Komplex függvénytan. Farkas Barnabás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Komplex függvénytan. Farkas Barnabás"

Átírás

1 Komplex függvénytan Farkas Barnabás

2 El só A jegyet els sorban a Budapesti M saki és Gadaságtudományi Egyetem villamosmérnök hallgatóinak késült, harmadik féléves matematika tanulmányaik (A3) komplex fügvénytani fejeeteit tartalmaa egy kicsit kíb vítve. A villamosmérnök hallgatókon kívül bármely más mérnöki vagy egyéb m saki sakos hallgatóknak is segítséget nyújthat a témában. A témáho kapcsolódó feladatok köül a legfontosabb típusokból több kidolgoott példát is tartalma, eel igyekevén segítséget nyújtani a ZH-kra illetve visgákra való felkésülésben. Kösönettel tartoom Stubnya Gustávné (Stubnya Etelka) tanárn nek a jegyet résletes átnééséért. A apróbb javítások és ésrevételek mellett egy komolyabb matematikai hibára is rámutatott, mely teljesen elkerülte a gyelmemet. Továbbá kösönetet seretnék mondani Wettl Ferencnek a felmerül, sámomra megoldhatatlannak t n serkestési, formai problémák megoldásában nyújtott segítségéért és a LATEX rejtelmeiben nyújtott útmutatásaiért. Budapest, Farkas Barnabás

3 Tartalomjegyék. Alapok 3 Emléketet C topológiája Soroatok és sorok C-ben Komplex függvények határértéke és folytonossága Dierenciálhatóság 3 Komplex dierenciálhatóság Cauchy-Riemann egyenletek A CR-egyenletek követkeményei Hatványsorok 9 Hatványsorok alaptulajdonságai A exp és log függvények Trigonometrikus és hiperbolikus függvények Vonalintegrál 25 Görbék a komplex síkon Komplex görbementi integrál A integrál tulajdonságai Cauchy Integráltétele Kidolgoott példák Harmonikus függvények Hatványsorba fejtés 43 Taylor-sorok Laurent-sorok Érdekességek Iolált singularitások ostályoása A Reiduum Tétel Valós improprius integrálok Appendix 57 Halmaok és függvények Testek R 2 topológiája

4 2

5 . Alapok Emléketet A komplex sámok struktúráját úgy kapjuk, hogy a R 2 valós sámpárok halmaán értelmeük a követke m veleteket: össeadás: (a, b ) + (a 2, b 2 ) = (a + a 2, b + b 2 ), sorás: (a, b ) (a 2, b 2 ) = (a a 2 b b 2, a b 2 + b a 2 ). Legyen 0 = (0, 0) és = (, 0). Belátható, hogy eekkel a m veletekkel és eel a két kijelölt elemmel R 2 -en a valós sámokého nagyon hasonló struktúrát, egy test-et kapunk (lásd Appendix). Et neveük a komplex sámok testének, jelölésben: C. Vagyis ugyanarról a halmaról (R 2 ) van só, csak m veleteket associálunk hoá. A ± hasnálata nem oko félreértést, mivel ugyanat a m veletet jelöli R 2 -ben és C-ben. Ostás: ha (a 2, b 2 ) (0, 0), akkor Legyen i = (0, ). Ekkor (a, b ) (a 2, b 2 ) = ( a a 2 + b b 2 a 2 2 +, b a 2 a b 2 ). b2 2 a b2 2 i 2 = (0, ) (0, ) = (, 0) = (, 0) =. A {, i} halma báis R 2 -ben, eért minden (a, b) R 2 egyértelm en felírható a (a, b) = a + bi alakban. Ehelyett a egyser bb a + bi jelölést fogjuk hasnálni. Egyser sítésünkkel egy aonosítás is adódik: minden a R-nek megfeleltettük (a, 0)-t, speciálisan -nek -et. Eel a egyser sítéssel formálisan minden a R valós sámra a = a + 0i = a + 0i C vagyis feltehetjük, hogy R C. Informálisan a "x tengely" pontjait mostantól valós sámoknak tekintjük. Ennél valójában sokkal többr l van só: A C és R jelölések magukban foglalnak bionyos m veleteket is. Könnyen belátható, hogy ha a most denált m veleteket megsorítjuk R( C)-re, akkor a sokásos valós m veleteket kapjuk (lásd Appendix). Például ha a, b R, akkor a megfeleltetést -el jelölve: ab (ab, 0) = (ab 00, a0 b0) = (a, 0) (b, 0). Egy a + bi C komplex sám valós és képetes rése: Re(a + bi) = a, Im(a + bi) = b, vagyis a + bi = (Re(a + bi), Im(a + bi)) = Re(a + bi) + Im(a + bi)i. Hogyan sámoljunk ebben a a + bi alakban? A imént deniált m veletek úgy viselkednek, mintha a i 2 = sabály felhasnálásával "értelemser en" sámolnánk a a + bi alakú "sámokkal". Például (a + b i) (a 2 + b 2 i) = a a 2 + a b 2 i + b a 2 i + b b 2 i 2 = 3

6 a a 2 + (a b 2 + b a 2 )i b b 2 = (a a 2 b b 2 ) + (a b 2 + b a 2 )i, vagyis ha a (a, b ) és (a 2, b 2 ) pontokat felírjuk a, i báisban a fenti egyser sítést alaklamava és "értelemser en" össesorouk ket, akkor a (a, b ) (a 2, b 2 ) = (a a 2 b b 2, a b 2 +b a 2 ) sorat egyser sített felírását kapjuk a, i báisban. A továbbiakban nem említjük külön, hogy a komplex sámtest alaphalmaa R 2, így például egy D C halma értelemser en egy D R 2 halma. Beveetünk még két függvényt: konjugálás: a + bi = a bi(= a + ( b)i), absolút érték: a + bi = a 2 + b 2. Tudjuk, hogy ha, w C, akkor és ha w 0, akkor Továbbá, hogy ± w = ± w, w = w, = 2, ( ) = w w. w = w, és ha w 0, akkor = w w. A a + bi alakot a komplex sám algebrai alakjának neveük. Ebben a alakban minden alapm velet könnyedén elvégehet. Problémát a hatványoás és a gyökvonás oko. Egy komplex sám trigonometrikus alakja: a + bi = r(cos ϕ + i sin ϕ), amib l látsik, hogy r = a 2 + b 2 = a + bi és tg ϕ = b a. Vegyük ésre, hogy a trigonometrikus alak nem egyértelm ϕ válastása miatt. Ha például kikötjük, hogy ϕ [0, 2π) vagy ϕ [ π, π), akkor már egyértelm a trigonometrikus alak. Trigonometrikus alakban össeadni/kivonni nem igaán lehet. Soroni/ostani, visont annál könnyebben: (r (cos ϕ +i sin ϕ )) (r 2 (cos ϕ 2 +i sin ϕ 2 )) = r r 2 (cos(ϕ +ϕ 2 )+i sin(ϕ +ϕ 2 )), és ha r 2 0, akkor r (cos ϕ + i sin ϕ ) r 2 (cos ϕ 2 + i sin ϕ 2 ) = r r 2 (cos(ϕ ϕ 2 ) + i sin(ϕ ϕ 2 )). Ennek követketében hatványoni is nagyon könny ebben a alakban: ha n Z, akkor (r(cos ϕ + i sin ϕ)) n = r n (cos(nϕ) + i sin(nϕ)). Minden 0 komplex sámnak n darad n. gyöke van (n N + ). Trigonometrikus alakban: n r(cos ϕ + i sin ϕ) = n r( cos ϕ + k2π + i sin ϕ + k2π ), n n ahol k = 0,..., n, vagy tets leges n darad egymást követ termésetes sám. 4

7 C topológiája A komplex sámok halmaán a topológiai fogalmak ugyanaok, mint R 2 -ben (lásd Appendix). Pontosabban, ha a sokásos módon deniáljuk ket a komplex sámokon értelmeett absolút érték segítségével, akkor ugyanat a fogalmat kapjuk, mint R 2 -ben, hisen a komplex absolút érték megegyeik a R 2 -beli normával ( ). Például egy U C halma nyílt, ha u U ɛ > 0 C ( u < ɛ U). Sükségünk les egy-két új topológiai fogalomra, eeket R 2 -ben deniáljuk.. Deníció. Egy X R 2 halma össefügg, ha nincsenek U, V R 2 nyílt halmaok, amikre: X U V, X U és X V, X U V =. X útössefügg, ha bármely két pontja össeköthet X-en belül haladó folytonos görbével, vagyis minden a, b X-he léteik f : [0, ] X folytonos függvény, hogy f(0) = a és f() = b. X poligonössefügg, ha bármely két pontja össeköthet X-en belül haladó töröttvonallal, vagyis minden a, b X-he léteik f : [0, ] X folytonos függvény, hogy f(0) = a, f() = b és f véges sok pont kivételével dierenciálható és két ilyen pont köött a deriváltja állandó. Világos, hogy a poligonössefügg ségb l követkeik a útössefügg ség, vissafelé pedig nem (pl.: körvonal). Ha X R 2 nyílt, akkor a össefügg ség deníciója leegyser s dik: X pontosan akkor össefügg, ha nem áll el két nemüres disjunkt nyílt halma uniójaként..2 Feladat. Bionyítsa be, hogy a útössefügg ségb l követkeik a össefügg ség. Vissafelé nem iga, például belátható, hogy a {( {(0, 0)} x, sin ) } : x (0, ) R 2 x halma össefügg, de nem útössefügg..3 Megjegyés. A össefügg ség deníciójában a harmadik pont helyett elég feltenni, hogy U V =, vagyis, hogy a így kapott, els ránéésre gyengébb (Miért is?) fogalom ekvivalens a össefügg séggel..4 Deníció. Egy nemüres D R 2 halma tartomány, ha nyílt és össefügg. Nyílt halmaok esetében a össefügg ség különbö veriói ekvivalensek:.5 Tétel. Egy D R 2 nemüres nyílt halmara a követke k ekvivalensek: D össefügg, vagyis tartomány, 5

