbeli
Azonosító jel: ÉRETTSÉGI VIZSGA május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 240 perc
ÉRETTSÉGI VIZSGA 2018. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 8. 8:00 Időtartam: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli
ÉRETTSÉGI VIZSGA május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 9. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2017. május 9. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. május 9. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli
Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. május 6. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2008. május 6. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. május 6. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Próba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
ÉRETTSÉGI VIZSGA május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 8. 8:00. Időtartam: 45 perc EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
ÉRETTSÉGI VIZSGA 2018. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2018. május 8. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika írásbeli