Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Hasonló dokumentumok
1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

Gyakorlo feladatok a szobeli vizsgahoz

Sorozatok és Sorozatok és / 18

Komplex számok. A komplex számok algebrai alakja

Határozatlan integrál, primitív függvény

IV. INTEGRÁLSZÁMÍTÁS Megoldások november

Függvények vizsgálata

Kalkulus I. gyakorlat Fizika BSc I/1.

A derivált alkalmazásai

Egyváltozós függvények 1.

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

Kalkulus I. NÉV: Határozzuk meg a következő határértékeket: 8pt

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

Gyakorló feladatok az II. konzultáció anyagához

1. Határozza meg az alábbi határértéket! A válaszát indokolja!

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

Kalkulus I. gyakorlat, megoldásvázlatok

Példatár Lineáris algebra és többváltozós függvények

1. Analizis (A1) gyakorló feladatok megoldása

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

A fontosabb definíciók

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

Matematika A2 vizsga mgeoldása június 4.

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai

Függvényhatárérték és folytonosság

Függvény határérték összefoglalás

Matematika A1a Analízis

Függvény differenciálás összefoglalás

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Figyelem, próbálja önállóan megoldani, csak ellenőrzésre használja a következő oldalak megoldásait!

A Matematika I. előadás részletes tematikája

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Monotonitas, konvexitas

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Sorozatok, sorozatok konvergenciája

FELVÉTELI VIZSGA, július 21. Írásbeli próba MATEMATIKÁBÓL A. RÉSZ

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Matematika I. NÉV:... FELADATOK:

Matematika elméleti összefoglaló

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

Határozott integrál és alkalmazásai

Második zárthelyi dolgozat megoldásai biomatematikából * A verzió

Hatványsorok, elemi függvények

Gyakorló feladatok I.

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

= x2. 3x + 4 ln x + C. 2. dx = x x2 + 25x. dx = x ln 1 + x. 3 a2 x +a 3 arctg x. 3)101 + C (2 + 3x 2 ) + C. 2. 8x C.

2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

4. Laplace transzformáció és alkalmazása

MATEMATIKA 2. dolgozat megoldása (A csoport)

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

0, különben. 9. Függvények

4. fejezet. Egyváltozós valós függvények deriválása Differenciálás a definícióval

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Valós függvények tulajdonságai és határérték-számítása

Taylor-polinomok. 1. Alapfeladatok április Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

2010. október 12. Dr. Vincze Szilvia

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

A képzetes számok az isteni szellem e gyönyörű és csodálatos hordozói már majdnem a lét és nemlét megtestesítői. (Carl Friedrich Gauss)

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

FELVÉTELI VIZSGA, szeptember 12.

Régebbi Matek B1 és A1 zh-k. deriválás alapjaival kapcsolatos feladatai. n )

Határozatlan integrál

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

Analízis házi feladatok

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

Gyakorló feladatok I.

Tartalomjegyzék. 1. Előszó 1

2012. október 2 és 4. Dr. Vincze Szilvia

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

Gazdasági Matematika I. Megoldások

Inverz függvények Inverz függvények / 26

MATEK-INFO UBB verseny április 6.

Átírás:

Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ = n+. Ha n-et növeljük, n + is szigorúan monoton növekv lesz, n+ szigorúan monoton csökken, n+ szigorúan monoton növekv, így a n is az lesz az els elemt l kezd d en. Ezért egy jó alsó korlát az a =, míg az a n = n+ Sorozatunk konvergens, mert monoton és korlátos. -ból következik, hogy a legjobb fels korlátunk a. =. n + lim a n = lim n n Megjegyzések:. Amennyiben nem használjuk az a n = n+ átírást, tekinthetjük az a n+ a n = n++ n++ n+ n+ = n+ n+ n+ n+ = n+n+ > 0 különbséget, melyb l következik, hogy a n+ > a n, tehát sorozatunk n + n + 0 szigorúan monoton növekv. Ekkor a limesz: lim n n + = lim n =. n n + n 0. Pozitív tagú sorozatok esetén mint amilyen ez is tekinthetjük az an+ a n hányadost is, ha monotonitást vizsgálunk. Ekkor azt kell megnéznünk, hogy -nél nagyobb vagy kisebb a hányados, ett l függ en szigorúan monoton növekv vagy csökken a sorozat.. Feladat Legyen a n = n n+. Határozzuk meg azt a legkisebb n 0 természetes számot küszöbindexet, melyre teljesül, hogy n > n 0 esetén az a n eltérése az a n n sorozat határértékét l kisebb mint ε = 0.