8 D útössefügg, D poligonössefügg..6 Deníció. Egy X R 2 tartomány egyseresen össefügg (-össefügg ), ha minden X -beli : [0, ] X folytonos árt ((0) = ()) görbe folytonosan pontrahúható X-en belül, vagyis léteik egy p X és egy H : [0, ] 2 X folytonos függvény, hogy minden t [0, ]-re f(t, ) = (t) és f(t, 0) = p..7 Feladat. Bionyítsa be, hogy minden konvex halma -össefügg. Mivel egy tartomány útössefügg, eért könnyen meggondolható, hogy a -össefügg ség deníciójában a p pont tets legesen válastható, vagyis ha X -össefügg, akkor minden p X-he léteik egy megfelel H. Belátható, hogy egy X R 2 pontosan akkor -össefügg, ha X folytonosan pontra húható X-en belül, vagyis ha egy (tets leges) p X-re léteik H : X [0, ] X folytonos függvény, hogy minden x X-re f(x, ) = x és f(x, 0) = p. Soroatok és sorok C-ben Egy komplex soroat határértékét deniáljuk a sokásos, R 2 -beli módon vagyis (komplex jelölésekkel): n vagy lim n = pontosan akkor, ha ɛ > 0 n 0 N n n 0 n < ɛ. Egy komplex soroat konvergens, ha léteik (komplex) határértéke, különben divergens. Ismét megjegyeük, hogy a komplex absolút érték megegyeik a R 2 -beli normával, eért e a deníció tényleg a sokásos R 2 -beli konvergenciát adja: ha n = a n + b n i és = a + bi, akkor n (a n, b n ) (a, b). Korábbi tanulmányainkból már tudjuk, hogy (a n, b n ) (a, b) pontosan akkor, ha a n a és b n b. Más sóval komplex soroatok határértékének meghatároásáho csak a klassikus (valós) soroatoknál megismert technikákat kell alkalmani. A síkbeli soroatoktól eltér en most besélni fogunk határértékr l is..8 Deníció. Egy n komplex soroat végtelenhe tart, jelölésben lim n = vagy n, ha n, vagyis K R n 0 N n n 0 n K. Komplex soroatokra minden R 2 -ben megismert tétel értelemser en lefordítható. Például:.9 Tétel. Ha n egy korlátos (komplex) soroat, vagyis léteik egy K, hogy minden n N-re n < K, akkor van konvergens réssoroata..0 Tétel. (Cauchy Kritérium) Egy n soroat pontosan akkor konvergens, ha Cauchy-soroat vagyis ɛ > 0 n 0 N k, m n 0 k m < ɛ. 6

9 Ami kevésbe triviális, hogy a m veleteket is megtartják a komplex soroatok limesei. A problémát a okohatná, hogy új m veleteket deniáltunk R 2 -en (sorás és ostás). Aonban a eredeti, valós soroatokra vonatkoó bionyítás lemásolható.. Állítás. Ha n és w n w (, w C { }), akkor ( n ± w n ) ± w és n w n w, ha e értelmes, vagyis nem ± illetve 0 vagy 0 alakú, továbbá ha w 0, akkor n w n w, ha nem alakú. Vegyük ésre, hogy a + most nem értelmehet! Például komplexben n és n, de n n = 0 0; n 2 és n, de n 2 n. Lássunk egy-két példát:.) lim n2 +ni i =, mert n2 +ni i = n 4 +n ) lim i n nem léteik, mert a i n soroat elemei, i,, i,,.... Vagy másképpen i n nem Cauchy-soroat, mert például ɛ = -he nincsen küsöbindex. 3.) lim n+i +ni = lim + i n = n +i i = i..2 Feladat. lim +ni n 2 +i =?.3 Feladat. lim ( 3+5ni ) n n+i =?.4 Feladat. lim in +n 2 i n 2 n 2 i =?.5 Feladat. lim ( 3+5i ) n n+i =?.6 Feladat. lim ( i) n =? C-beli sorok össegét ugyanúgy értelmeük, mint a valós esetben, vissaveetjük soroatok határértékére..7 Deníció. Ha n egy soroat és w C { }, akkor n = w pontosan akkor, ha lim( n ) = w. A n sor konvergens, ha a deníciójában serepl soroat konvergens, különben divergens. A sorokra vonatkoó valósból megismert, rendeést (pl.: poitív tagú sorok vagy majoráns/minoráns kritérium) nem tartalmaó tételek itt is triviálisan igaak. Például:.8 Tétel. Ha = C { } és = w C { }, akkor n ( n ± w n ) = ± w, ha nem ± alakú. 7 w n

10 .9 Tétel. (Cauchy Kritérium) n pontosan akkor konvergens, ha minden k ɛ > 0-ho léteik n 0 N, hogy minden k > m n 0 esetén n < ɛ. n=m+ Bionyítás. Jelölje s n = n a sor n. seletét. A n sor pontosan akkor konvergens és össege, ha s n. E a.0 Tétel serint pontosan akkor teljesül, ha minden ɛ > 0-ho léteik n 0, hogy minden k, m n 0 -ra s k s m < ɛ. Világos, hogy ha k > m, akkor s k s m = k n..20 Tétel. Ha a n sor absolút konvergens (vagyis a n sor konvergens), akkor konvergens. n=m+ Bionyítás. Belátjuk, hogy a n sor kielégíti a.9 Tétel feltételét. Legyen ɛ > 0 x. Mivel a n sor konvergens, eért a.9 Tétel serint léteik k n 0, hogy minden k > m n 0 -ra n < ɛ. Ha k > m n 0, akkor k n=m+ n k n=m+ n = k n=m+ Egy példa: Ha <, akkor n=m+ n < ɛ. n =, mert a sor n. selete, n = n+ és n+ 0, hisen n+ = n Feladat. Bionyítsa be, hogy ha nem negatív egés sám, akkor n= ( + n)( + n + ) =. Komplex függvények határértéke és folytonossága Egy D C halmaon értelmeett f : D C függvény adott pontban vett határértékét illetve folytonosságát értelmeük a sokásos, R 2 -beli módon..22 Deníció. Ha f : D C és 0 D torlódási pont, akkor lim f = w C pontosan akkor, ha ɛ > 0 δ > 0 D (0 < 0 < δ f() w < ɛ), és ha 0 D, akkor f folytonos 0 -ban, ha ɛ > 0 δ > 0 D ( 0 < δ f() f( 0 ) < ɛ). 8

11 E tényleg a sokásos R 2 -beli határérték illetve folytonosság deníciója, hisen a komplex absolút érték megegyeik a R 2 -beli normával, így mint a soroatok esetében, komplex függvények határértékének kisámításában is a többváltoós analíisben megismert módserek alkalmahatók. Egy f : D C függvény perse f : D R 2 függvény. Ekkor f koordinátafüggvényeit jelüljük u, v-vel, vagyis u, v : D R és minden (x, y) D-re f(x, y) = (u(x, y), v(x, y)), vagy rövidebben f = (u, v). Világos, hogy ha f-et komplex függvénynek tekintjük, akkor a f = u + iv jelölést alkalmauk. Alkalmava a többváltoós analíisb l jólismert tételeket: ha 0 D, akkor lim és ekkor (komplex jelölésekkel) f ( lim lim u lim v), f = lim u + i lim v. Továbbá, ha 0 D, akkor f pontosan akkor folytonos 0 -ban, ha u és v is folytonos 0 -ban. Mivel egy tartománynak minden pontja torlódási pontja, eért ha D C egy tartomány és f : D C, akkor f pontosan akkor folytonos egy 0 D pontban, ha lim f = f( 0 ). Mint a soroatoknál, most is külön meg kell említenünk, hogy értelmeük a lim f =, a lim f = w C és a lim f = fogalmakat is..23 Deníció. Legyen D C és f : D C. Ekkor ha 0 D, akkor lim f = pontosan akkor, ha lim f = + (valós értelemben), vagyis K R δ > 0 D (0 < 0 < δ f() > K); ha D, vagyis D nem korlátos és w C, akkor lim f = w pontosan akkor, ha ɛ > 0 K R D ( > K f() w < ɛ); ha D, akkor lim f = pontosan akkor, ha K R K 2 R D ( > K 2 f() > K ). Termésetesen a Átviteli Elv is iga marad komplex esetben. (Vegyük ésre, hogy e csak a -t tartalmaó esetekben újdonság, egyébként csak a R 2 -beli Átviteli Elv lefordítása komplex jelölésekkel.) 9

12 .24 Tétel. (Átviteli Elv) Legyen D C, f : D C és 0 D. Ekkor lim f = w C { } pontosan akkor, ha minden n D\{ 0 } soroatra, ha n 0, akkor f( n ) w. Most is igaak maradnak a valósból megismert m velettartást állító tételek, a. Állítás függvényekre vonatkoó váltoata a követke :.25 Állítás. Ha f, g : D C, 0 D, lim lim f ± g = w ± w 2 és lim fg = w w 2, ha eek értelmesek, továbbá ha w 2 0, akkor ha értelmes. Egy-két példa:.) lim 0 2 lim f g = w w 2, f = w és lim g = w 2, akkor =, mert = 2 2 = = 2, ha 0. 2.) lim i +i 2 + = lim i +i (+i)( i) = lim i i+i i+ 3.) lim 3 = lim i 2 = i 3 = 0. 4.) lim 0 nem léteik, mert lim 0 Átviteli Elvet..26 Feladat. lim 0 =?, lim 0 ( n ) n 2 =? i = 2i = i 2. =, de lim 0 ( i n ) i n = és alkalmauk a.27 Feladat. lim i =?.28 Feladat. lim =?.29 Feladat. Legyen f mindenhol folytonos és f() = Re(), ha 0. Határoa meg f(0)-t. Említés sinten kitérünk a komplex függvénysorokra. Adott D tartományon értelmeett f n : D C függvények esetén a f n függvénysor konvergens D-n, ha minden D-re a f n () sor konvergens, egyenletesen konvergens D-n, ha konvergens, össegfüggvénye f és minden ɛ > 0-ho léteik N, hogy minden m N-re és D-re m f n () f() = f n () < ɛ. n=m 0

13 Akárcsak a valós esetben, komplexben is iga, hogy folytonos függvények egyenletesen konvergens sorának össegfüggvénye folytonos. Továbbá a Weierstrass Kritérium is iga, vagyis ha f n egy függvénysor, minden n-re f n a n és a a n sor konvergens, akkor a függvénysor egyenletesen konvergens.

14 2

15 2. Dierenciálhatóság Komplex dierenciálhatóság A alapfelállás: D C egy tartomány és f : D C egy függvény. Et a továbbiakban nem kötjük ki külön, mindig feltessük. 2. Deníció. A f függvény dierenciálható a 0 D pontban, ha léteik a f() f( 0 ) lim C 0 határérték. Ekkor et f ( 0 )-al jelöljük. A D minden pontjában dierenciálható függvényeket D-n reguláris vagy holomorf függvényeknek neveük, halmaukat O(D)-vel jelöljük. A C minden pontjában dierenciálható függvényeket, vagyis O(C) elemeit egésfüggvényeknek neveük. Például, ha n N, akkor a f() = n függvény dierenciálható minden pontban és f () = n n. Ennek bionyítása a valós eset só serinti átírása: A n = 0 eset triviális. Ha n > 0, akkor f ( 0 ) = lim n n 0 0 = lim( n + n n n ) = n n. 2.2 Állítás. Ha f dierenciálható 0 -ban, akkor ott folytonos is. Bionyítás. Mivel f() = f( 0 ) + (f() f( 0 )) = f( 0 ) + f() f() 0 ( 0 ), eért f() f( 0 ) lim f = f( 0 ) + lim ( 0 ) = 0 f() f( 0 ) f( 0 ) + lim lim( 0 ) = f( 0 ) + f ( 0 )0 = f( 0 ). 0 A követke tételt mutatja, hogy a dierenciálási sabályok ugyanaok, mint a egyváltoós valós esetben. A tétel bionyítása most is a valós eset analógiája, eért elhagyjuk. 2.3 Tétel. Ha f és g dierenciálható 0 -ban és c C, akkor cf, f ± g és fg is dierenciálható 0 -ban, és teljesülnek a követke k (cf) ( 0 ) = cf ( 0 ), (f ± g) ( 0 ) = f ( 0 ) ± g ( 0 ), (fg) ( 0 ) = f ( 0 )g( 0 ) + f( 0 )g ( 0 ), 3

16 továbbá, ha g( 0 ) 0, akkor f g is dierenciálható 0-ban és ( f g ) ( ) = f ( 0 )g( 0 ) f( 0 )g ( 0 ) (g( 0 )) 2. Ha g dierenciálható 0 -ban és f dierenciálható g( 0 )-ban, akkor f g is differenciálható 0 -ban és (f g) ( 0 ) = f (g( 0 ))g ( 0 ). A inver függvény dierenciálhatóságára vonatkoó, a valós esettel analóg komplex tétel: 2.4 Tétel. Ha a f : D C függvény dierenciálható a 0 D pontban és f-nek léteik invere (vagyis f injektív), ami értelmeve van egy f( 0 ) körüli körlapon, továbbá f ( 0 ) 0 és f folytonos f( 0 )-ban, akkor f dierenciálható f( 0 )-ban és (f ) (f( 0 )) = f ( 0 ). Megjegyeük, hogy a valós esetben sükséges rengeteg feltétel nagy rése elhagyható komplex esetben: Ha f reguláris és injektív D-n, akkor f(d) is egy tartomány és f reguláris f(d)-n. Ennek a tételnek a bionyítása meglep en bonyolult, mi nem foglalkounk vele. Felhasnálva, hogy n reguláris kapjuk, hogy minden komplex polinom, vagyis a f() = a n n + + a + a 0 alakú függvények (a i C) is regulárisak; és minden komplex racionális törtfüggvény: f() = a n n + + a + a 0 b m m + + b + b 0 is reguláris értelmeési tartományán. Lássunk egy-két példát nem dierenciálható komplex függvényre:.) f() = sehol sem dierenciálható, mert lim 0 0 = lim 0 0 = lim 0 Korábban már igaoltuk a Átviteli Elv felhasnálásával, hogy e a határérték nem léteik. Gondolkodhatunk másként is: áttréve trigonometrikus alakra (polárkoordinátákra) kapjuk, hogy tovább egyenl ami nem léteik.. r(cos( ϕ) + i sin( ϕ)) lim = lim cos( 2ϕ) + i sin( 2ϕ), r 0 r(cos ϕ + i sin ϕ) r 0 2.) f() = sehol sem dierenciálható, mert 0-ban a valós irányból x valós paraméterrel: 0 lim 0 0 = lim x x 0 x, 4

17 amir l tudjuk, hogy nem léteik (jobbról +, balról ). A 0 = x 0 + y 0 i 0- ban valós irányból (y = y 0 ): 0 (x + y 0 i) x 0 + y 0 i lim = lim 0 x x 0 (x + y 0 i) (x 0 + y 0 i) = lim x2 + y0 2 x y2 0, x x 0 x x 0 ami x 2 + y0 2 + x y2 0-vel b vítve tovább egyenl (x 2 + y lim 0) 2 (x y0) 2 x x 0 (x x 0 )( x 2 + y0 2 + x y2 0 ) = lim x + x 0 x x 0 x2 + y0 2 + x y2 0 x 0 + x 0 x y x y2 0 = x 0. x y0 2 Hasonlóan meggondolható, hogy képetes irányból (x = x 0 ): 0 (x 0 + yi) x 0 + y 0 i lim = lim 0 y y 0 (x 0 + yi) (x 0 + y 0 i) = y 0 i x y2 0 = Ha x 0 + iy 0 0, akkor x 0 x 2 0 +y0 2 x 0 + iy 0 -ban. y 0 i x 2 0 +y2 0, tehát nem dierenciálható Cauchy-Riemann egyenletek Mit mondhatunk a u, v : D R valós függvényekr l, ha a f = u+iv : D C komplex függvény dierenciálható egy 0 = x 0 + y 0 i pontban? f f() f( 0 ) u(x, y) + iv(x, y) u(x 0, y 0 ) iv(x 0, y 0 ) ( 0 ) = lim = lim = 0 (x 0,y 0) x + iy x 0 iy 0 lim (x 0,y 0) u(x, y) u(x 0, y 0 ) + i(v(x, y) v(x 0, y 0 )). x x 0 + i(y y 0 ) Ha y = y 0, vagyis a valós tengely irányából: f ( 0 ) = lim x0 (u(x, y 0 ) u(x 0, y 0 ) x x 0 + i v(x, y 0) v(x 0, y 0 ) x x 0 ) = u(x, y 0 ) u(x 0, y 0 ) v(x, y 0 ) v(x 0, y 0 ) lim + i lim = u x0 x x 0 x0 x x x(x 0, y 0 ) + iv x(x 0, y 0 ). 0 Hasonlóan, ha x = x 0, vagyis a képetes tengyely irányából: f ( 0 ) = iu y(x 0, y 0 ) + v y(x 0, y 0 ) = v y(x 0, y 0 ) + i( u y(x 0, y 0 )). Et a ésrevételt fogalmauk meg tétel formájában is. 2.5 Tétel. Ha f = u + iv : D C és f dierenciálható 0 D-ben, akkor u és v parciálisan dierenciálható a 0 -pontban és teljesül: vagy másképpen f ( 0 ) = u x( 0 ) + iv x( 0 ) = v y( 0 ) + i( u y( 0 )), f ( 0 ) = u x( 0 ) + i( u y( 0 )) = v y( 0 ) + iv x( 0 ). 5

18 A tétel már mutatja, hogy mennyire speciális egy függvény komplex dierenciálhatósága, hisen például egy pontbeli deriváltja kifejehet külön-külön mindkét koordináta-függvényével. Többet is mondhatunk u és v dierenciálhatóságáról. 2.6 Tétel. Ha f = u + iv : D C és f dierenciálható 0 -ban, akkor u és v dierenciálható 0 -ban. Bionyítás. Akárcsak a egyváltoós valós esetben, most is könnyen belátható, hogy egy f : D C függvény dierenciálhatósága egy 0 D pontban ekvivalens aal, hogy léteik egy r : D C függvény és egy A C (e les f ( 0 )), hogy minden D-re f() = f( 0 ) + A( 0 ) + r () és lim Másképpen: léteik egy A C, hogy r () 0 = 0, vagyis lim f() (f( 0 ) + A( 0 )) lim = 0. 0 r () 0 = 0. Ha f = u + iv akkor a utolsóba helyettesítve ( 0 = x 0 + y 0 i) kapjuk hogy u() + iv() (u( 0 ) + iv( 0 ) + A( 0 )) lim = 0 u(x, y) + iv(x, y) (u(x 0, y 0 ) + iv(x 0, y 0 ) + A((x x 0 ) + (y y 0 )i)) lim = 0. (x 0,y 0) (x x 0 ) + (y y 0 )i A = a + bi(= Re(f ( 0 )) + Im(f ( 0 ))i) jelöléssel: A((x x 0 ) + (y y 0 )i) = (a(x x 0 ) b(y y 0 )) + (a(y y 0 ) + b(x x 0 ))i = (a, b)(x x 0, y y 0 ) + (b, a)(x x 0, y y 0 )i, ahol vektorok egymás mellé írása most termésetesen skaláris sorást jelent. A fenti limes valós illetve képetes rése: u(x, y) (u(x 0, y 0 ) + (a, b)(x x 0, y y 0 )) lim = 0, (x 0,y 0) (x x0 ) 2 + (y y 0 ) 2 v(x, y) (v(x 0, y 0 ) + (b, a)(x x 0, y y 0 )) lim = 0, (x 0,y 0) (x x0 ) 2 + (y y 0 ) 2 vagyis u és v dierenciálhatók 0 -ban. A 2.6 Tétel bionyításából perse ismét látsik, hogy f ( 0 ) = u x( 0 ) + i( u y( 0 )) = v y( 0 ) + i(v x( 0 )), hisen f ( 0 ) = a + bi jelöléssel a bionyítás végéb l grad u( 0 ) = (a, b) és grad v( 0 ) = (b, a). 2.7 Deníció. Adott u, v : D R függvények esetén at mondjuk, hogy u és v kielégíti a Cauchy-Riemann (CR) egyenleteket 0 D-ben, ha parciálisan dierenciálhatók 0 -ban és eleget tesnek a követke egyenleteknek: u x( 0 ) = v y( 0 ), u y( 0 ) = v x( 0 ). 6