Amennyiben testsz leges ε-hoz adjuk meg a küszöbindexet, a sorozat konvergenciáját bizonyítjuk a deníció segítségével. Most viszont számoljuk ki a küszöbindexet a kért ε = 0 értékre. n n 0 A sorozat határértéke lim n n + = lim n = n n + n. 0 Teljesülnie kell az n n+ < 00 egyenl tlenségnek, ami a következ kkel ekvivalens: 78 00 80 < n + 78 < n n >. Ezért n 0 = [ ] 78 = a kért küszöbszám. n+ <. Feladat Az a paraméter mely értékeire lesz a következ függvény folytonos? sin x tg0x, ha x 0 g : π; π R, g x = a +, ha x = 0 g xa π; π \ {0} pontokban folytonos, egyedül az x = 0-an kell a folytonosságot vizsgálni. ezért a = =. sin x sin x lim x 0 tg0x = lim x 0 x 0x tg0x = = a +,. Feladat Vizsgáljuk és ábrázoljuk a következ függvényt! f x = x 0x + x +. Értelmezési tartomány:d f = R A függvényünk nem páros, nem páratlan és nem periodikus.. Zérushelyek: x x + = 0 x, =.

. Aszimptotikus vizsgálat: A függvény + -ben és -ben ugyanoda tart, x 0x + lim x ± x = lim + n x 0 0 x + 0 x = x + x 0 y = vízszintes aszimptota ± -ben. Függ leges aszimptotánk nincsen.. Els rend derivált és alkalmazásai szigorúan monoton ívek, lokális széls értékek f x = 0 x, = ± f x = 0x 0 x + x 0x + x x x + = 0 x + x + f x + + + 0 0 + + + f x 0 0 lokális maximum lokális minimum. Másodrend derivált és alkalmazásai konvex-, konkáv ívek és inexiós pontok: Kiszámoljuk a másodrend deriváltat: [ ] f x x = 0 x + = 0 x x + x x + x x + = = 0 x x + [ x + x ] x + x + = 0x x x + A másodrend derivált zérushelyei: x = 0 x, = ±. x 0 + x 0 + + + + + + + x 0 + + + + + + + 0 f x + + + 0 0 + + + 0 0+ f x 0 konvex inexiós pont konkáv inexiós pont konvex inexiós pont konkáv

6. értékkészlet: R f = [0; 0] Megjegyzés Kicsit leegyszer síthetjük a megoldást, ha még az elején gyelembe vesszük, hogy f x = 0x x +.. Feladat Válassza meg az α > 0 számot úgy, hogy az y = α x ln x, x e görbe alatti terület 0 legyen! Ha x e és α > 0, akkor az y = α x ln x pozitív érték, ezért és e között a görbe alatti terület T = e α x ln x = 0 e x x ln x = ln x = x ln x = x ln x x = x ln x x + c [ ] x e [ x e α x ln x = α ln x = α e 0 α e + = 0 = α = 0 e + x polinom ln parciális integrálás x ] e = α + = α e +

6. Feladat Fontosabb helyettesítések: a R e x, e x,... R racionális törtfüggvény alak esetén t = e x helyettesítés, ahonnan x = ln t; = t dt. Például: e x e x + = t t + t dt = = t ln t + + c = e x ln e x + + c [ t t + t + dt = dt = ] dt = t + t + b R x, n ax + b cx + d e x = t x = ln t = t dt típusú integrál esetében t = n ax + b cx + d helyettesítés Például: x = 6x + t t t dt = t dt = [ ] t t + c = 6x + 6x + + c 6x + = t 6x + = t x = t 6 = 6 t dt = t dt c x, x + a típusú integrál esetén x = a sht helyettesítés = a cht dt Ilyenkor használjuk még a ch x sh x = képletet, valamint sh archx = x ch archx = x + képleteket, melyek a sin x + cos x =, sin arccos x = x és cos arcsin x = x képletek megfelel i a hiperbolikus függvényeknél.

x, x a típusú integrál esetében x = a cht helyettesítés = a sht dt x, a x típusú integrál esetén pedig x = a sin t vagy x = a cos t helyettesítések bármelyike alkalmazható ekkor = a cos t dt vagy a második helyettesítés esetén = a sin t dt Például: x 6 = 6 ch t sht dt = 6 + cht sh t dt = 6 = 8t + 8 sht + c = 8archx + sh arch x ch arch x dt = 8t + 8 + c = cht dt = = 8arch x + 8 x x + c == 8archx + x x 6 + c x = cht = sht dt t = arch x Használtuk itt a sh t = +cht linearizálás-képletet, melynek a párja: ch t = +cht és a sht = sht cht képletet. 7. Feladat Számítsuk ki az x 8 értékét! x 8 = x x + = x x + x + = A x + B x + + Cx + D x + = A x + x + + B x x + + Cx + D x x + x 8 x csökken hatványai szerint rendezve a számlálót kapjuk, hogy = A + B + C x + A B + D x + A + B C x + 7A 7B D x, 8 6