19 A 2.5 és a 2.6 Tételek (vagy csak a 2.6 Tétel és a bionyítása utáni megjegyés) együtt at állítják, hogy ha f = u + iv dierenciálható 0 -ban, akkor u és v is dierenciálhatók 0 -ban és kielégítik a CR-egyenleteket 0 -ban. Ennek segítségével már sok esetben könnyen meg tudjuk mutatni egy függvényr l, hogy nem dierenciálható egy pontban. Például: f() = esetén u(x, y) = x és v(x, y) = y, így u x = = v y, eért f egyetlen pontban sem dierenciálható. Mi a helyet vissafelé? Vagyis a, hogy u és v dierenciálhatók és kielégítik a CR-egyenleteket egy pontban elég-e f dierenciálhatóságáho a adott pontban? A válas igen, vagyis f adott pontbeli dierenciálhatóságára sükséges és elégséges feltételt kaptunk. Ennek bionyítása egyser en a 2.6 Tétel bionyításának "fordított leírása". 2.8 Tétel. (Össefoglaló) Legyen f = u + iv : D C és 0 D. Ekkor f pontosan akkor dierenciálható 0 -ban, ha u és v dierenciálhatók 0 -ban és kielégítik a CR-egyenleteket 0 -ban. Felhasnálva a többváltoós valós analíisb l ismert elégséges feltételt pontbeli dierenciálhatóságra, kapjuk a követke t. 2.9 Követkemény. Ha f = u + iv : D C, 0 D, 0 egy környeetében u és v parciálisan dierenciálhatók, 0 -ban a parciális deriváltjaik folytonosak, továbbá kielégítik a CR-egyenleteket 0 -ban, akkor f dierenciálható 0 -ban. Lássunk egy példát. Mely pontokban dierenciálható a f() = függvény? f(x + yi) = (x yi)(x yi)(x + iy) + (x 2 y 2 + 2xyi) = (x yi)(x 2 +y 2 )+(x 2 y 2 +2xyi) = (x 3 +xy 2 ) i(x 2 y +y 3 )+(x 2 y 2 +2xyi) = (x 3 + x 2 + xy 2 y 2 ) + i( y 3 x 2 y + 2xy). Világos, hogy u és v mindenhol dierenciálható. u x = 3x 2 + 2x + y 2, u y = 2xy 2y, v x = 2xy + 2y és v y = 3y 2 x 2 + 2x. u x = v y at jelenti, hogy 3x 2 + 2x + y 2 = 3y 2 x 2 + 2x, amib l x 2 = y 2, vagyis x = y = 0; u y = v x at jelenti, hogy 2xy 2y = 2xy 2y, ami aonosság. Kaptuk tehát, hogy u és v a CR-egyenleteket csak 0-ban elégítik ki, így f csak 0-ban dierenciálható. f sehol sem reguláris, mert nincsen olyan tartomány, melynek minden pontjában dierenciálható. 2.0 Feladat. Bionyítsa be a CR-egyenletek segítségével, hogy a f() = függvény sehol sem dierenciálható. 2. Feladat. Hol dierenciálható a f() = függvény? 2.2 Feladat. Hol dierenciálható a f() = + i függvény? A CR-egyenletek követkeményei A követke tétel jólismert a többváltoós valós analíisb l. 2.3 Tétel. Ha D R 2 egy tartomány, u : D R dierenciálható D-n és grad u (0, 0), akkor u konstans D-n. 7

20 2.4 Tétel. Ha f O(D) és f 0, akkor f konstans D-n. Bionyítás. Mivel f = u x + iv x = v y + i( u y), így u x u y v x v y 0. Továbbá a 2.6 Tétel miatt u és v dierenciálható D-n, eért alkalmava a 2.3 Tételt kapjuk, hogy u és v konstans D-n, így f is konstans D-n. 2.5 Követkemény. Ha f = u + iv : D C, f O(D) és vagy u 0 (f tistán képetes érték ) vagy v 0 (f valós érték ), akkor f konstans D-n. Bionyítás. Csak a els állítást bionyítjuk, a második bionyítása analóg. Mivel u 0, eért u x u y 0, így f = u x + i( u y) 0. Alkalmava a 2.4 Tételt kapjuk a állítást. 2.6 Követkemény. Ha f, f O(D), akkor f (és így f is) konstans D-n. Bionyítás. Mivel f + f = 2u és f f = 2iv, eért eekre alkalmava a 2.5 Követkeményt kapjuk, hogy u és v konstans D-n, így f is a. 2.7 Követkemény. Ha f O(D) és f konstans D-n, akkor f is konstans D-n. Bionyítás. Ha f 0, akkor f 0. Ha f c 0, akkor mivel c 2 f 2 = ff, eért f = c2 f is reguláris D-n. Alkalmava a 2.6 Követkeményt kapjuk a állítást. 8

21 3. Hatványsorok Hatványsorok alaptulajdonságai A komplex hatványsorokat a valósak analógiájára deniáljuk. Ha a n (n N) egy komplex soroat és 0 C, akkor a a n ( 0 ) n függvénysort 0 köéppontú (komplex) hatványsornak neveük. Ennek konvergenciasugara: R = lim sup n a n. Ha 0 C és ɛ > 0, akkor (mint R 2 -ben) S( 0, ɛ) = { C : 0 < ɛ} a 0 köéppontú ɛ sugarú nyílt körlap illetve B( 0, ɛ) = { C : 0 ɛ} a 0 köéppontú ɛ sugarú árt körlap a komplex síkon. A követke tétel a hatványsorok valósból megismert tulajdonságainak komplex megfelel it foglalja össe, bionyítása analóg valós megfelel jének bionyításával. 3. Tétel. Legyen a n ( 0 ) n egy (komplex) hatványsor, melynek konvergencia sugara R > 0. Ekkor teljesülnek a követke k: a n ( 0 ) n absolút konvergens a S( 0, R) nyílt körlapon (vagyis annak minden pontjában), minden kisebb S( 0, r), 0 < r < R körlapon egyenletesen konvergens és a B( 0, R) árt körlapon kivül divergens. Vagyis ha K C a hatványsor konvergencia halmaa, akkor S( 0, R) K B( 0, R). A f() = a n ( 0 ) n függvény reguláris a S( 0, R) nyílt körlapon és minden S( 0, R)-re f () = a n n( 0 ) n. n= (Vagyis a hatványsorokat tagonként lehet deriválni.) Továbbá a derivált hatványsor konvergenciasugara megegyeik a eredeti hatványsor konvergenciasugarával. Termésetesen ebb l at is megkaptuk, hogy f tets legesen soksor dierenciálható S( 0, R)-en. Minden n N-re a n = f (n) ( 0) n!, így ha egy függvény egy nyílt körlapon hatványsorba fejthet (a körlapon egyenl egy hatványsor össegfüggvényével), akkor a hatványsor együtthatói egyértelm ek. 9

22 Egyenl re még nem láttunk példát a valós esetben el forduló "kellemetlen" kivételekre, vagyis például olyan függvényre, ami csak egyser dierenciálható egy tartományon, vagy, bár tets leges soksor deriválható egy pont körül, mégsem fejthet hatványsorba (vagy R = 0, vagy nem állítja el a függvényt a Taylor-sora). Kés bb látni fogjuk, hogy ilyen példák komplexben nincsenek is! Vagyis ha egy függvény egy tartományon dierenciálható, akkor ott tets leges soksor is dierenciálható, és Taylor-sora a lehet legnagyobb körlapokon el állítja a függvényt. Határoa meg a követke hatványsorok köéppontját és konvergenciasugarát, továbbá adjon meg egy pontot a konvergenciakör határán, melyben a hatványsor divergens. 3.2 Feladat. 3.3 Feladat. 3.4 Feladat. i n ( i) n. n 3 (+ i) n n!. n ( i)( 2i) ( ni). Els és egyik legfontosabb példánk: A exp és log függvények exp() = Ennek a hatványsornak a konvergenciasugara: n n!. R = lim sup n = lim n n! = +, n! vagyis exp egy egésfüggvény, exp O(C). Össefoglaljuk ennek a függvénynek a tulajdonságait. 3.5 Tétel. A exp függvényre teljesülnek a követke k: (a) x R C exp(x) = e x, (b) exp = exp, (c), 2 C exp( + 2 ) = exp( ) exp( 2 ), (d) x, y R exp(x + yi) = e x (cos(y) + i sin(y)), (e) exp 2πi serint periodikus (és e a "legkisebb" periódus), vagyis, w C (exp() = exp(w) k Z w = k2πi), (f) C exp() 0. 20

23 Bionyítás. (a): Triviális, hisen a komplex m veletek valós sámokra a sokásos valós eredményt adják, és egy valós soroat határértéke komplex értelemben ugyana a sám mint valós értelemben. (b): A 3. Tétel serint exp () = n= n n n! = n= n (n )! = n n! = exp(). (c): Fix a C-re legyen f() = exp() exp(a ) egésfüggvény. Ekkor f () = exp () exp(a ) + exp() exp (a )( ) = exp() exp(a ) exp() exp(a ) = 0, így a 2.4 Tétel serint f c C. Mi e a konstans? c = f(0) = exp(0) exp(a) = exp(a). Igy minden a, C-re exp() exp(a ) = exp(a). Alkalmaunk et a a = + 2, = válastással: exp( ) exp(( + 2 ) ) = exp( + 2 ), vagyis exp( ) exp( 2 ) = exp( + 2 ). (d): Alkalmauk (a)-t és (c)-t: exp(x+yi) = exp(x) exp(yi) = e x e x( ( ) n y2n (yi) n = e x( n! i 2n y 2n (2n)! + (2n)! + i ) ( ) n y2n+ = e x (cos(y) + i sin(y)). (2n + )! (e): Alkalmauk (d)-t: ha = x + iy és w = x 2 + iy 2, akkor i 2n+ y 2n+ ) = (2n + )! exp() = exp(w) e x (cos(y ) + i sin(y )) = e x2 (cos(y 2 ) + i sin(y 2 )). Tehát exp() = exp(w) pontosan akkor, ha e x = e x2 és léteik k Z, hogy y = y 2 +k2π, aa ha x = x 2 és léteik k Z, hogy y = y 2 +k2π. Másképpen: k Z w = k2πi. (f): Triviális (d)-b l: e x 0 és cos(y) + i sin(y) 0 (a cos és a sin egyserre sehol sem 0). Mostantól általában exp() helyett a termésetesebb e jelölést hasnáljuk komplex sámok esetén is, ami a 3.5 Tétel (a) pontja serint nem oko félreértést. A e iπ + = 0 illustris egyenlet a 3.5 Tétel (d) pontjának triviális követkeménye. 3.6 Tétel. Legyen E = { C : π Im() < π}. Ekkor a exp E : E C függvény bijekció E és C\{0} köött, vagyis minden w C\{0}-ho léteik egyetlen E, hogy exp() = w. 2

24 Bionyítás. Mivel E-ben nincsen w, amikre w = k2πi valamely k Z- vel, eért a injektívitást a 3.5 Tétel (e) pontjából kapjuk. A 3.5 Tétel (f) pontja serint exp() 0 egyetlen -re sem. Már csak at kell belátnunk, hogy a függvény sürjektív. Legyen w C\{0} tets leges. Deniáljuk w argumentumát: arg(w) [ π, π) és w = w (cos(arg(w)) + i sin(arg(w))). Legyen log(w) = ln( w ) + i arg(w) E a w logaritmusa. Ekkor exp(log(w)) = e ln( w ) (cos(arg(w)) + i sin(arg(w))) = w (cos(arg(w)) + i sin(arg(w))) = w. Visgáljuk meg a 3.6 Tétel bionyítása során deniált log : C\{0} C logaritmus függvényt. Jelölje R (R 0 ) a 0-nál kisebb (egyenl ) valós sámok halmaát. 3.7 Tétel. A log függvény folytonos C\R 0 -en, de nem folytonos a negatív valós sámokban, vagyis R pontjaiban. Bionyítás. Legyen w C\R 0 hogy Legyen δ > 0 olyan, hogy és ɛ > 0 tets leges. Találnunk kell egy δ > 0-t, s S(w, δ)\{0} log(s) S(log(w), ɛ). (ln( w ) δ, ln( w ) + δ ) (arg(w) δ, arg(w) + δ ) S(log(w), ɛ). Ilyet δ -et könnyen találhatunk, egyser en arról van sól, hogy egy log(w) köep körlap tartalma log(w) köep négyetet. A ln függvény w -beli folytonossága miatt léteik egy δ > 0, hogy Legyen r > 0 ( w r < δ ln( w ) ln(r) < δ ). S = {s C\{0} : w s < δ és arg(w) arg(s) < δ }, egy w körüli körgy r -selet. Világos, hogy minden s S-re log(s) S(log(w), ɛ), vagyis log(s) S(log(w), ɛ). Legyen δ > 0, olyan hogy S(w, δ) S. Ekkor δ megfelel, vagyis log folytonos w-ben. Ha r R, akkor legyen a n = r (cos(π n )+i sin(π n )) és b n = r (cos(π+ n ) + i sin(π + n )). Világos, hogy a n r és b n r. Aonban ( log(a n ) = ln( r ) + i π ) ln( r ) + iπ, n ( log(b n ) = ln( r ) + i π + ) ln( r ) + i( π), n vagyis a Átviteli Elv miatt a log függvény nem folytonos R pontjaiban. 22

25 A 2.4 Tétel alkalmaásaként kapjuk a követke t. 3.8 Tétel. A log függvény dierenciálható C\R 0 reguláris C\R 0 -n és minden w C\R 0 -re log (w) = e log(w) = w. minden pontjában, vagyis Most már deniálhatjuk a komplex hatványoást is. Ha w C\{0} és C, akkor legyen w = e log(w). Például:.) ( ) i = e i log( ) = e i(ln()+iπ) = e i2π = e π. 2.) i i = e i log(i) = e i(ln()+i π 2 ) = e i2 π 2 = e π 2. Trigonometrikus és hiperbolikus függvények További példákat adunk hatványsorokra. A valós eset analógiájára legyenek: sin() = ( ) n 2n+ (2n + )!, cos() = ( ) n 2n (2n)!. Jelölésünk nem avaró, ugyanis valós -kre a sokásos sin illetve cos függvényeket kapjuk. Akárcsak valósban, mindkét hatványsor konvergencia sugara +, így sin és cos egésfüggvények. 3.9 Állítás. sin = cos és cos = sin. Bionyítás. A 3. Tétel felhasnálásával: sin () = ( ) n 2n (2n + ) (2n + )! = A állítás másik fele teljesen hasonlóan bionyítható. ( ) n 2n 3.0 Állítás. sin() = 2i (ei e i ) és cos() = 2 (ei + e i ). (2n)! = cos(). Bionyítás. Most is csak a állítás els felét bionyítjuk, a második bionyítása teljesen hasonló. 2i (ei e i ) = ( (i) n ( i) n ) = (i) n ( i) n = 2i n! n! 2i n! (i n ( ( ) n )) n 2i n! = 2i 2n+ 2n+ 2i (2n + )! = i 2n 2n+ (2n + )! = ( ) n 2n+ (2n + )! = sin(). 23

26 3. Követkemény. (Euler Tétel) e i = cos() + i sin(). A 3.0 Állítás segítségével már könnyen igaolhatók a valósból megismert trigonometrikus össefüggések komplexben, például: sin( ± w) = sin() cos(w) ± sin(w) cos(), cos( ± w) = cos() cos(w) sin() sin(w), sin 2 () + cos 2 () =. 3.2 Feladat. Bionyítsa be eeket a össefüggéseket. Kés bb látni fogjuk, hogy a ehhe hasonló aonosságok megmaradásáho nincs is sükség a komplexre kiterjestett valós függvény mélyebb ismeretére, aonnal adódik a 5.8 Unicitás Tétel illetve a Permanencia Elv alkalmaásával. A 3.0 állítából at is megkaptuk, hogy sin és cos függvények 2π serint periodikusak, ugyanis a e függvény 2πi serint periodikus, így e i 2π serint. E termésetesen a legkisebb periodus is, mert valósban e volt a legkisebb. Eeknek a függvényeknek csak valós gyökei vannak, ugyanis a 3.0 Állítás és a 3.5 Tétel (e) résének alkalmaásával például a sin esetében: sin() = 0 e i = e i k Z i ( i) = k2πi k Z = kπ. Még további két függvényt deniálunk. A komplex hiperbolikus függvények: sh() = 2 (e e ), ch() = 2 (e + e ). Ismét látsik, hogy valós sámokra a eredeti, valós hiperbolikus függvényeket kapjuk. A aonosságok most is igaak maradnak, például: sh( ) = sh(), ch( ) = ch() vagy ch 2 () sh 2 () =. A 3.0 Állítás segítségével könnyen ellen rihet a követke állítás. 3.3 Állítás. Minden C-re teljesülnek a követke k: sh(i) = i sin() illetve sin(i) = i sh(), ch(i) = cos() illetve cos(i) = ch(). 3.4 Feladat. Bionyítsa be a 3.3 Állítást. 3.5 Feladat. Oldja meg a sin() + cos() = 0 egyenletet. 24

27 4. Vonalintegrál Görbék a komplex síkon A komplex sík görbéi termésetesen megfelelnek a valós sík görbéinek. Ha a < b R és : [a, b] C, akkor = x + iy alakba írható, ahol x, y : [a, b] R, vagyis minden t [a, b]-re (t) = x(t) + iy(t). E a görbe megfelel a = (x, y) síkgörbének. Minden görbér l feltessük, hogy folytonos, vagyis komplex megfogalmaásban: t [a, b] ɛ > 0 δ > 0 s [a, b] ( t s < δ (t) (s) < ɛ). Mivel egy korlátos árt halmaon értelmeett folytonos függvény, eért a Heine Tétel serint egyenletesen folytonos, vagyis ɛ > 0 δ > 0 s, t [a, b] ( t s < δ (t) (s) < ɛ). Egy = x + iy : [a, b] C görbe árt, ha (a) = (b); egyser, ha nem metsi át magát, legfeljebb a végpontok képe aonos; dierenciálható t 0 [a, b]-ben, ha valós értelemben dierenciálható t 0 -ban (komplexben a fogalom értelmetlen!), vagyis x és y is dierenciálható t 0 - ban. Ha = x + iy dierenciálható t 0 -ban akkor deriváltjára a (t 0 ) = x (t 0 ) + iy (t 0 ) komplex jelölést fogjuk hasnálni. Fontos les még a görbék irányítása. Ha : [a, b] C, akkor : [a, b] C, (t) = (a + b t) a fordított irányítású görbe. A félreértések elkerülése végett igyeksünk nem hasnálni -ra a egyébként bevett jelölést. Termésetesen más módon is megadhatunk görbéket. Például polárkoordinátás alakban: (t) = r(t)e iϕ(t) (valós jelöléssel: = (r, ϕ)). Végeetül kimondjuk a híres Jordan Tételt, ami at "kéenfekv " és "semléletes" tényt állítja, hogy egy folytonos egyser árt görbe két résre ostja a síkot. Bionyítása rendkívül nehé, messe meghaladja jegyetünk kereteit. 4. Tétel. (Jordan Tétele) Ha : [a, b] R 2 egy folytonos egyser árt görbe, akkor R 2 \ ran() két disjunkt tartomány uniója. Eek köül a korlátosat neveük a görbe belsejének, a nem korlátosat a görbe külsejének. Komplex görbementi integrál Emléketetünk a valós integrál alsó-, fels köelít össeg nélküli deníciójára. A [a, b] intervallum egy felostásán sokás serint egy a = t 0 < < t n = b véges soroatot értünk; e nomabb, mint δ, ha k =,..., n t k t k < δ. 25