ahonnan a következ egyenletrendszert kapjuk: A + B + C = 0 A B + D = 0 A + B C = 0 7A 7B D = Az els és harmadik egyenletb l kapjuk, hogy C = 0, majd ezt mindegyik egyenletbe behelyettesítve és megoldva a három egyenletb l álló három ismeretlenes egyenletrendszert két egyenlet ugyanaz lesz kapjuk, hogy A = 08, B = 08, D = 8. Ezért az elemi törtekre bontás a következ höz vezet: [ x 8 = 08 x 08 x + ] 8 x = x x + + 08 ln 08 ln 8 arctg x +c mert x + = x = + arctg x + c 8. Improprius integrálok a végtelen határú integrál ω = lim = lim ω = + x ω x ω divergens, ha véges volna, akkor az improprius integrál konvergens lenne mert ω = x b szakadásos függvény integrálja x = x x = [ x ] ω = ω + c = x + c 0 ε [ ε = lim = lim 0 ] = konvergens, x ε 0+ 0 x ε 0+ mert ε 0 = x x = x + c = x + c = [ x ] ε ε = x 0 + ε = 7

. u vektor felbontása v-vel párhuzamos és arra mer leges komponensek összegére: u = u u = u u v v v v Ellen rzés: u u = 0 Példa Határozzuk meg az u,, vektor v 0; ; vektor tartóegyenesére vett mer leges vetületvektorát! [ ] u =,, 0; ; 0; ; = 8 0; ; = 0; 8 ; 6 mert v v = 0; ; = 0; ; + 0. Feladat Vizsgáljuk hogy legfeljebb másodfokú valós együtthatós polinomok P [X], +, R, vektorterében lineárisan függetlenek-e az f X = X +, f X = X + X és f X = X X vektorok? A lineárisan függetlenség denícióját használva induljunk ki az α f X + β f X + γ f X = 0 azonosságból, ahol 0 a zérus polinom. α X + + β X + X + γ X X = 0, fokszámok szerint rendezve β + γ X + α + β γ X + α = 0, ahonnan α = 0 α + β γ = 0 = α = β = γ = 0, β + γ = 0 tehát f X, f X, f X vektorok lineárisan függetlenek. 8

. Egyenletrendszerek: A t paraméter értékét l függ en vizsgáljuk az alábbi egyenletrendszer megoldásainak számát! Ahol van megoldás, ott oldjuk is meg az egyenletrendszert! x + x + x + x = x + 6x + x + x = x + x + x + 7x = x x + x + tx = 7 Mátrixos alakba írva: 6 7 t x x x x = 7 A x = b Gauss módszerrel kapjuk, hogy: 6 7 t 7 S S S S S S 0 0 0 0 0 8 t S + S S S 0 0 0 0 0 0 0 0 0 0 t S S S 0 0 0 0 0 t 0 0 0 0 0 a pontosan egy megoldásunk akkor lenne, ha ranga = rang [A b] = ismeretlenek száma, ez nem állhat fenn.

b sok megoldásunk van ranga = rang [A b] < Ez csak akkor lehetséges, ha a két rang =, azaz t. Ekkor x + x + x + x = x x + x = 0 t x = = x = t x + x + x = t x x = t x = t Ekkor a szabadságfok = = c x = u R x = u t x = t u u + = t u x = t = t nincs megoldás azaz az egyenletrendszer megoldáshalmaza üres, ha ranga rang [A b]. Ez úgy lehet, hogy ranga = < = rang [A b], azaz t = Megjegyzés Ha nem kéri a feladat, hogy oldjuk is meg az egyenletrendszert ott, ahol van megoldás, akkor elég csak a megoldások számát tárgyalni a t paraméter függvényében, azaz a b pontban szerepl x, x, x, x megoldásokat nem kell megadni. 0

. Mátrixok. A. feladat Ortogonális-e az A = 0 mátrix? A ortogonális A A = A A = I egységmátrix. 0 0 A A = = 0 0 0 0 0 0 Hasonlóan be kell látnunk, hogy A A is ugyanennyi házi feladat. = I. B. feladat Számítsuk ki az A = mátrix inverzét! deta = 0 + + 8 7 0 6 = 7 6 = 0 tehát van inverz mátrix. 0 6 0 6 adja = 6 7 = 6 7 7 7 A = deta adja = Alkalmazás Oldjuk meg az A X = 0 7 7 0 mátrix egyenletet, ahol A az el z mátrix! X = A 0 = 0 7 7 0 = 0 6 0 7