28 A t 0 < < t n felostásra illesked soroaton egy ξ k [t k, t k ] (k =,..., n) soroatot értünk. Ha a < b R és g : [a, b] R, akkor g integrálható [a, b]-n és b g = I, ha a minden ɛ > 0-ho léteik δ > 0, hogy minden δ-nál nomabb a = t 0 < t < < t n = b felostás és rá illesked ξ k (k =..., n) soroat esetén I n g(ξ k )(t k t k ) < ɛ. k= Általánosítsuk et a fogalmat komplexben: 4.2 Deníció. Ha a < b R és g : [a, b] C, akkor g integrálható [a, b]-n és b g = I C, ha minden ɛ > 0-ho léteik δ > 0, hogy minden δ-nál nomabb a a = t 0 < t < < t n = b felostás és rá illesked ξ k (k =..., n) soroat esetén n I g(ξ k )(t k t k ) < ɛ. k= A követke tétel bionyítása a sokásos "minden kör tartalma téglalapot, illetve minden téglalap tartalma kört" gondolatmenetet hasnálja. 4.3 Tétel. Legyen a < b R és g : [a, b] C, g = u + iv. g pontosan akkor integrálható [a, b]-n, ha u és v is integrálható [a, b]-n, és ekkor b a g = b a u + i 4.4 Feladat. Bionyítsa be a 4.3 Tételt. A általánosítás követke lépése, hogy nem egy valós intervellumon, hanem egy komplex görbén integrálunk. Ehhe emléketetünk egy görbe felostásának nomságára. 4.5 Deníció. Ha : [a, b] C egy görbe, akkor a a = t 0 <... t n = b felostás -n nomabb δ-nál, ha minden k =,..., n-re ( [t k, t k ] ) lefedhet egy δ átmér j nyílt körlappal. 4.6 Deníció. Ha a < b R, : [a, b] D egy görbe és f : D C, akkor f integrálható -n és f = f()d = I C, ha minden ɛ > 0-ho léteik δ > 0, hogy minden -n δ-nál nomabb a = t 0 < t < < t n = b felostás és rá illesked ξ k (k =..., n) soroat esetén I b a v. n f((ξ k ))((t k ) (t k )) < ɛ. k= Termésetesen nem kell, hogy f egy D tartományon legyen értelmeve, elég, hogy ran()-n értelmeett. A konkrét esetekben aonban mindig egy tartományon értelmeett függvény és egy a tartományban haladó görbe les megadva. Igy valóban általánosítást kaptunk, hisen válastható a [a, b] intervallum identitásának ( : [a, b] [a, b] C, (t) = t). Hogyan sámoljunk ki egy ilyen integrált? Mostantól minden : [a, b] C görbér l a folytonosság mellett feltessük még, hogy 26

29 sakasonként folytonosan dierenciálható, vagyis léteik a = t 0 < < t n = b felostás, hogy minden k =,..., n-re folytonosan dierenciálható [t k, t k ]-n (végpontokban egyoldalról). Ismert, hogy ekkor rektikálható és ívhossa = b a = b a (x ) 2 + (y ) 2, ahol = x+iy. A követke tétel segítségével már könnyen kisámolhatunk vonalintegrálokat. Bionyítása teljesen hasonló a valós vonalintegrálra vonatkoó megfelel je bionyításáho, így elhagyjuk. 4.7 Tétel. Ha [a, b] D f C és f folytonos D-n, akkor léteik f és f = b a f((t)) (t)dt. Lássunk egy példát. Legyen r > 0, : [0, 2π] C, (t) = r(cos(t) + i sin(t)) a origó köéppontú r sugarú körvonal egy paramétereése és f : C\{0} C, f() =. Ekkor 2π 0 f = 2π 0 sin(t) + i cos(t) cos(t) + i sin(t) dt = r( sin(t) + i cos(t))dt = r(cos(t) + i sin(t)) 2π 0 idt = 2π 0 0dt + i 2π 0 dt = 2πi. Teljesen hasonlóan ellen rihet, hogy ha w C, r > 0 és : [0, 2π] C, (t) = w + r cos(t) + ir sin(t) a w köéppontú r sugarú körvonal egy paramétereése, akkor w d = 2πi. Kés bb látni fogjuk, hogy bionyos értelemben e a legfontosabb konkrét integrál. A 4.7 Tétel segítségével sámítsa ki a követke integrálokat: 4.8 Feladat. a [0, + i] sakas egy paramétereése, f() = Re(). 4.9 Feladat. a = 2 kör egy paramétereése, f() = +2. A integrál tulajdonságai Mennyire függ a integrál a görbe paramétereését l? 4.0 Tétel. Legyen [a, b] D f C, f folytonos D-n és ϕ : [c, d] [a, b] egy átparamétereés, vagyis egy folytonosan dierenciálható sogorúan monoton függvény, amire ϕ(c) = a és ϕ(d) = b. Lerajolva: [a, b] ϕ ϕ D f C Ekkor [c, d] [c, d] f = f. ϕ 27

30 Bionyítás. = b a f((t)) (t)dt = d c d c f(( ϕ)(s)) ( ϕ)(s)ds = f((ϕ(s))) (ϕ(s))ϕ (s)ds = Ahol a els és utolsó egyenl séget a 4.7 Tétel adja. A második egyenl séget a t = ϕ(s) valós helyettesítéses integrál egyserre a valós és a képetes résben. A harmadik egyenl séget pedig a ( ϕ)(s) = (ϕ(s))ϕ (s) képlet (össetett függvény diererenciálása). ϕ 4. Tétel. Ha [a, b] D f C és f folytonos D-n, akkor f = f. Bionyítás. A 4.0 Tétel bionyítását módosítjuk egy kicsit. Most ϕ : [a, b] [a, b], ϕ(s) = a + b s. a b = b a f((t)) (t)dt = f( (s)) (s)ds = a b b a f. f((ϕ(s))) (ϕ(s))ϕ (s)ds = f( (s)) (s)ds = f. Ahol els és utolsó egyenl séget a 4.7 Tétel adja. A második egyenl séget a t = ϕ(s) valós helyettesítéses integrál egyserre a valós és a képetes résben. A harmadik egyenl séget a (s) = ( ϕ)(s) = (ϕ(s))ϕ (s) képlet. A negyedik egyenl séget pedig a valós integrálra vonatkoó a b = b képlet alkalmaása a egyserre a valós és a képetes résben. Ha : [a, b] C, 2 : [b, c] C és (b) = 2 (b), akkor a össef ésüket 2 -vel jelöljük, vagyis ha = 2 : [a, c] C, akkor { (t), ha t [a, b] (t) = 2 (t), ha t (b, c] A követke tétel triviális a deníciókból. 4.2 Tétel. Ha : [a, b] D, 2 : [b, c] D, (b) = 2 (b) és f : D C folytonos, akkor f = 2 f + f. 2 A követke tétel, akárcsak valós megfelel je könnyen belátható akár a 4.6 Deníció alapján követlenül is vagy még egyser bben a 4.7 Tétel felhasnálásával. 28

31 4.3 Tétel. Legyen : [a, b] D. Ekkor a D-n értelemeett folytonos függvények C(D) vektorterén : C(D) C, f f egy lineáris leképeés (funkcionál), vagyis minden f, f 2 C(D) és c, c 2 C esetén (c f + c 2 f 2 ) = c f + c 2 f 2. Akárcsak a valós vonalintegrál esetén, most is becsülhetjük a integrál absolút értékét. 4.4 Tétel. Ha [a, b] D f C, f folytonos D-n és f M a görbe pontjaiban (ran()-n), akkor f M. Bionyítás. Ha a = t 0 < t < < t n = b a intervallum egy felostása és ξ k (k =..., n) egy rá illesked soroat, akkor n f((ξ k ))((t k ) (t k )) k= M n f((ξ k )) (t k ) (t k ) k= n (t k ) (t k ) M, k= ha a felostás nomodik. Precíebben: Legyen ɛ > 0 x. Léteik δ > 0, hogy minden -n δ-nál nomabb a = t 0 < < t n = b felostás esetén f n f((ξ k ))((t k ) (t k )) < ɛ. k= Mivel egyenletesen folytonos, eért léteik δ > 0, hogy ha egy t k felostás nomabb δ -nél, akkor -n nomabb δ-nál. Feltehet, hogy δ -t olyan kicsinek válastottuk, hogy minden δ -nél nomabb t k felostásra n (t k ) (t k ) < ɛ. k= Ekkor alkalmava a fenti egyenl tlenséget: f ɛ < amib l M. n f((ξ k ))((t k ) (t k )) M k= n (t k ) (t k ) < M( +ɛ), f < M + (M + )ɛ. Mivel ɛ tets leges volt, eért f k= 29

32 4.5 Követkemény. Adott D tartományon értelmeett folytonos függvényekb l álló egyenletesen konvergens függvénysor és D-ben haladó görbe esetén: f n f n = Bionyítás. Legyen f = f n és legyen ɛ > 0 x. Válassunk egy N-et, hogy minden m N-re és D-re f n () < ɛ legyen. Legyen m N. Ekkor f n = n=m f n. f 0 + f + + f m + Alkalmava a 4.4 becslést a utolsó tagra ɛ > 0-ho léteik N, hogy minden m N-re f n ( m f n ) = n=m n=m f n. n=m f n ɛ. Tehát minden f n ɛ, vagyis ( m f n = lim m ) f n = f n. Belátjuk még, hogy a Newton-Leibni Formula megfelel je is iga marad komplex esetben. 4.6 Tétel. (Newton-Leibni Formula) Ha : [a, b] D, F O(D) és F folytonos D-n, akkor F = F ((b)) F ((a)). Bionyítás. Legyen µ : [a, b] C, µ(t) = F ((t)). Ekkor hogyan fejehetnénk ki µ t? Nem hivatkohatunk a össetett függvény deriválási sabályára, hisen F - et komplex értelemben deriváltuk, nem valósban, mint µ-t és -t. A láncsabály mégis iga marad! Vagyis: µ(t) = F ((t)) (t). Et nem látjuk be (lásd a követke feladatot). Alkalmava et a láncsabályt a µ = x + iy jelöléssel: F = b a F ((t)) (t)dt = b a µ(t)dt = b a x + i b a y = [x] b a + i[y] b a = x(b) x(a) + i(y(b) y(a)) = µ(b) µ(a) = F ((b)) F ((a)). 30

33 Tehát ha f : D C folytonos és léteik primitív függvénye vagyis egy F O(D), hogy F = f, akkor tets leges D-ben haladó görbén vett integrálja csak a végpontoktól függ, a ket össeköt görbét l független. 4.7 Feladat. Bionyítsa be a 4.6 Tételben említett láncsabályt. (Ötlet: Alkalmaa a CR-egyenleteket.) Néünk egy-két példát..) Legyen f c C egy konstans függvény és : [a, b] C, = x + iy egy tets leges görbe. Ekkor a Newton-Leibni Formula nélkül: f = b a b ( b f((t)) (t)dt = c (t)dt = c a a x + i b a y ) = c([x] b a + i[y] b a) = c(x(b) + iy(b) (x(a) + iy(a))) = c((b) (a)). A Newton-Leibni alkalmaásásval: Ha F () = c, akkor f = F, így f = F ((b)) F ((a)) = c(b) c(a). 2.) Legyen f() = 2 + és a [, i] sakas egy paramétereése. ( például válastható a követke képpen: : [0, ] C, (t) = ( t)+ti = ( t)+it.) f-nek léteik primitív függvénye F () = 3 3 +, így f = F = F (()) F ((0)) = F (i) F () = i i ( 3 + ) = i. Speciálisan, ha egy tets leges : [a, b] C görbén integrálunk egy komplex polinomot, e -t, sin()-t, cos()-t, sh()-t vagy ch()-t akkor a adott függvény primitív függvényének értékét kell csak kisámolnunk a görbe végpontjaiban és et a két értéket kivonunk egymásból. Egy f() = n k=0 a k ( w k ) d k (ak, w k C, d k Z\{ }) alakú függvény esetében is e a helyet, ha a görbe a értelemési tartományában halad; például f() = ( i) i 2 + ( i)(2 i + ) 3 esetében. 5 Ha f() =, akkor f tets leges : [a, b] C\R 0 görbén vett integrálját a primitív függvénye (log()) segítségével sámolhatjuk. A 4.6 Tétel követkeményeképpen kapjuk a követke t. 4.8 Követkemény. Ha a f : D C folytonos függvénynek léteik primitív függvénye, akkor minden : [a, b] D árt görbén vett integrálja elt nik, vagyis 0. Tehát a imént említett elemi függvények vagy általában, primitív függvénynyel rendelke függvények tets leges a értelmeési tartumányukban haladó árt görbén vett integrálja elt nik. ( értelemési tartományát most C\R 0 -nak tekintjük). A követke résben a fordított implikációt is belátjuk vagyis, hogy minden árt görbén a integrál elt nése elég a primitív függvény léteéséhe. 3

34 Cauchy Integráltétele 4.9 Tétel. Ha f : D C folytonos és tets leges D-ben haladó görbén vett integrálja csak a végpontoktól függ, akkor f-nek léteik primitív függvénye. Bionyítás. Legyen 0 D x. Ekkor a úttól való függetlenség miatt minden D-re értelmes a követke jelölés: F () = 0 f, vagyis tets leges 0 -t és -t össeköt görbén (egy tartomány útössefügg ) integrálunk. Belátjuk, hogy F O(D) és F = f. Fix -he legyen S D egy köéppontú nyílt körlap. Ekkor minden ξ S- re a [, ξ] árt sakas D-ben feksik. Ekkor a úttól való függetlenség miatt F (ξ) = f = f + f = F () + f, vagyis [,ξ] [,ξ] [,ξ] F (ξ) F () = f-t átírhatjuk a követke alakba: [,ξ] [,ξ] f()ds + f = [,ξ] [,ξ] f(s)ds = [,ξ] [,ξ] f. [,ξ] f() + (f(s) f())ds = (f(s) f())ds = f()( ξ) + [,ξ] f(s) f()ds, ahol a utolsó egyenl ségben hasnáltuk a konstans függvény integráljára vonatkoó korábbi ismereteinket. Legyen r (ξ) = f(s) f()ds. [,ξ] Fix ɛ > 0-ho a függvény -beli folytonossága miatt léteik δ > 0, hogy ha s D és s < δ, akkor f(s) f() < ɛ. Ha ξ < δ, akkor minden s [, ξ]-re s < δ, így a integrál absolút értékére vonatkoó becslésünk serint (4.4 Tétel) ekkor r (ξ) = f(s) f()ds ɛ ξ. [,ξ] Vagyis minden ɛ > 0-ho léteik δ > 0, hogy ha 0 < ξ < δ, akkor r(ξ) ξ ɛ, így r (ξ) lim ξ = 0. E pont a F függvény -beli dierenciálhatóságát jelenti és perse at, hogy F () = f(), hisen minden ξ S-re F (ξ) = F () + f()( ξ) + r (ξ) és lim r (ξ) ξ = 0. 32

35 Össefoglalva a 4.6 és a 4.9 Tételeket: 4.20 Követkemény. (Össefoglaló) Ha f : D C folytonos, akkor a követke k ekvivalensek: (a) f-nek léteik primitív függvénye. (b) f tets leges D-ben haladó görbén vett integrálja csak a görbe végpontjaitól függ. (c) f tets leges D-ben haladó árt görbén vett integrálja elt nik. Bionyítás. A (a) és (b) ekvivalenciáját a 4.6 illetve a 4.9 Tételek adják. A (a) (c) implikációt a 4.8 Követkemény adja. (c) (b): Legyen és µ két aonos ked - és végpontú D-ben haladó görbe. Feltehet, hogy egymást követ intervallumkon vannak értelmeve: : [a, b] D, µ : [b, c] D, (a) = µ(b), (b) = µ(c). Ekkor a µ görbe árt, így 0 = f = f + f = f f. µ µ µ 4.2 Követkemény. A függvénye. függvénynek nincsen C\{0}-n értelmeett primitív Bionyítás. Már beláttuk, hogy f-nek egy a 0-t poitív irányban megkerül körön vett integrálja 2πi 0. Termésetesen, ha egy tartományon értelmeett függvénynek van primitív függvénye, akkor a a 2.4 Tétel miatt konstans hoáadása erejéig egyértelm Megjegyés. Ha D konvex, akkor a 4.9 Tételben F () deniálásáho nincs sükségünk a úttól való függetlenségre, hisen integrálhatunk a [ 0, ] sakason, csak at hasnáljuk, hogy F (ξ) = f [,ξ] vagyis, hogy a integrál elt nik a 0,, ξ háromsögön. Tehát konvex D esetén a 4.20 Követkemény kiegésíthet még egy ekvivalens állítással: (d) f tets leges D-beli háromsögvonalon vett integrálja elt nik Tétel. (Cauchy Integráltétele) Ha D konvex, [a, b] D f C, árt és f O(D), akkor f = 0. Bionyítás. Elég csak D-beli háromsögvonalra bionyítanunk, mert a 4.22 Megjegyés serint e ekvivalens a integrál eltünésével minden árt görbén. Legyen T 0 a háromsöglap, ennek kerülete l 0 és legyen 0 a háromsög határának egy paramétereése. Legyen I = f. A háromsöget 4 egybevágó kis háromsögre ostjuk: T0 k, k =, 2, 3, 4, eek határának -val aonos 33

36 irányú paramétereése 0 k. Ekkor a görbék ellentétes irányításán való integrálás el jelváltása miatt a bels sakasokon a integrálok kiesnek, így 4 f = f. k= Ekkor léteik k, hogy f I 0 k 4. Legyen T = T0 k és = 0 k. A négyetes arányosság miatt tudjuk, hogy T kerülete l = l0 2. Folytatjuk a eljárást T -en. Kapjuk a T n egymásba skatulyáott árt háromsöglapok soroatát, melyek kerülete l n = l0 2, a határukat paramétere n n görbéket, továbbá tudjuk, hogy I 4 n. n f A Cantor-axióma miatt léteik (egyetlen) 0 k 0 0 -ban, eért léteik egy r : D C függvény, hogy Ekkor f() = f( 0 ) + f ( 0 )( 0 ) + r () és lim T n. Mivel f dierenciálható r () 0 = 0. f = f( 0 ) n d + f ( 0 ) n ( 0 )d + n r ()d. n Mivel a konstans és a 0 függvényeknek van primitív függvénye, eért a 4.20 Követkemény serint a els két integrál 0. r lim () 0 = 0 serint minden ɛ > 0-ho léteik δ > 0, hogy 0 < 0 < δ esetén r 0 () 0 < ɛ, vagyis r () < ɛ 0. Mivel r ( 0 ) = 0, eért 0 < δ esetén r () ɛ 0. Fix ɛ > 0-ho legyen δ > 0 megfelel. Ekkor léteik n N, hogy T n S( 0, δ), így minden T n -re 0 < δ, amib l r () ɛ 0. Alkalmava a triviális 0 < l n becslét T n határán kapjuk, hogy eekben a pontokban, vagyis ran( n )-en r ɛl n. A integrál absolút értékének becslése serint I 4 n = r ()d ɛln 2 = ɛ l2 0 n 4 n, n f amib l I ɛl 2 0 minden ɛ > 0-ra, vagyis I = 0. A 4.23 Tétel és a 4.20 Követkemény felhasnálásával a követke érdekes eredményt kaptuk Követkemény. Ha D konvex és f O(D), akkor f-nek léteik primitív függvénye. Sükségünk les a Cauchy Integráltétel egy általánosítására is Tétel. Ha D konvex,,..., n D és f O(D\{,..., n }), továbbá minden k =,..., n-re lim f()( k ) = 0, akkor minden D\{,..., n }-beli k árt görbére f = 0. 34

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Feladatok Oktatási segédanyag

Feladatok Oktatási segédanyag VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit

Részletesebben

Matematika M1 Gyakorlat

Matematika M1 Gyakorlat Matematika M Gyakorlat BME - Gépésmérnök MSc Gyakorló Feladatsor. Zh. Határoa meg a α paraméter értékét úgy hogy a vx y = αx y xy 4y 3 3 kétváltoós függvény egy reguláris komplex függvény képetes rése

Részletesebben

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1

(!), {z C z z 0 < R} K (K: konv. tart.) lim cn+1 Komlex analízis Komlex hatványsorok c n (z z 0 ) n ; R = lim n c n, R = (!), {z C z z 0 < R} K (K: konv. tart.) lim cn+ c n n=0. Van-e olyan komlex hatványsor, melynek a) üres a konvergenciatartománya,

Részletesebben

Fizika A2E, 5. feladatsor

Fizika A2E, 5. feladatsor Fiika A2E, 5. feladatsor Vida György Jósef vidagyorgy@gmail.com. feladat: Mi a homogén E térer sség potenciálja? A potenciál deníciója: E(x,y, = U(x,y,, amely kifejtve a három komponensre: Utolsó módosítás:

Részletesebben

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát. Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő

Részletesebben

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma?

1. Folytonosság. 1. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maximuma és minimuma? . Folytonosság. (A) Igaz-e, hogy ha D(f) = R, f folytonos és periodikus, akkor f korlátos és van maimuma és minimuma?. (A) Tudunk példát adni olyan függvényekre, melyek megegyeznek inverzükkel? Ha igen,

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

M szaki matematika 2

M szaki matematika 2 Szegedi Tudományegyetem, Bolyai Intézet M szaki matematika Gyakorlati jegyzet Készítette: Bogya Norbert, Dudás János, Fülöp Vanda Utoljára módosítva: 09. április 8. Európai Szociális Alap i Szegedi Tudományegyetem,

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Dierenciálhatóság. Wettl Ferenc el adása alapján és

Dierenciálhatóság. Wettl Ferenc el adása alapján és 205.0.9. és 205.0.26. 205.0.9. és 205.0.26. / Tartalom A dierenciálhatóság fogalma Pontbeli dierenciálhatóság Jobb és bal oldali dierenciálhatóság Folytonosság és dierenciálhatóság Deriváltfüggvény 2 Dierenciálási

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42

Vizsgatematika. = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika 1 / 42 Vizsgatematika = kötelez bizonyítás Minden tételnél fontosak az el adáson elhangzott példák/ellenpéldák! Vizsgatematika / 42 Bevezetés(logikai formulák és halmazok): logikai m veletek és m velettábláik,

Részletesebben

ANALÍZIS II. Példatár

ANALÍZIS II. Példatár ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl

Részletesebben

1. Analizis (A1) gyakorló feladatok megoldása

1. Analizis (A1) gyakorló feladatok megoldása Tartalomjegyzék. Analizis A) gyakorló feladatok megoldása.................... Egyenl tlenségek, matematikai indukció, számtani-mértani közép....... Számsorozatok............................... 5... Számorozatok................................

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

Gyakorlo feladatok a szobeli vizsgahoz

Gyakorlo feladatok a szobeli vizsgahoz Gyakorlo feladatok a szobeli vizsgahoz Függvények. Viszgaljuk meg, hogy az alabbi fuggvenyek kozuk melyik injektv, szurjektv, illetve bijektv? F : N N, n n b) F : Q Q, c) F : R R, d) F : N N, n n e) F

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

ANALÍZIS SZIGORLATI TEMATIKA

ANALÍZIS SZIGORLATI TEMATIKA ANALÍZIS SZIGORLATI TEMATIKA matematikatanár szakosok részére (2006/2007) Az els négy félév anyaga 1. Halmazokkal és függvényekkel kapcsolatos alapfogalmak 2. A valós számok 3. Valós számsorozat határértéke

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

25 i, = i, z 1. (x y) + 2i xy 6.1

25 i, = i, z 1. (x y) + 2i xy 6.1 6 Komplex számok megoldások Lásd ábra z = + i, z = + i, z = i, z = i z = 7i, z = + 5i, z = 5i, z = i, z 5 = 9, z 6 = 0 Teljes indukcióval 5 Teljes indukcióval 6 Az el z feladatból következik z = z = =

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Függvény differenciálás összefoglalás

Függvény differenciálás összefoglalás Függvény differenciálás összefoglalás Differenciálszámítás: Def: Differenciahányados: f() f(a + ) f(a) függvényérték változása független változó megváltozása Ha egyre kisebb, vagyis tart -hoz, akkor a

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

Műszaki matematika 2

Műszaki matematika 2 Szegedi Tudományegyetem, Bolyai Intézet Műszaki matematika Gyakorlati jegyzet Készítette: Bogya Norbert, Dudás János, Fülöp Vanda 09. március. Európai Szociális Alap i Szegedi Tudományegyetem, Természettudományi

Részletesebben

Kalkulus I. gyakorlat, megoldásvázlatok

Kalkulus I. gyakorlat, megoldásvázlatok Kalkulus I. gyakorlat, megoldásvázlatok Fizika BSc I/.. Ábrázoljuk a következ halmazokat a síkon! a {, y R : + y < }, b {, y R : + y < }, c {, y R : + y

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

KALKULUS II. PÉLDATÁR

KALKULUS II. PÉLDATÁR Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár Lajkó Károly KALKULUS II. PÉLDATÁR mobidiák könyvtár SOROZATSZERKESZTŽ Fazekas István Lajkó Károly KALKULUS II. PÉLDATÁR Programozó és programtervez

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

MATEMATIKA 2. dolgozat megoldása (A csoport)

MATEMATIKA 2. dolgozat megoldása (A csoport) MATEMATIKA. dolgozat megoldása (A csoport). Definiálja az alábbi fogalmakat: (egyváltozós) függvény folytonossága, differenciálhatósága, (többváltozós függvény) iránymenti deriváltja. (3x8 pont). Az f

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

IV. INTEGRÁLSZÁMÍTÁS Feladatok november

IV. INTEGRÁLSZÁMÍTÁS Feladatok november IV. INTEGRÁLSZÁMÍTÁS Feladatok 9. november Határozatlan integrálás Elemi függvények integrálja 4.5. 4.6. 3 4.7. ( ) 4.8. ( ) 4.9. + 4 4.. ( + )( + ) 4.4. + ( + ) 4.5. 4.6. 6 5 + 5 ln + 4.8. cos cos sin

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

3. Lineáris differenciálegyenletek

3. Lineáris differenciálegyenletek 3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

A gyakorlatok anyaga

A gyakorlatok anyaga A 7-11. gyakorlatok anyaga a Matematika A1a-Analízis nevű tárgyhoz B és D kurzusok Számhalmazok jelölésére a következő szimbólumokat használjuk: N := {1,,...}, Z, Q, Q, R. Az intervallumokat pedig így

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

4. A komplex függvénytan elemei

4. A komplex függvénytan elemei 92 yőri István, Hartung Ferenc: MA4f és MA66a előadásjegyzet, 2006/2007 4. A komplex függvénytan elemei 4.. Komplex függvények határértéke, folytonossága, differenciálhatósága, Cauchy Riemann-egyenletek

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Differenciálszámítás normált terekben

Differenciálszámítás normált terekben Eötvös Loránd Tudományegyetem Természettudományi Kar Kapui Dóra Differenciálszámítás normált terekben Szakdolgozat Matematika BSc, elemz szakirány Témavezet : Tarcsay Zsigmond Alkalmazott Analízis és Számításmatematikai

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e

(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Valós függvények (2) (Határérték) 1. A a R szám δ > 0 sugarú környezete az (a δ, a + δ) nyílt intervallum. Ezután a valós számokat, a számegyenesen való ábrázolhatóságuk miatt, pontoknak is fogjuk hívni.

Részletesebben

Debreceni Egyetem. Komplex függvénytan. Jegyzet. Készítette: Szokol Patrícia Dr. Molnár Lajos előadása alapján

Debreceni Egyetem. Komplex függvénytan. Jegyzet. Készítette: Szokol Patrícia Dr. Molnár Lajos előadása alapján Debreceni Egyetem Komplex függvénytan Jegyzet Készítette: Szokol Patrícia Dr. Molnár Lajos előadása alapján Tartalomjegyzék. Bevezetés 3.. Komplex számok, számsorozatok 3.2. Lineáris törtfüggvények 7 2.

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. (Függvények határértéke és folytonossága) Analízis 2. (A,B, C szakirány, keresztfélév) Programtervező informatikus szak 2013-2014. tanév tavaszi félév Összeállította: Szili László

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben