Barczy Mátyás és Pap Gyula

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Barczy Mátyás és Pap Gyula"

Átírás

1 Barczy Mátyás és Pap Gyula mobidiák köyvtár

2 Barczy Mátyás és Pap Gyula

3 mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá

4 Barczy Mátyás és Pap Gyula Debrecei Egyetem mobidiák köyvtár Debrecei Egyetem

5 Szerzők Barczy Mátyás egyetemi taársegéd Debrecei Egyetem Iformatikai Kar 4 Debrece, Pf. barczy@if.uideb.hu Pap Gyula egyetemi taár Debrecei Egyetem Iformatikai Kar 4 Debrece, Pf. papgy@if.uideb.hu Lektor Iglói Edre számítástechikai mukatárs Debrecei Egyetem Iformatikai Kar 4 Debrece, Pf. Copyright c Barczy Mátyás és Pap Gyula, 5 Copyright c elektroikus közlés mobidiák köyvtár, 5 mobidiák köyvtár Debrecei Egyetem Iformatikai Kar 4 Debrece, Pf. A mű egyéi taulmáyozás céljára szabado letölthető. Mide egyéb felhaszálás csak a szerzők előzetes írásbeli egedélyével törtéhet. A mű,,a mobidiák öszervező mobil portál IKTA, OMFB-373/3 projekt keretébe készült.

6 Bevezetés Jele muka a Debrecei Egyetem alkalmazott matematikus és matematikus szakos hallgatói részére tartott Valószíűségszámítás. Gyakorlat ayagát öleli fel. A gyakorlathoz kapcsolódó előadás ayagáak gericét Dr. Pap Gyula: Valószíűségszámítás. című jegyzete [8] adta, így főkét az ott szereplő elméleti részekhez kapcsolódó feladatokat tárgyaluk. A Feltételes várható érték és martigálok című fejezetbe pedig sok feladat és megoldása Móri Tamás: Diszkrét paraméterű martigálok című jegyzetéből [7], illetve Prokaj Vilmostól származik. Összese darab ábrát készítettük, melyek a jegyzet legvégé találhatók. Ezúto is szereték köszöetet modai Iglói Edréek figyelmes, lelkiismeretes lektori mukájáért. Észrevételeit, kiegészítéseit figyelembe véve a jegyzetet sok helye potosítottuk. 6

7 Tartalomjegyzék. Valószíűségszámítás. feladatok 7.. Valószíűségi változók eloszlása, várható értéke Kovolúció Markov- és Csebisev-egyelőtleség, Borel-Catelli lemma Valószíűségszámítás. feladatok 46.. Valószíűségi változók eloszlása, várható értéke Kovergeciafajták Borel Catelli-lemma és a agy számok erős törvéye Borel Catelli-lemma és határeloszlás-tételek Karakterisztikus függvéyek, folytoossági tétel, gyege kovergecia Cetrális határeloszlás-tétel Feltételes várható érték és martigálok Többdimeziós ormális eloszlás Valószíűségszámítás. felmérő feladatsorok 3... év példái év példái év példái év példái év példái év példái Hivatkozások 45 Ábrák jegyzéke 46. Valószíűségszámítás. feladatok.. Valószíűségi változók eloszlása, várható értéke... Feladat. Legyeek ξ, N, függetle valószíűségi változók úgy, hogy P ξ = = P ξ = =, N. 7

8 Legye továbbá τ a ξ, N valószíűségi változóktól függetle valószíűségi változó, hogy P τ Z + =. Mutassuk meg, hogy P ξ τ = = P ξ τ = =. Megoldás. A függetleség alapjá kapjuk, hogy P ξ τ = = P ξ τ =, τ = = P ξ =, τ = = P ξ = P τ = = = P τ = = P τ Z + =. = = = Hasolóa látható be, hogy P ξ τ = = /.... Feladat. Réyi [],.5.5. Egy urába N golyó va, fehérek és pirosak N N. A fehérek száma valószíűségi változó, melyek csak a várható értékét ismerjük. Legye ez M. Egy golyót húzuk az urából. Mutassuk meg, hogy aak a valószíűsége, hogy a kihúzott golyó fehér M. Miért teljesül, hogy M? N N Megoldás. Jelölje X az urába levő fehér golyók számát. Legye továbbá A az az eseméy, hogy az urából fehér golyót húzuk. A teljes valószíűség tétele alapjá P A = N P A X = kp X = k, k= ugyais {X = k}, k =,..., N egy teljes eseméyredszer. Így P A = N k= k N P X = k = N N kp X = k = N EX = M N. k= Itt M N, ugyais M = N kp X = k N k= N P X = k = N = N. k=..3. Feladat. Mutassuk példát olya Ω, A, P valószíűségi mezőre, és ebbe olya A, B és C eseméyekre, ahol a P ABC = P AP BP C feltétel teljesülése em elegedő az A, B és C eseméyek függetleségéhez. Megoldás. Major Péter megoldása Legye Ω := {,, 3, 4, 5}, A := Ω, és P {} = P {} = P {3} = P {4} := 3 4, P {5} :=

9 Legyeek továbbá A := {,, 3}, B := {,, 4} és C := {, 3, 4}. Ekkor P A = P B = P C = 3, és ABC = {}, AB = {, } alapjá P ABC = 3 3, P AB = 3 3. Ezért P ABC = P AP BP C, de P AB P AP B. Megjegyezzük, hogy va a feladatak egyszerűbb triviális megoldása is. Tekitsük egy olya valószíűségi mezőt, melybe va két em függetle eseméy, jelöljük ezeket A-val, illetve B-vel. Legye továbbá C :=. Ekkor P ABC = P AP BP C =, de P AB P AP B...4. Feladat. Egy férőhelyes mozi egy előadására mide jegy elkelt, ahol. Az elsőek érkező vedég az hely közül véletleszerűe választ egyet és leül oda. A másodikak érkező vedég megézi, hogy szabad-e a helye, ha ige leül oda, egyébkét pedig a meglevő helyek közül egyelő valószíűséggel választ egyet. Az összes többi vedég is hasolóa jár el. Mi a valószíűsége, hogy az utolsóak érkező vedég szabado találja a helyét? Megoldás. Feltehető, hogy a székek az,,..., számokkal vaak megszámozva, és az is, hogy az i-edikek érkező vedégek i =,..., az i-edik székre szól a jegye. Vezessük be az alábbi eseméyeket: { } A := az utolsóak érkező vedég a saját helyére -edik szék tud üli, { } B k := az elsőek érkező vedég a k-adik székre ül, k =,...,. A P A valószíűséget kell meghatározuk. A teljes valószíűség tétele szerit, felhaszálva, hogy P B k =, k =,...,, kapjuk, hogy P A = P A B k P B k = k= k= P A B k k= = P A B + P A B k + P A B = + P A B k +. k= Ha k, úgy a B k eseméy bekövetkezése eseté a -odikak, 3-adikak,..., k -edikek érkező vedég a saját helyére tud leüli. Abba az esetbe, ha a k-adikak érkező vedég az. székre ül le, úgy a k + -edikek,..., -edikek érkező vedég le tud 9

10 üli a saját helyére. Abba az esetbe, ha a k-adikak érkező vedég az l-edik székre ül le, ahol l {k +,..., }, úgy a k + -edikek,..., l -edikek érkező vedég a saját székére tud leüli. A fetiek alapjá, bevezetve az a,k := P A B k, k =,...,,, jelöléseket, kapjuk, hogy a,k = P A {a k-adikak érkező vedég az. székre ül le} B k + P A {a k-adikak érkező vedég az l-edik székre ül le} B k l=k+ := P A C,k B k + l=k+ = P A C,k B k P C,k B k + = k + l=k+ P A C,k l B k l=k+ P A C,k l B k P C,k l B k a k,l k+, k, k ahol az utolsó egyelőség egyrészt abból következik, hogy ha az elsőek érkező ember a k- adik székre ült le, úgy a k-adikak érkező ember k szék közül választhat, hisze a., 3.,..., k. székek már foglaltak; másrészt pedig abból, hogy a szabado maradó székek. szék, k+. szék,...,. szék közül az l. szék l {k +,..., } a szabado maradó székeket számolva csak az l k +. szék. Így a,k = + a k+, a k+, k+, k =,...,. k + Felhaszálva, hogy a, =,, és azt, hogy.. P A = a,k = a,k,, k= k= kapjuk, hogy Ezért.. alapjá a,k = P A k+, k =,...,. P A = + P A k+,. Teljes idukcióval megmutatjuk, hogy P A =,. Ha =, úgy k= P A = P az elsőek érkező vedég a helyére. szék ül =.

11 Tegyük fel, hogy P A = = P A =. Ekkor P A = + k= = + =. Tehát P A =,...5. Feladat. 6 th Iteratioal Mathematics Competitio for Uiversity Studets, 999 Egy szabályos kockát feldobuk alkalommal. Mi a valószíűsége, hogy a dobott számok összege osztható 5-tel? Első megoldás. Mide =,,,... és r =,,, 3, 4 eseté legye { } A,r := dobás utá a dobott számok összege 5-tel osztva r maradékot ad. Legye továbbá p r := P A,r, =,,,... és r =,,, 3, 4. Ekkor p =, p = p = p 3 = p 4 =. Továbbá, > eseté, a teljes valószíűség tétele alapjá 4 4 p = P A, = P A, A,i P A,i = P A, A,i p i Hasolóa kaphatjuk, hogy i= = P az -edik dobás 5 p + P az -edik dobás 4 p + P az -edik dobás 3 p + P az -edik dobás p 3 + P az -edik dobás vagy 6 p 4 = 6 p + 6 p + 6 p + 6 p3 + 6 p4. p p p 3 p 4 Mátrixos formába összefoglalva: p p p p 3 p 4 i= = 6 p + 6 p + 6 p + 6 p3 + 6 p4, = 6 p + 6 p + 6 p + 6 p3 + 6 p4, = 6 p + 6 p + 6 p + 6 p3 + 6 p4, = 6 p + 6 p + 6 p + 6 p3 + 6 p4. = p p p p 3 p 4,,

12 és Így ahol p p p p 3 p 4 p p p p 3 p 4 =. = A,, A :=. 6 Az A mátrix diagoalizálhatóságát vizsgálva lehete szisztematikusa eljári, ez azoba a jele esetbe boyolult, mert leszek komplex sajátértékek is. Ezért az alábbiakba em lieáris algebrai eszközöket haszálva fejezzük be a megoldást. Teljes idukcióval megmutatjuk, hogy p r = + 4 ha r mod 5, ha r mod 5, Ha =, úgy teljesül.., hisze ha r =, p r = ha r =,, 3, 4. =,,,..., r =,,, 3, 4. Tegyük fel, hogy k =,,..., eseté teljesül... Ekkor, ha mod 5, úgy + mod 5, és p + p + p + p 3 + p 4 + = A = =

13 Az,, 3, és 4 mod 5 esetek hasolóa vizsgálhatók meg. Látjuk, hogy eze megoldás sorá em csak aak a valószíűségét számoltuk ki, hogy 5-tel osztható lesz az eredméy. Második megoldás. Mide k =,,... eseté legye p k := P dobás sorá a dobott számok összege k. Jelölje ξ az dobás sorá dobott számok összegét. Ekkor ξ felírható ξ = ξ + + ξ alakba, ahol ξ i, i =,...,, az i-edik dobás sorá dobott számot jelöli. Továbbá, felhaszálva, hogy ξ,..., ξ függetleek, kapjuk, hogy ξ geerátorfüggvéye: f ξ x := Ex ξ = Ex ξ x + x + x 3 + x 4 + x 5 + x 6..3 =, x, 6 illetve, a geerátorfüggvéy defiíciójába szereplő várható értéket máskét felírva..4 f ξ x = x k p k, x. Céluk a k= P dobás sorá a dobott számok összege osztható 5-tel = valószíűséget kiszámoli. Legye ε := cos π π + i si, 5 5 k= p 5k, azaz ε a második 5. egységgyök. Ekkor..4 alapjá f ξ + f ξ ε + f ξ ε + f ξ ε 3 + f ξ ε 4 = p k + ε k + ε k + ε 3k + ε 4k = 5 p 5k, hisze Így + ε k + ε k + ε 3k + ε 4k = { ε 5k ε k k= = ha k mod 5, 5 ha k mod 5. p 5k = 5 fξ + f ξ ε + f ξ ε + f ξ ε 3 + f ξ ε 4. k= Az alábbiakba kiszámoljuk az f ξ ε i, i =,,, 3, 4, meyiségeket. Mivel p k, k =,,..., diszkrét valószíűségeloszlás, kapjuk, hogy f ξ = k= p k =. Továbbá, felhaszálva..3-t, kapjuk, hogy ε f ξ ε j = p k ε jk j + ε j + ε 3j + ε 4j + ε 5j + ε 6j = = ε j ε6j 6 6 ε j k= = ε j 6 εj = εj, j =,, 3, 4, ε j 6 3 k=

14 ahol az utolsó előtti egyelőség abból következik, hogy ε 5 =, N. Ezért p 5k = + ε ε 6 + ε3 6 + ε4 6 = + ε ε4 = ha mod 5, ε = + 4 ha mod k=..6. Feladat. Grimmett Stirzaker [4], yomá Tekitsük az alábbi Ω, A, P valószíűségi mezőt: Legye Ω := {ω, ω, ω 3 }, A := Ω, P {ω } = P {ω } = P {ω 3 } := 3. X : Ω R, Xω :=, Xω :=, Xω 3 := 3, Y : Ω R, Y ω :=, Y ω := 3, Y ω 3 :=. i Írjuk fel A elemeit! ii Igazoljuk, hogy X és Y iii Határozzuk meg X és Y valószíűségi változók! eloszlását! iv Írjuk fel X és Y eloszlásfüggvéyét! v Létezik-e X-ek, illetve Y -ak sűrűségfüggvéye? Megoldás. i: Az A σ-algebráak összese 3 = 8 eleme va:, {ω, ω, ω 3 }, {ω }, {ω }, {ω 3 }, {ω, ω }, {ω, ω 3 }, {ω, ω 3 }. ii: Azt kell megmutati, hogy B BR eseté X B A, illetve Y B A. Felhaszálva, hogy X B = {ω Ω : Xω B}, és azt, hogy A-ba Ω-ak mide részhalmaza bee va, kapjuk a dolgot. iii: Az X valószíűségi változó P X eloszlása valószíűségi mérték R, BR-e: P X B := P X B, B BR. Ekkor P X B = P X B = P {ω Ω : Xω B} = = {i {,,3}: i B} 3 = {i {,, 3} : i B} 3 {i {,,3}: Xω i B} 3 = 3 δ + δ + δ 3 B, 4

15 ahol tetszőleges x R eseté δ x az x potba kocetrálódó Dirac-mértéket jelöli: δ x B := { ha x B, ha x B, B BR. Az Y valószíűségi változó P Y eloszlása valószíűségi mérték R, BR-e: P Y B := P Y B, B BR. Ekkor P Y B = P Y B = P {ω Ω : Y ω B} = = {i {,, 3} : i B} 3 Vegyük észre, hogy Y ω i i, i =,, 3. Látjuk, hogy X és Y iv: Az X x R. = 3 δ + δ + δ 3 B. {i {,,3}: Y ω i B} külöböző valószíűségi változók ugyaazo eloszlással. valószíűségi változó eloszlásfüggvéye F X : R R, F X x := P X < x, Ha x : F X x = P =, Ha < x : F X x = P {ω } = 3, Ha < x 3 : F X x = P {ω, ω } = 3, Ha x > 3 : F X x = P {ω, ω, ω 3 } = 3 3 =. Az Y valószíűségi változó eloszlásfüggvéye F Y : R R, F Y x := P Y < x, x R. Ha x : F Y x = P =, Ha < x : F Y x = P {ω 3 } = 3, Ha < x 3 : F Y x = P {ω 3, ω } = 3, Ha x > 3 : F Y x = P {ω, ω, ω 3 } = 3 3 =. Vegyük észre, hogy X és Y külöböző valószíűségi változók ugyaazo eloszlásfüggvéyyel. Tudjuk, hogy, ha ξ és η valószíűségi változók, úgy P ξ = P η akkor és csak akkor, ha F ξ = F η, azaz az eloszlás és az eloszlásfüggvéy kölcsööse egyértelműe meghatározza egymást. v: Nem létezek a sűrűségfüggvéyek, mert X és Y 3 diszkrét valószíűségi változók...7. Feladat. Réyi [],.6.9. Legyeek X és Y függetle, stadard ormális eloszlású valószíűségi változók. Határozzuk meg X sgy eloszlásfüggvéyét és sűrűségfüggvéyét! 5

16 Megoldás. Az X sgy valószíűségi változó eloszlásfüggvéye: F X sgy x = P X sgy < x = P X sgy < x, Y > + P X sgy < x, Y, x R. Felhaszálva, hogy X és Y függetleek, kapjuk, hogy P X sgy < x, Y > = P X < x, Y > = P X < xp Y > = P X < x, x R, és P X sgy < x,y = P X sgy < x, Y < + P X sgy < x, Y = = P X < x, Y < + P < x, Y = = P X < xp Y < = P X < x, x R. Így tetszőleges x R eseté F X sgy x = Ezért, ha x, úgy F X sgy x = illetve, x < eseté F X sgy x = P X < x + P X > x = P X < x + P X x. P x < X < x + = + Φx Φ x = Φx, + P x X x = Φ x + Φx = Φx. Tehát F X sgy x = Φx, x R, azaz X sgy stadard ormális eloszlású, és f X sgy x = π e x, x R...8. Feladat. Az F : R R, F x := + e x µ σ, x R, eloszlásfüggvéyű eloszlást µ, σ R, + paraméterű logisztikus eloszlásak evezzük és Logµ, σ módo jelöljük. Bizoyítsuk be, hogy a ha ξ Log, és µ R, σ >, úgy σξ + µ Logµ, σ. Tehát µ hely-, σ pedig skálaparaméter. 6

17 b ha ξ egyeletes eloszlású, a-, akkor log logisztikus eloszlásak. ξ a ξ c ha η Expλ, η Expλ függetleek, úgy log d Számítsuk ki a Logµ, σ-eloszlás várható értékét! Log,. Ezért hívják η η Loglog λ log λ,. Megoldás. a: A σξ + µ valószíűségi változó eloszlásfüggvéye F σξ+µ x = P σξ + µ < x = P ξ < x µ x µ = F ξ =, x R, σ σ + e x µ σ ahol felhaszáltuk, hogy F ξ x =, x R. + e x ξ b: A log valószíűségi változó eloszlásfüggvéye a ξ ξ ξ F log a ξ x = P log < x = P ξ a ξ a ξ < ex = P ξ < a ξe x = P ξ + e x < ae x = P ξ < aex + e x = ae x +e x a = ex + e =, x R. x + e x c: Azt fogjuk kihaszáli, hogy ξ Expλ akkor és csak akkor, ha bármilye c > eseté cξ Exp λ. Legye η c := λ η és η := λ η. Ekkor η Exp, η Exp, illetve η és η függetleek. Továbbá η η λ log = log η λ η η η = log = log + log λ log λ. η λ λ η η Az a rész alapjá elég beláti, hogy log η Log,. A b rész alapjá, ha belátjuk, hogy η, ahol ξ egyeletes eloszlású, -e, ξ η úgy kapjuk, hogy log η Log,. Felhaszálva, hogy η és η függetleek, és azt, hogy P η > =, kapjuk, hogy η F η x = P < x = P η < x η = {y <xy η η } df η, η y, y R = {y <xy }f η y f η y dy dy, x R. R Ha x, úgy F η x =, ha pedig x >, úgy η F η x = f η y f η y dy dy = e y e y dy dy η = y /x e y [ e y ] + y /x dy = 7 η ξ e y e y /x dy = y /x ] [ e y +/x + + x = +. x

18 Tehát F η η x = + x ha x >, ha x. Továbbá, ha x, akkor F ξ x =, ha pedig x >, úgy ξ ξ F ξ x = P ξ ξ < x = P ξ < ξx = P ξ + x < x = P = x + x = +. x Ezért F η x = F ξ x, x R. η ξ ξ < x + x d: Ha η Logµ, σ, úgy η µ σ Log,, az a rész alapjá. Illetve, ha ξ Log,, úgy σξ + µ Logµ, σ. Ezért Eη = Eσξ + µ = σeξ + µ. Így látjuk, hogy elég ξ várható értékét kiszámoli. Felhaszálva ξ eloszlásfüggvéyéek alakját kapjuk, hogy ξ abszolút folytoos és sűrűségfüggvéye e x f ξ x = = + e x + e x = e x/ + e x/, x R. Először leelleőrizzük, hogy Valóba, Ezért x f ξ x dx = = Eξ = x f ξ x dx < +. x e x/ + e x/ dx = x dx e x + e x + xf ξ x dx = x e x/ + e x/ dx x e x dx = x dx =, e x/ + e x/ xe x dx = < +. hisze az itegradus páratla függvéy. Így Eη = σ + µ = µ...9. Feladat. Tetszőleges p > és σ > eseté az f : R R, p x p σ σ e σ x p ha x >, fx := ha x, sűrűségfüggvéyű eloszlást p és σ paraméterű Weibull eloszlásak hívjuk és W p, σ módo jelöljük. Mutassuk meg, hogy 8

19 a W, Expλ mide λ > -ra. λ b ha ξ W, és p >, σ >, úgy σξ p W p, σ. η c ha η W p, σ és η W p, σ függetleek, úgy log η potosabba η log Log log σ log σ,. p η logisztikus eloszlású, Megoldás. a: Valóba, b: Mide x > eseté x /λ /λ e /λ x = λe λx ha x >, f W,/λ x = ha x. F σξ /px = P σξ p < x = P ξ p Ezért x > eseté, felhaszálva az a részt is, f σξ /px = f ξ x σ x x p x p < = P ξ < = F ξ. σ σ σ p σ p pxp = e σ x p σ p pxp = p x p e σ x p. σ σ Ha pedig x, úgy f σξ /px =. Így kapjuk a b rész állítását. c: Legyeek η := η σ p, η := Ekkor η és η függetleek, és a b rész alapjá η W, Exp, illetve η σ p. η W, Exp. Továbbá, η = σ η p és η = σ η p, valamit log η η = log σ η p σ η p = p log η η Így az..8. Feladat a része alapjá elég azt beláti, hogy η log Log,. η + log σ log σ. Mivel η, η Exp, függetleek, az..8. Feladat c része alapjá η log Loglog log, = Log,. η 9

20 ... Feladat. Legye ξ, η együttes eloszlásfüggvéye F : R R, + e x y e x e y ha x >, y >, F x, y := egyébkét. Határozzuk meg a peremeloszlásokat, és a P ξ <, η < valószíűséget! Megoldás. Ekkor F x, y = e x e y, ha x >, y >, és e x ha x >, F ξ x = lim F x, y = y egyébkét. Azaz ξ paraméterű expoeciális eloszlású valószíűségi változó. Hasolóa, η is paraméterű expoeciális eloszlású valószíűségi változó. A fetiek alapjá yilvá az is következik, hogy F x, y = F ξ xf η y, x, y R, azaz ξ és η függetleek. Végül P ξ <, η < = F ξ,η, = e.... Feladat. Réyi [],... Eloszlásfüggvéy-e az alábbi két függvéy? i F : R R, F x, y := e e x+y, x, y R, ii F : R R, F x, y := e e x e y, x, y R. Megoldás. i: Nem, mert ha F eloszlásfüggvéy lee, akkor a,,, b, b, és b, b csúcspotú téglalapba,,esés valószíűségéek b eseté vett határértéke emegatív lee. Azoba lim b F b, b F b, F, b + F, = lim e e b e e b e e b + e b = e <. ii: Ige. Valóba, és F x, y = e e x e y = e e x e e y =: F xf y, x, y R, a F b midkét változójáak balról folytoos függvéye. lim F x, y = lim F x lim F y = =. x, y x y

21 c d lim F x, y = F y lim F x =, x x lim F x, y =. y F b, b F a, b F a, b + F a, a = F b F b F a F b F a F b + F a F a = F b F b F a + F a F a F b = F b F a F b F a.... Feladat. Legye ξ egyeletes eloszlású valószíűségi változó a π/, π/ itervallumo. Létezik-e η := ta ξ várható értéke? Megoldás. Ekkor ξ eloszlásfüggvéye ha x π/, x+π/ F ξ x = ha π/ < x < π/, π ha x π/. Első megoldás. Meghatározzuk η eloszlását: F η x = P η < x = P ta ξ < x = P arctata ξ < arcta x = P ξ < arcta x = arcta x + π/, x R, π hisze ξ π/, π/ és arctax π/, π/, x R. Így f η x = π + x, x R, azaz η Cauchy eloszlású. Ismert, hogy a Cauchy eloszlásak em létezik a várható értéke, így η-ak em létezik a várható értéke. Valóba, x dx = +. π + x Ugyais, [ ] t x dx = lim + x t log + x = +, és hasolóa x dx =. +x Második megoldás. Vizsgáljuk az π/ π/ ta x π dx

22 itegrál végességét. A ta függvéy párosságát felhaszálva kapjuk, hogy π/ π/ ta x dx = = π/ π/ ta x dx = π/ si x cos x dx lcos x dx = [ lcos x] π/ = lim lcos x = +. x π/ Így em létezik η-ak várható értéke...3. Feladat. Réyi [],.6.5. Legye ξ stadard ormális eloszlású valószíűségi változó. Létezik-e várható értéke? Feltéve, hogy ige, véges-e ez a várható érték? ξ Megoldás. Mivel ξ abszolút folytoos eloszlású, P ξ = =, és így ξ értelmezett. -valószíűséggel Defiíció szerit akkor modjuk, hogy ξ-ek létezik a várható értéke, ha az Eξ + és Eξ várható értékek közül legalább az egyik véges és ekkor Eξ := Eξ + Eξ. Itt ξ + := maxξ,, ξ := miξ,, és ξ = ξ + ξ, ξ = ξ + + ξ. Továbbá, defiíció szerit akkor modjuk, hogy ξ-ek véges a várható értéke itegrálható, ha az Eξ + és Eξ várható értékek végesek. Mivel, kapjuk, hogy ξ ξ =, és így E = = -ek létezik a várható értéke. ξ ξ El kell döteük, hogy E véges-e vagy em. Ehhez először meghatározzuk ξ ξ eloszlás- és sűrűségfüggvéyét. Ha x, úgy F x = P ξ ξ < x =. Ha x >, úgy F x = P ξ ξ < x = P x < ξ = P ξ = P x = P ξ < = Φ x Φ x x = Φ x = Φ x. x ξ x x Így ξ sűrűségfüggvéye f x = f ξ x x 3/ = π e x ha x >, x 3/ ξ ha x.

23 Ahhoz, hogy E ξ véges legye az alábbi itegrál végességét kell vizsgáli x π x e 3/ x dx = x e x dx. π Felhaszálva, hogy az itegradus emegatív és azt, hogy x eseté e x e, kapjuk, hogy x e x dx π x e x dx π eπ = eπ lim x x = +. dx = x [ x eπ / Így E = +. ξ..4. Feladat. Számoljuk ki a p-edredű, λ paraméterű Gamma-eloszlás -edik mometumát! Megoldás. Legye N. Ekkor az u = λx helyettesítést végrehajtva kapjuk, hogy ] Eξ = = x fx dx = x λp x p e λx dx Γp u λ λ p u/λ p e u Γp λ du = λ Γp u p+ e u du = Γp + λ Γp...5. Feladat. Legye ξ Betaα, β, ahol α >, β >. Mutassuk meg, hogy Megoldás. Ekkor Továbbá, Eξ = = Eξ = α α + β, D ξ = xf Betaα,β x dx = Γα + Γβ Γα + + β αβ α + β α + β +. x xα x β dx = Bα, β Γα + β ΓαΓβ = αγαγα + β α + βγα + βγα = α Bα +, β Bα, β α + β. Eξ = x xα x β Bα +, β Γα + Γβ Γα + β dx = = Bα, β Bα, β Γα + + β ΓαΓβ α + αγαγβ Γα + β = α + β + α + βγα + β ΓαΓβ = αα + α + βα + β +, 3

24 és így D ξ = Eξ Eξ = αα + α + βα + β + α α + β = αα + α + β α α + β + α + β α + β + = αβ α + β α + β Feladat. Mutassuk meg, hogy ha X Γp, λ és Y Γq, λ függetleek, akkor X X + Y Betap, q. Megoldás. X/X +Y sűrűségfüggvéyét határozzuk meg. Oly módo tesszük ezt, hogy X és Y együttes sűrűségfüggvéyét úgy traszformáljuk, hogy az egyik margiális X/X +Y legye, és meghatározzuk eze margiális sűrűségfüggvéyét. Felhaszáljuk a következő tételt. Tétel: Legye ξ : Ω R abszolút folytoos valószíűségi változó, f ξ sűrűségfüggvéyel. Legye D R yílt halmaz, melyre P ξ D =. Legye továbbá g : D R folytoosa differeciálható függvéy, mely kölcsööse egyértelmű D-, és Jacobi-determiása em ulla. Ekkor gd R yílt és a h : gd D iverzfüggvéy folytoosa differeciálható, emulla Jacobi-determiással. Továbbá az η := gξ valószíűségi változó is abszolút folytoos és sűrűségfüggvéye: { fξ hy J h y ha y gd, f η y = ha y / gd, ahol J h y jelöli h Jacobi determiását az y helye. Ekkor X és Y együttes sűrűségfüggvéye, felhaszálva a függetleségüket f X,Y x, y = f X xf Y y = { λ p x p e λx λ q y q e λy ha x >, y >, Γp Γq egyébkét. A feti tételt alkalmazzuk ξ := X, Y, D := {x, y R : x >, y > } választásokkal. Ekkor D yílt és P ξ D = P X >, Y > =. A következő traszformációt hajtsuk végre X Y formálisa, legye g : D R, gx, y := 4 X X+Y, Y x x+y, x, y D. y

25 Ekkor g folytoosa differeciálható D-, mert x g x, y = x + y x y = x + y x + y, x g x, y =, y g x, y = x x + y, y g x, y = létezek és folytoosak D-. Továbbá g Jacobi determiása y x x+y J g x, y = x+y = y, x, y D. x + y Így alkalmazhatjuk a fet idézett tételt. Meghatározzuk most g iverzét. Legye mide x, y D eseté u := x/x + y és v := y. Ekkor x = uv/ u, és g iverze h : gd R, uv u, v hu, v := u, v ahol gd = {u, v R : < u <, v > }. Továbbá h Jacobi determiása v u u J h u, v = u = v, ha u, v gd. u Mivel gx, Y = X/X + Y, Y, a fet idézett tétel alapjá kapjuk, hogy f X/X+Y,Y u, v =, ha u, v / gd. Abba az esetbe, ha u, v gd, azaz u, és v >, akkor uv uv f X/X+Y,Y u, v = f X,Y u, v v u = λp u ΓpΓq És ezért mide u R eseté f X/X+Y u = f X/X+Y,Y u, v dv = p e λ uv u λ q v q e λv f X/X+Y,Y u, v dv. Ha u /,, akkor f X/X+Y u =. Abba az esetbe, ha u,, akkor f X/X+Y u = λ p λ q u p ΓpΓq u p+ Végrehajtva az x := v/ u helyettesítést, kapjuk, hogy f X/X+Y u = λ p+q u p ΓpΓq u p+ = λp+q u p u q ΓpΓq = up u q Γp + q ΓpΓq = up u q ΓpΓq 5 v p+q e λ v u dv. x p+q u p+q e λx u dx x p+q e λx dx λ p+q x p+q e λx Γp + q Γp + q = up u q, Bp, q dx v u.

26 hisze Bp, q = ΓpΓq/Γp, q. Tehát u p u q ha u,, Bp,q f X/X+Y u = ha u /,, ez pedig em más, mit a Betap, q eloszlás sűrűségfüggvéye...7. Feladat. Legyeek X,..., X függetle, λ paraméterű Poisso eloszlású valószíűségi változók. Adjuk meg X,..., X -ek egy olya kifejezését, melyek várható értéke λ. Más szavakkal, adjuk torzítatla becslést λ -re. Megoldás. Leelleőrizzük, hogy X i X i i= egy jó választás. Valóba, E [ ] X i X i = i= EXi λ = λ + λ λ = λ. i=..8. Feladat. Legyeek X, azoos eloszlású valószíűségi változók és tegyük fel, hogy közülük bármelyik kettő külöböző korrelációs együtthatója ρ. Mutassuk meg, hogy ρ. Megoldás. Feltehetjük, hogy EX =, D X =,, mert áttérhetük az Y := X EX /DX, sorozatra. Ugyais corry i, Y j = covy i, Y j DY i DY j = DX covx i, X j = corrx i, X j. DX DX i DX j Ekkor ρ = corrx i, X j = EX i X j, i j. Mivel mide -re D i= X i és D i= X i = D X + covx, X = + ρ, kapjuk, hogy + ρ mide N eseté, azaz ρ /, N, és így ρ lim =, azaz ρ. 6

27 ..9. Példa. Az általába em igaz, hogy ha X,..., X azoos eloszlású valószíűségi változók és közülük bármely kettő külöböző korrelációs együtthatója ρ, akkor ρ. Ugyais, legyeek Y,..., Y függetle, azoos eloszlású em degeerált valószíűségi változók és X := Y Y,..., X := Y Y, ahol Y = i= Y i/. Ekkor X,..., X azoos eloszlásúak, hisze F Xi x = P X i < x = P Y i Y < x = P Y Y i + = P a i, Y < x, Y i Y i+ Y < x ahol Y := Y,..., Y, a i :=,,...,,,,...,, i =,...,. Mivel egy valószíűségi változó eloszlása és karakterisztikus függvéye kölcsööse egyértelműe meghatározza egymást, elég azt beláti, hogy a j, Y, j =,...,, karakterisztikus függvéyei ugyaazok. Ekkor Y,..., Y függetlesége és azoos eloszlásúsága miatt mide t R eseté φ aj,y t = Ee it a j,y = Ee it j= a jy j = Ee ita jy j = j= φ Yj ta j = j= φ Y ta j. Mivel mide a j -ek potosa egy koordiátája /, a többi /, a feti kifejezés em függ j-től. Ezért a j, Y, j =,...,, azoos eloszlásúak. Továbbá i j eseté, mivel Y,..., Y függetleek, kapjuk, hogy covx i, X j = covy i Y, Y j Y = covy i, Y j covy i, Y covy, Y j + covy, Y = + covy, Y = covy, Y. j= Mivel Y em degeerált, covy, Y >, és így bármely két külöböző X i és X j korrelációs együtthatója ugyaayi és egatív.... Feladat. Shao [], Exercise 9, 7. old. Legye F : R R egy eloszlásfüggvéy és a R. Mutassuk meg, hogy F x + a F x dx = a. R Megoldás. Ha a =, úgy triviálisa teljesül a bizoyítadó azoosság. 7

28 Tegyük fel, hogy a >. Az a < eset teljese hasolóa kezelhető. Legye ξ egy olya valószíűségi változó, amelyek F az eloszlásfüggvéye. Ekkor F x + a F x dx = P ξ < x + a P ξ < x dx R R =,x+a y df y,x y df y dx R R R =,x+a y,x y dx df y R R = [x,x+a y dx df y R R = y a,y] x dx df y = a df y = a. R R R... Feladat. Shao [], Exercise 6,. old. Legyeek F és F eloszlásfüggvéyek f és f sűrűségfüggvéyekkel. Tegyük fel, hogy létezik olya c R, hogy F c < F c. Legye F : R R, F x ha x c, F x := F x ha x > c. i Mutassuk meg, hogy F eloszlásfüggvéy! ii Jelölje P azt, az F eloszlásfüggvéyhez egyértelműe tartozó, valószíűségi mértéket R, BR-e, melyre P, x = F x, x R. Mutassuk meg, hogy P abszolút folytoos λ + δ c -re ézve, ahol λ a Lebesgue-mérték R, BR-e és δ c a c R potba kocetrálódó Dirac-mérték! Megoldás. i: Azt kell végiggodoli, hogy F balról folytoos, mooto övekvő, lim x F x = és lim x F x =. ii: Vegyük észre, hogy P em abszolút folytoos a λ Lebesgue-mértékre ézve, mert a P -hez tartozó F eloszlásfüggvéy em folytoos F em folytoos c-be. Legye A BR. Ekkor P A = E A = A x df x R = A x df x + A x df x + R,c R {c} = f x dλx + F c F cδ c A + A,c R c,+ A c,+ A x df x f x dλx. 8

29 Felhaszálva, hogy F c F cδ c A = F c F c dδ c x, A {c} és A,c dδ c x =, A c,+ dδ c x =, A {c} dλx =, kapjuk, hogy P A = + = A,c A A c,+ f x dλ + δ c x + F c F c dλ + δ c x A {c} f x dλ + δ c x f x,c x + F c F c {c} x + f x c,+ x dλ + δ c x. Ezért P abszolút folytoos λ + δ c -re ézve és a Rado Nikodym derivált dp dλ + δ c x = f x,c x + F c F c {c} x + f x c,+ x, x R.... Feladat. Legyeek ξ és η valószíűségi változók ugyaazo a valószíűségi mező és tegyük fel, hogy véges a második mometumuk. Az alábbi állítások közül melyik igaz és melyik hamis? A hamisakra adjuk ellepéldát! a Eξ + η = Eξ + Eη. b Ha ξ és η függetleek, akkor Eξ + η = Eξ + Eη. c Eξη = EξEη. d Ha ξ és η függetleek, akkor Eξη = EξEη. e Ha Eξη = EξEη, akkor ξ és η függetleek. f D ξ + η = D ξ + D η. g Ha ξ és η függetleek, akkor D ξ + η = D ξ + D η. h Ha D ξ + η = D ξ + D η, akkor ξ és η függetleek. Megoldás. a: Igaz. b: Igaz függetleség élkül is. 9

30 c: Nem igaz. Ellepélda: legye P ξ = = p és P ξ = = p, ahol < p <, és η := ξ. Ekkor ξη = ξ ξ =, így Eξη =, és Eξ = p + p = p, Eη = Eξ = p. Ezért EξEη = p p. Tehát Eξη EξEη. d: Igaz. e: Nem igaz. Ellepéldák a következő. Legye a ξ és η valószíűségi változók együttes eloszlása a következő kotigecia táblázattal megadva: Ekkor ξ \ η - -,5,5,5,5,5,5,5,5,5,5 P ξ = = 4 = P η =, P ξ = = P ξ = = 4 = P η =, = P η =, és P ξη = =. Ezért Eξη = és Eξ = =, Eη = =. Így EξEη = = Eξη. Azoba, ξ és η em függetleek, hisze például P ξ =, η = =, de P ξ = P η = = = 4. f: Nem igaz. Ellepéldák a következő: legye ξ egy olya valószíűségi változó, melyre D ξ és η := ξ. Ekkor D ξ + η = D ξ = 4D ξ, de D ξ + D η = D ξ. g: Igaz. h: Nem igaz. Ellepélda: az e-beli ellepélda most is megfelelő. Valóba, és D η = /. Továbbá, D ξ = Eξ Eξ = Eξ = =, D ξ + η = Eξ + η Eξ + η = Eξ + η = Eξ + Eξη + Eη = +. Ezért D ξ + η = D ξ + D η. Azoba ξ és η em függetleek. 3

31 ..3. Feladat. Grimmett Stirzaker [4], Legye X egy valószíűségi változó. Igaz-e általába, hogy E = X EX? Va-e olya X valószíűségi változó, melyre teljesül az előző egyelőség? Megoldás. Általába em igaz, hogy E X =. Például, ha X eloszlása p- EX paraméterű Beroulli, ahol < p <, úgy EX = p + p = + p, E = X p + p = p. Megadható viszot olya X valószíűségi változó, melyre teljesül a megkívát egyelőség. Ha például, P X = a =, ahol a R, a, teljesül az egyelőség. Aduk egy másik példát is. Ha például X eloszlása olya, hogy úgy úgy EX = a, E/X = /a, és így P X = = 9, P X = / = 4 9, P X = = 4 9, EX = =, E = X =. Így teljesül az egyelőség...4. Feladat. Grimmett Stirzaker [4], Legyeek X,, függetle, azoos eloszlású, egész értékű valószíűségi változók. Legye S :=, S := i= X i, N. Mide N {} eseté jelölje R az S, S,..., S sorozat által felvett külöböző egész értékek számát. Mutassuk meg, hogy és P R = R + = P S S S, N, lim ER = P S k, k. Megoldás. Vegyük észre, hogy R =. Legye a továbbiakba N. Ekkor P R = R + = P S S, S S,..., S S = P X, X + X,..., X + + X, X + + X. 3

32 Felhaszálva, hogy X, X,..., X eloszlása megegyezik X, X,..., X eloszlásával kapjuk, hogy P R = R + = P X, X + X,..., X + + X, X + + X Így mide eseté ER = R ω dp ω Ω = Ezért Így..5 = = = P S, S,..., S, S = P S S S S. {ω Ω : R ω=r ω+} {ω Ω : R ω=r ω+} Ω R ω dp ω + R ω dp ω + R ω + dp ω + {ω Ω : R ω=r ω+} {ω Ω : R ω=r ω} R ω dp ω {ω Ω : R ω=r ω} dp ω = ER + P R = R + = ER + P S S S S. R ω dp ω ER = ER + P S S S = ER + P S S + P S S = = ER + P S + P S S + + P S S = + P S S m,. m= ER = + P S S m, N. m= Itt P S S m, m N, mooto csökkeő sorozat, hisze {S S m } {S S m }, m. Felhaszálva, hogy a szóbaforgó sorozat alulról korlátos is pl. -val, kapjuk, hogy koverges. Karakterizáluk kell még a határértékét. Felhaszálva, hogy {S S m } = {S k, k }, m= a valószíűség folytoossága alapjá adódik, hogy lim P S S m = P {S S m } = P S k, k. m m= Felhaszálva, azt, hogy ha x, N, valós számok olya sorozata, hogy x a R, úgy x k a, 3 k=

33 kapjuk, hogy P S S m P S k, k. m= Így..5 alapjá kapjuk, hogy lim ER = P S k, k...5. Feladat. Grimmett Stirzaker [4], Tekitsük egy olya érmét, mellyel a fejdobás valószíűsége p, az írásdobásé pedig p, ahol p,. Feldobjuk ezt az érmét alkalommal. Szériáak evezzük dobásokak egy olya sorozatát, mely azoos kimeetelekből áll. Például, ha = 7 és a F F IF IIF dobássorozat adódott, úgy a szériák száma 5. Jelölje a továbbiakba R az dobásból a szériák számát. Határozzuk meg várható értékét és szóráségyzetét! R Megoldás. Mide j =,..., eseté legye I j aak az eseméyek az idikátorfüggvéye, hogy a j-edik és a j + -edik dobás kimeetele külöböző. Azaz ha a j-edik és a j + -edik dobás F I vagy IF, I j = ha a j-edik és a j + -edik dobás F F vagy II. Ekkor teljes idukcióval kapjuk, hogy Így R = + I j, N. j= ER = + EI j = + p p, N. j= Figyelembe véve R korábbi előállítását, számoljuk ki először ER -et: ER = E I j = E Ij + I j I k j= = EI j + j= j= j<k, j, k=,..., EI j I k. j<k, j, k=,..., Felhaszálva, hogy j k >, j, k =,...,, eseté I j és I k függetleek és így ez esetbe EI j I k = EI j EI k = EI, kapjuk, hogy ER = EI + EI I + EI I EI I + EI = EI + EI I EI = p p + p p + p p p p. 33

34 Mivel p p + p p = p p, kapjuk, hogy D R = D R = ER ER = p p + p p p p 4p p = 4 6p p 3 54p p = p p 3 3 5p p...6. Feladat. Grimmett Stirzaker [4], Legye X egy valószíűségi változó. Mutassuk meg, hogy E X < + akkor és csak akkor, ha bármilye ε > eseté létezik olya δε >, hogy E X A < ε mide olya A eseméyre, melyre P A < δε. Megoldás. Tegyük fel először, hogy bármilye ε > eseté létezik olya δε >, hogy E X A < ε mide olya A eseméyre, melyre P A < δε. Legye a továbbiakba ε > rögzített. Felhaszálva, hogy lim sup x P X > x lim sup P X x = lim F X x =, x x kapjuk, hogy lim x P X > x =, és így létezik olya x >, hogy P X > x < δε. Ekkor E X { X >x} < ε. Továbbá, felhaszálva, hogy X = X { X x} + X { X >x} és E X { X x} x, egy előadáso tault tétel alapjá kapjuk, hogy E X létezik és E X = E X { X x} + E X { X >x} x + ε < +. Megfordítva, tegyük fel, hogy E X < +. Ekkor a domiált kovergecia tétel alapjá lim E X { X >y} =. y Legye ε > rögzített. Ekkor létezik olya y >, hogy E X { X >y} < ε. Legye B := { X > y}. Felhaszálva, hogy tetszőleges A eseméyre kapjuk, hogy A = A B c + A B A B c + B, E X A E X A B c + E X B E X A B c + ε. Mivel B c = { X y}, kapjuk, hogy E X A yp A B c + ε yp A + ε. Legye δε := ε y. Ekkor E X A < ε, ha P A < δε. 34

35 .. Kovolúció... Feladat. Mutassuk meg, hogy k db függetle, λ paraméterű expoeciális eloszlású valószíűségi változó összege k-adredű, λ paraméterű gamma eloszlású. Megoldás. Jelölje Γk, λ a k-adredű, λ paraméterű gamma eloszlást. Ekkor λ k x k e λx ha x >, k! f Γk,λ x = ha x. Teljes idukcióval mutatjuk meg az állítást. Jelölje a továbbiakba mide k N eseté f k k db függetle, λ paraméterű expoeciális eloszlású valószíűségi változó összegéek sűrűségfüggvéyét. Ha k =, akkor λe λx ha x >, f x = ha x, így k = eseté igaz az állítás. Tegyük most fel, hogy,..., k eseté igaz az összefüggés. Megmutatjuk, hogy igaz k + -re is. A kovolúciós képlet alapjá számolva, ha y >, akkor f k+ y = y = λk+ k! f k xf y x dx = y y x k e λy dx = λ k x k e λx k! λk+ k! e λy λe λy x dx [ ] x k y k = λk+ y k e λy k! k = λk+ y k e λy. k! Ha pedig y, úgy f k+ y =. Így k + -re is igaz az összefüggés.... Feladat. Mutassuk példát két korrelálatla, abszolút folytoos ξ és η valószíűségi változóra, melyek em függetleek. Megoldás. Legye ξ egyeletes eloszlású a [ /, /] itervallumo. Belátjuk, hogy ξ és η := ξ korrelálatlaok, de em függetleek. Ekkor Eξ = / + / =, D ξ = Eξ = Eη = Eξ =, Eξη = Eξ3 = / / / / x 3 dx =. =, Így azaz ξ és η korrelálatlaok. covξ, η = Eξη EξEη = =, Iformális idoklása aak, hogy ξ és η em függetleek az, hogy η determiisztikus függvéye ξ-ek, és η em kostas. 35

36 Az alábbiakba egy formális idoklását adjuk aak, hogy ξ és η em függetleek. Legye a, /4. Ekkor és ezért Ez alapjá {ω Ω : ηω < a } = {ω Ω : ξ ω < a } = {ω Ω : ξω < a}, P ξ < a, η < a = P ξ < a, ξ < a = P ξ < a = P η < a. P ξ < a, η < a P ξ < ap η < a, hisze, ha egyelőség álla fe, akkor vagy P η < a = vagy P ξ < a = teljesüle, de a választása miatt egyik sem teljesülhet, így ξ és η em függetleek...3. Feladat. Legye ξ λ = paraméterű expoeciális eloszlású valószíűségi változó. Határozzuk meg ξ + ξ eloszlás- és sűrűségfüggvéyét! Megoldás. Megjegyezzük, hogy a függetle valószíűségi változók összegére voatkozó kovolúciós képletet most em haszálhatjuk, mert ξ és ξ em függetleek eek potos idoklása az előző feladat szerit törtéhete. Jelölje G : R [, ] a ξ + ξ valószíűségi változó eloszlásfüggvéyét, azaz Gx := P {ω Ω : ξω + ξ ω < x}, x R. Ezt akarjuk felíri az F : R [, ], F x = P ξ < x, x R eloszlásfüggvéy segítségével. Ez adhatja az ötletet, hogy a {ξ + ξ < x} halmazt írjuk fel olya alakba, hogy csak a ξ valószíűségi változóra voatkozó ívóhalmazokkal kifejezhető legye. Esetükbe az derül ki, hogy {ω Ω : ξω + ξ ω < x} = {ω Ω : y x < ξω < y x} alkalmas y x és y x függvéyekkel. Leírjuk azo y R-ek halmazát, melyekre rögzített x R eseté y + y < x teljesül. Elég csak az x > esettel foglalkozi, mert x eseté P ξ + ξ < x =, hisze P ξ =. Legye tehát x >. Mivel az y + y = x egyelet két külöböző valós megoldása: azt kapjuk, hogy y x = + 4x Így, mivel ξ abszolút folytoos kapjuk, hogy, y x = + + 4x, y + y < x y x < x < y x. Gx = P {ω Ω : y x < ξω < y x} = F ξ y x F ξ y x = F ξ y x { } + 4x = e yx = exp, x >, 36

37 hisze F ξ y x =, mert y x < és P ξ =. Tehát { exp } +4x ha x >, Gx = ha x, és így ξ + ξ sűrűségfüggvéye { gx = +4x exp } +4x ha x >, ha x...4. Feladat. Legyeek ξ és η függetle valószíűségi változók, hogy ξ Poisso eloszlású λ > paraméterrel és η egyeletes eloszlású a [, ] itervallumo. Lássuk be, hogy ξ + η-ak is va sűrűségfüggvéye, és határozzuk is meg azt! Megoldás. Legye [a, b] egy olya itervallum, melyre [a, b] [, +[ valamely Z + eseté. Ekkor P ξ + η [a, b] = P ξ =, η [a, b ], ugyais, ha például ξ =, akkor a miatt η kell, de eek a valószíűsége. Felhaszálva, hogy ξ és η függetleek kapjuk, hogy P ξ + η [a, b] = P ξ = P η [a, b ] = λ! e λ b a = λ! e λ b a = b a fx dx, ahol fx := λ! e λ, x [, + [, =,,,..., és fx =, ha x <. Tehát fx = = λ! e λ [,+[ x, x R. Megmutatjuk, hogy f : R R sűrűségfüggvéy. Nyilvá f emegatív, és Borel-mérhető is, mert [, + [, N Borel-mérhető halmazok, és mérhető függvéyek potokéti határértéke is mérhető függvéy. Az is teljesül, hogy fx dx = A feti számolások és P ξ + η = miatt P ξ + η < y = 37 y = λ! e λ =. fx dx, y R,

38 azaz f ξ + η sűrűségfüggvéye. Megjegyezzük, hogy általába is igaz az, hogy ha ξ és η közül az egyik abszolút folytoos eloszlású, akkor ξ + η is abszolút folytoos eloszlású lásd pl. Réyi [9], 8. old...5. Feladat. Legyeek ξ, η és ζ függetle valószíűségi változók, hogy ξ Poisso eloszlású λ > paraméterrel, η és ζ egyeletes eloszlású a [, ] itervallumo. Lássuk be, hogy ξ + η + ζ abszolút folytoos eloszlású és határozzuk meg a sűrűségfüggvéyét! Első megoldás. Jele esetbe η + ζ abszolút folytoos eloszlású és meghatározzuk most a sűrűségfüggvéyét. A Feladat alapjá, ha X és Y függetle, a, itervallumo egyeletes eloszlású valószíűségi változók, úgy { x ha x, f X+Y x = ha x >. Így F η+ζ x = P η + ζ < x = P és ezért f η+ζ x = f X+Y x = η + ζ < x = F X+Y x, x R, { { x ha x, x ha x, ha x > = egyébkét. Legye [a, b] egy olya itervallum, melyre [a, b] [, + [ valamely =,,... eseté. Ekkor P ξ + η + ζ [a, b] Így = P ξ =, η + ζ [a +, b + ] + P ξ =, η + ζ [a, b ] = P ξ = P η + ζ [a +, b + ] + P ξ = P η + ζ [a, b ] = λ! e λ b + a + P ξ + η + ζ [a, b] = λ! e λ = λ! e λ = λ! e λ + λ! e λ = λ! e λ b + a + [ x f η+ζ x dx + λ! e λ x + dx + λ ] b + b a! e λ f η+ζ x dx. b [ x a ] b x dx + x + λ a +! e λ a b + + a + + b + a + b a b a + + b a + λ b a! e λ b a. 38

39 Felírva a feti összegbe szereplő két tagot itegrál alakba kapjuk, hogy Így P ξ + η + ζ [a, b] = fx = = λ! e λ b a b a x + + dx + λ! e λ b λ! e λ x λ x dx. a x dx λ! e λ x λ x, ha x [, + [, N. Ha [a, b] [, [, úgy Ezért P ξ + η + ζ [a, b] = P ξ =, η + ζ [a, b] = λ! e λ P η + ζ [a, b] b = e λ x dx = e λ b a. a fx = e λ x, ha x [, [, és fx =, ha x <. Második megoldás. Az..4. Feladat alapjá ξ + η abszolút folytoos és sűrűségfüggvéye f ξ+η x = λ! e λ, ha x [, + [, N {}, és f ξ+η x =, ha x <. Mivel ξ + η és ζ függetleek kapjuk, hogy f ξ+η+ζ x = f ξ+η yf ζ x y dy, x R. Ha x, úgy egyszerűe adódik, hogy f ξ+η+ζ x =. Ha < x <, úgy f ξ+η+ζ x = x f ξ+η y dy = x λ! e λ dy = xe λ. Ha x, úgy legye N olya, hogy x < +. Ekkor f ξ+η+ζ x = x x f ξ+η y dy = x λ! e λ dy + = λ! e λ x + + λ! e λ x = λ! e λ x + + λ x. x λ! e λ dy 39

40 .3. Markov- és Csebisev-egyelőtleség, Borel-Catelli lemma.3.. Feladat. Shiryaev [], 45. old. Legyeek ξ és η olya valószíűségi változók, hogy Eξ = Eη =, és D ξ = D η =. Mutassuk meg, hogy ahol ρ := corrξ, η. Megoldás. Felhaszálva, hogy kapjuk, hogy E maxξ, η + ρ, maxξ, η = ξ + η + ξ η, E maxξ, η = Eξ + Eη + E ξ η = + E ξ η. A Cauchy Buyakovszkij-egyelőtleség alapjá És így E ξ η = E ξ ηξ + η Eξ η Eξ + η = Eξ ξη + η Eξ + ξη + η = Eξη + Eξη = Eξη = ρ. E maxξ, η = + E ξ η + ρ..3.. Feladat. A Csebisev-egyelőtleség kétdimeziós aalógja, Shiryaev [], 55. old. Legyeek ξ és η valószíűségi változók, és legye ρ := corrξ, η. Mutassuk meg, hogy bármilye ε > eseté Megoldás. Legyeek P { ξ Eξ εdξ } { η Eη εdη } ε + ρ. ζ := ξ Eξ Dξ, ζ := η Eη. Dη Ekkor Eζ = Eζ =, D ζ = D ζ = és corrζ, ζ = corrξ, η = ρ, valamit P { ξ Eξ εdξ } { η Eη εdη } = E {ζ ε } {ζ ε }. Felhaszálva, hogy {ζ ε } {ζ ε } ε max{ζ, ζ }, 4

41 az előző feladat alapjá kapjuk, hogy P { ξ Eξ εdξ } { η Eη εdη } ε + ρ. Abba az esetbe, ha ξ és η függetleek, akkor ρ =, és ekkor a becslés P { ξ Eξ εdξ } { η Eη εdη } ε. Ez rögtö következik abból, hogy P A B P A+P B, felhaszálva az,,-dimeziós Csebisev-egyelőtleséget. Ha ξ = η, akkor ρ =, így visszakapjuk az eredeti Csebisev-egyelőtleséget Feladat. A ormális fluktuációk igazi agyságredjéek megsejtése Legyeek X, N függetle, azoos eloszlású valószíűségi változók, melyekek várható értéke EX =, szóráségyzete D X = σ < +. Legye S := i= X i, N. A agy számok gyege törvéye azt modja ki, hogy bármilye rögzített ε > eseté lim P S > ε =. Bizoyítsuk be a következő erősebb állítást: bármilye + -hez tartó {b, N} pozitív számokból álló sorozatra, mide rögzített ε > eseté lim P S > ε =. b Megoldás. A Csebisev-egyelőtleség szerit bármilye ε > eseté S D S P > ε = P S ES > εb b ε b = D X ε b = D X ε b ha Feladat. Tóth Bálit feladata a: Bizoyítsuk be, hogy a Markov-egyelőtleség éles a következő értelembe: rögzítve az < m λ számokat, létezik olya emegatív X valószíűségi változó, melyek várható értéke EX = m és P X λ = m/λ, azaz a,,markov-egyelőtleség telítődik. b: Bizoyítsuk be, hogy a Markov-egyelőtleség em éles a következő értelembe: rögzített emegatív X valószíűségi változóra, melyek várható értéke véges és em ulla, feáll, hogy λp X λ lim =. λ EX Megoldás. a: Ha m > és m = λ, akkor legye X a kostas m valószíűségi változó, azaz P X = m =. Így EX = m és P X λ =. 4

42 Ha < m < λ, akkor < m/λ <, és legye X az a valószíűségi változó, melyek két értéke va és λ, a következő valószíűségekkel: P X = λ = m λ, P X = = m λ. Ekkor EX = λ m λ + m = m, λ valamit P X λ = P X = λ = m/λ, azaz midkét feltétel teljesül. b: Megjegyezzük, hogy a Markov-egyelőtleség alapjá csak ayi következik, hogy λp X λ EX. A bizoyítadó állítás azzal ekvivales, hogy lim λ λp X λ =. Ekkor λp X λ = λe {X λ} = E λ{x λ}. Felhaszálva, hogy EX < +, és azt, hogy mide ω Ω eseté lim λ {Xω λ} =, és λ {Xω λ} Xω {Xω λ} Xω, λ hisze X emegatív, a domiált kovergecia tétel alapjá kapjuk, hogy lim E λ {X λ} = E lim λ {X λ} = E =. λ λ És így lim λ λp X λ =. Megjegyezzük, hogy ha feltesszük azt is, hogy EX < +, akkor gyorsabba is célba érhetük. Hisze a Csebisev-egyelőtleség alapjá, ha λ > EX, úgy λp X λ = λp X EX λ EX λp X EX λ EX D X λ λ EX. Itt lim λ D X λ λ EX =, így lim λ λp X λ = Feladat. Mote Carlo-itegrálás Legye f : [, ] R mérhető, égyzetese itegrálható függvéy a Lebesgue-mérték szerit. Legye továbbá I := fx dx, J := fx dx. Legyeek U, N függetle, a [, ] itervallumo egyeletes eloszlású valószíűségi változók és I := fu + fu + + fu, N. 4

43 a Mutassuk meg, hogy I st I. b Legye a > rögzített. Igaz-e, hogy mide N eseté P I I a J I? a Megoldás. a: Mivel fu, N is függetle, azoos eloszlásúak és E fu = fx dx < +, a agy számok erős törvéye alapjá kapjuk, hogy I = fu + fu + + fu fx dx = I P-m.m. Valóba feáll, hogy E fu < +, ugyais a Ljapuov-egyelőtleség szerit lásd..4. Feladat E fu Ef U = J < +. Mivel a P-majdem mideütti kovergeciából következik a sztochasztikus kovergecia, megkapjuk a bizoyítadó állítást. b: Legye a > rögzített. Mivel EI = EfU = I, a Csebisev-egyelőtleség alapjá kapjuk, hogy P I I a D I a / = a D fu = EfU EfU a = a J I. Így IGAZ a dolog Feladat. Egy kaszióba azt játsszák, hogy egymás utá feldobak egy szabályos pézdarabot. Végtele sok ember egymást felváltva bemegy a kaszióba, és ott megfigyel bizoyos számú pézfeldobást, mégpedig az -edik ember k -et, N. Akiek a kaszióba való ott-tartózkodása alatt csupa fej dobás törtét, az yer, akiek ott-tartózkodása alatt törtét írás dobás is, az veszít. Bizoyítsuk be, hogy a ha k = [log ],, akkor valószíűséggel végtele sok ember távozik yertese; b ha k = [ log ],, akkor valószíűséggel csak véges sok ember távozik yertese; c ha k = [log + log log ],, akkor valószíűséggel végtele sok ember távozik yertese; d ha k = [ log + log log ],, akkor valószíűséggel csak véges sok ember távozik yertese. Megoldás. Legye A := { az -edik ember yertese távozik }, N. 43

44 Ekkor P A = P k darab dobás midegyike fej = k, N. A Borel-Catelli lemma szerit egyrészt, ha = P A < +, akkor P lim sup A = P végtele sok bekövetkezik az {A : N} eseméyek közül =. Másrészt, mivel az A, N, eseméyek függetleek, ha = P A = +, akkor P lim sup A = P végtele sok bekövetkezik az {A : N} eseméyek közül =. a: Az [x] x, x R, egyelőtleség alapjá P A = = k = = = = = [log ] = = log b: Az [x] > x, x R, egyelőtleség alapjá P A = = k ] = log = = = [ log c: Az [x] x, x R, egyelőtleség alapjá P A = = k = = [log +log log ] = = = =. = log +log log <. = log. Tekitsük az f : [, + R, fx = mooto csökkeő függvéyt. Ekkor az x log x előbbi összeg az f függvéy egy felső itegrálközelítő összege, így = log Így = P A =. x log x dx = y y y l dy = l d: Az [x] > x, x R, egyelőtleség alapjá P A = = [ ] k log = = = + log log =. log = = dy =. y log + log log Tekitsük az f : [, + R, fx = mooto csökkeő függvéyt. Ekkor az xlog x előbbi összeg -es szorzó élkül és az összegzést = 3-tól futtatva az f függvéy egy alsó itegrálközelítő összege, így log xlog x =3 = l [ y ] dx = y y [ = l y y l dy = l ] = l < +. Így = P A <. 44 y dy

45 .3.7. Feladat. Mutassuk példát olya Ω, A, P valószíűségi mezőre és ebbe olya A, N, eseméyekre, hogy = P A = + és a aak a valószíűsége, hogy végtele sok A eseméy következik be. b aak a valószíűsége, hogy végtele sok A eseméy következik be. Azaz a Borel-Catelli-lemma,,második felébe, mikor is teljesül a reláció, a függetleség feltétele em hagyható el. = P A = + Megoldás. Legye Ω := [, ], A := B[, ] és P a: Mide N eseté legye A := [, /]. Ekkor P A = = = a Lebesgue-mérték [, ]-e. = +, és lim sup A = [, /]. Ezért P lim sup A = /. Az A, N, eseméyek természetese em függetleek. b: Mide N eseté legye A :=, /]. Ekkor és megmutatjuk, hogy P A = = = = +,.3.6 lim sup A = = k=, /k] =. Valóba, idirekt módo tegyük fel, hogy x [, ] olya, hogy x lim sup A. Ekkor mide N eseté létezik olya N, hogy és x, / ]. Abba az esetbe, ha x >, létezik olya N N, hogy < x, így bármilye N M N eseté < x, és ezért x, ], azaz elletmodásra jutottuk. Ezért M N M lim sup A {}. Az is látható, hogy lim sup A. Így kapjuk.3.6-t. Ezért P lim sup A =. Az A, N, eseméyek természetese em függetleek. 45

46 . Valószíűségszámítás. feladatok.. Valószíűségi változók eloszlása, várható értéke... Feladat. Legyeek A i, i I, és B olya részhalmazai Ω -ak, hogy B / i I A i. Igaz-e, hogy ekkor B / σa i, i I? Megoldás. A válasz: Nem. Idoklás: Ellepéldát aduk. Legye Ω := [, ], B egy zárt halmaz [, ]-be, A i, i I, pedig a [, ]-beli yílt itervallumok redszere.... Feladat. Legyeek X és Y valószíűségi változók ugyaazo a valószíűségi mező és tegyük fel, hogy σx = σy. Igaz-e, hogy ekkor P X = Y =? Megoldás. A válasz: Nem. Idoklás: Ellepéldát aduk. Legye Y := X +. Ekkor mivel X determiisztikus függvéye Y -ak és fordítva is kapjuk, hogy σx = σy. Azoba P X = Y = P X = X + =...3. Megjegyzés. Lebesgue-mérték, Lebesgue Stieltjes-mérték Jelölje BR R Borel-halmazaiak σ-algebráját, azaz az R yílt halmazai által geerált σ-algebrát. Ez megegyezik az R yílt itervallumai által geerált σ-algebrával. Eek igazolásáál és később is fotos a következő struktúra tétel Kolmogorv Fomi [5],..6. Tétel: R mide yílt halmazát előállíthatjuk véges vagy megszámlálhatóa végteleül sok párokét diszjukt yílt itervallum uiójakét. A, +, α, + és, β alakú halmazokat is az itervallumok közé soroljuk. Ekkor R, BR egy mérhető tér. Hogya származtatjuk eze a Lebesgue-mértéket? Egy [a, b[, a < b, a, b R, itervallum hossza µ[a, b[ = b a. A Carathéodory-tétel segítségével belátható, hogy µ egyértelműe terjeszthető ki BR-re egy µ mértékké. Ezt a µ mértéket evezzük Lebesgue-mértékek. Ekkor µ em véges, de σ-véges mérték. Carathéodory-tétel: Legye µ egy emegatív, σ-additív, σ-véges halmazfüggvéy az A algebrá. Ekkor egyértelműe létezik egy µ mérték a σa geerált σ-algebrá, melyre µa = µa, A A. A σ-végesség az egyértelműséghez kell. A Carathéodory-tétel általáosabb verziója segítségével az is belátható, hogy R Lebesguemérhető részhalmazaiak σ-algebrájá is egyértelműe defiiálható olya mérték, mely szerit egy [a, b[ itervallum mértéke b a. Az egyértelműségél a σ-végességek va szerepe. S tulajdoképpe ezt a mértéket szokás Lebesgue-mértékek hívi. Azt tudjuk, hogy mide Borel-halmaz Lebesgue-mérhető. Nem érdektele kérdés, hogy ez a kostrukció vajo a maximális kiterjesztést adja-e, vagyis a Lebesgue-mérhető halmazok σ-algebrája a lehető legbővebb olya σ-algebra-e, amire a kiterjesztést el tudjuk végezi. A válasz emleges. A emmérhető halmazok tárgyalásakor megmutatható, hogy a Lebesgue-mérték mértékkét kiterjeszthető a Lebesgue-mérhető halmazokál bővebb σ-algebrára is. Az is belátható, hogy ez a kiterjesztés már em egyértelmű. Sőt az is belátható, hogy az R összes részhalmazaiból álló σ-algebrára, R -re em végezhető úgy el e kiterjesztés, hogy [a, b[ mértéke b a le- 46

47 gye. Haszos olvasmáy e tekitetbe Járai Atal,,Ivariat extesio of Haar measure című cikke Járai [3]. A Lebesgue Stieltjes-mérték a Lebesgue-mérték általáosítása. Ha F : R R mooto övekvő, balról folytoos függvéy, akkor egyértelműe létezik R Borel halmazai, BR- e olya lokálisa véges µ F mérték, hogy mide a < b, a, b R eseté µ F [a, b[ = F b F a. Megfordítva, ha µ F egy lokálisa véges mérték, akkor midig előállítható a megadott módo. Egy mérték lokálisa végessége azt jeleti, hogy mide kompakt halmaz mértéke véges. Ekkor µ F eve az F -hez redelt Lebesgue Stieltjes-mérték, a µ F szeriti itegrálás pedig a Lebesgue Stieltjes itegrálás...4. Feladat. Legyeek ξ, η : Ω R k valószíűségi változók. Bizoyítadó, hogy ekkor P ξ = P η akkor és csak akkor, ha F ξ = F η. Azaz az eloszlás és az eloszlásfüggvéy kölcsööse egyértelműe meghatározza egymást. Megoldás. Shiryaev [], old. alapjá Először felidézzük az eloszlás és az eloszlásfüggvéy fogalmát: ξ eloszlása a P ξ : BR k R, P ξ B := P ξ B halmazfüggvéy, mely valószíűségi mérték R k, BR k -, illetve ξ eloszlásfüggvéye az F ξ : R k [, ], függvéy. és F ξ x := P ξ < x = P ξ < x,..., ξ k < x k, x = x,..., x k R k, Tegyük fel először, hogy P ξ = P η. Legye B :=, x, x R k, ekkor B BR k F ξ x = P ξ < x = P ξ B = P η B = P η, x = P η, x = P η < x = F η x. Így F ξ = F η. Tegyük most fel, hogy F ξ x = F η x, x R k. Ekkor P ξ, x = P ξ < x = P η < x = P η, x, x R k. Azaz a P ξ és P η R k, BR k - értelmezett valószíűségi mértékek megegyezek a {, x : x R k } halmazredszere. A Carathéodory tételt felhaszálva megmutatjuk, hogy megegyezek BR k - is. Carathéodory-tétel: Legye Ω egy emüres halmaz, A az Ω bizoyos részhalmazaiból álló halmazalgebra. Legye µ : A [, + ] egy σ-véges mérték. Ekkor egyértelműe létezik olya µ : σa [, + ] mérték, mely µ kiterjesztése, azaz µa = µ A, A A. Az A halmazalgebrát a következőképpe defiiáljuk: A A N : A = 47 A i, i=

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

ELTE TTK Budapest, január

ELTE TTK Budapest, január Valószíűségszámítás Arató Miklós előadásai alapjá Készítették: Martiek László Tassy Gergely ELTE TTK Budapest, 008. jauár Typeset by L A TEX . el adás 007. IX.. szerda Klasszikus (kombiatorikus valószí

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Barczy Mátyás és Pap Gyula

Barczy Mátyás és Pap Gyula Barczy Mátyás és Pap Gyula mobidiák könyvtár Barczy Mátyás és Pap Gyula mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas Iván Barczy Mátyás és Pap Gyula Debreceni Egyetem Oktatási segédanyag mobidiák könyvtár

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár Lajkó Károly Kalkulus I. példatár mobidiák köyvtár SOROZATSZERKESZTŐ Fazekas Istvá Lajkó Károly Kalkulus I. példatár programozó és programtervező matematikus

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Valószínűségszámítás II. feladatsor

Valószínűségszámítás II. feladatsor Valószíűségszámítás II. feladatsor 214. szeptember 8. Tartalomjegyzék 1. Kovolúció 1 1.1. Poisso és Gamma eloszlások kapcsolata............................... 2 2. Geerátorfüggvéyek 3 2.1. Véletle tagszámú

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis. Írásbeli tételek Készítette: Szátó Ádám 20. Tavaszi félév . Archimedes tétele. Tétel: a > 0 és b R : N : b < a. Bizoyítás: Idirekt úto tegyük fel, hogy

Részletesebben

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol

Wiener-folyamatok definiciója. A funkcionális centrális határeloszlástétel. Norbert Wienerre, a második pedig egy Brown nevű XIX. században élt angol Wieer-folyamatok defiiciója. A fukcioális cetrális határeloszlástétel. A valószíűségszámítás egyik agyo fotos fogalma a Wieer-folyamat, amelyet Browmozgásak is hívak. Az első elevezés e fogalom első matematikailag

Részletesebben

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1 . Bevezető. Oldja meg az alábbi egyeleteket: (a cos x + si x + cos x si x = (b π si x = x π 4 x 3π 4 cos x (c cos x + si x = si x (d x 6 3x = 0 (e x + x = x (f x + 5 + x = 8 (g x + + x + + x + x + =..

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

Kalkulus gyakorlat - Megoldásvázlatok

Kalkulus gyakorlat - Megoldásvázlatok Kalkulus gyakorlat - Megoldásvázlatok Fizika BSc I/. gyakorlat. Tétel Newto Leibiz. Ha f folytoos az a, b] itervallumo és F primitív függvéye f-ek, akkor b a f F b F a.. Számítsuk ki az alábbi racioális

Részletesebben

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév

Áringadozások elıadás Kvantitatív pénzügyek szakirány 2012/13 2. félév Árigadozások elıadás Kvatitatív pézügyek szakiráy 01/13. félév Heti óra elıadás + óra gyakorlat Elıadás: fıleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számokérés 50%: beadadó

Részletesebben

2. gyakorlat - Hatványsorok és Taylor-sorok

2. gyakorlat - Hatványsorok és Taylor-sorok . gyakorlat - Hatváysorok és Taylor-sorok 9. március 3.. Adjuk meg az itt szereplő sorok kovergeciasugarát és kovergeciaitervallumát! + a = + Azaz a hatváysor kovergeciasugara. Az biztos, hogy a (-,) yílt

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Andai Attila: november 13.

Andai Attila: november 13. Adai Attila: Aalízis éháy fejezete bizoyításokkal Óravázlat 006. ovember 13. Ebbe az óravázlatba az órá elhagzott defiíciókat és a bizoyított tételeket gyűjtöttem össze. i Elemi sorok és függvéyek 1 1.

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

Valószín ségszámítás (jegyzet)

Valószín ségszámítás (jegyzet) Valószí ségszámítás (jegyzet) Csiszár Vill 9. február 8.. Valószí ségi mez Két bevezet példa: ) Osztozkodási probléma (494, helyes megoldás több, mit évvel kés bb, Pascal, Fermat): Két játékos fej-írás

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZETÉS A statisztika teljese laikusokak: agy mukával gyűjtött adatok vizsgálata, abból következtetések levoása ( statistical iferece ) (Egy kicsit sok hűhó semmiért azaz Much ado about othig.) Mi is

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

Analízis I. gyakorlat

Analízis I. gyakorlat Aalízis I. gyakorlat Kocsis Albert Tihamér, Németh Adriá 06. március 4. Tartalomjegyzék Előszó.................................................... Sorozatok és sorok.............................................

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter Debrecei Egyetem Természettudomáyi és Techológiai Kar Kalkulus példatár Gselma Eszter Debrece, 08 Tartalomjegyzék. Valós számsorozatok Elméleti áttekités........................................................

Részletesebben

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is: . A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:

A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk: Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

Metrikus terek. továbbra is.

Metrikus terek. továbbra is. Metrius tere továbbra is. Defiíció: Legye X egy halmaz, d : X X R egy függvéy. Azt modju, hogy d metria (távolság), ha.. 3. 4. d d d d x, x 0, x, y 0 x y, x, y dy, x, x, z dx, y dy, z. Az X halmazt a d

Részletesebben

FELADATOK A KALKULUS C. TÁRGYHOZ

FELADATOK A KALKULUS C. TÁRGYHOZ FELADATOK A KALKULUS C. TÁRGYHOZ. HALMAZOK RELÁCIÓK FÜGGVÉNYEK. Bizoyítsuk be a halmaz-műveletek alapazoosságait! 2. Legye adott az X halmaz legye A B C X. Ha A B := (A B) (B A) akkor bizoyítsuk be hogy

Részletesebben

10.M ALGEBRA < <

10.M ALGEBRA < < 0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Empirikus szórásnégyzet

Empirikus szórásnégyzet Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Empirikus égyzet Mi lee hasoló szellembe a becslése a mita alapjá? Az átlagtól való égyzetes eltérést kée átlagoli... Empirikus égyzet

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be, 6 A primitív üggvéy létezése A primitív üggvéy létezése Kitűzött eladatok. Határozd meg az a és b valós paraméterek értékét úgy hogy az : R ae + b üggvéyek létezze primitív üggvéye! >. Az : [ + [ + olytoos

Részletesebben

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.

A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük. Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,

ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk, A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn

( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes

Részletesebben

Kevei Péter. 2013. november 22.

Kevei Péter. 2013. november 22. Valószíűségelmélet feladatok Kevei Péter 2013. ovember 22. 1 Tartalomjegyzék 1. Mérhetőség 4 2. 0 1 törvéyek 12 3. Vektorváltozók 18 4. Véletle változók traszformáltjai 28 5. Várható érték 33 6. Karakterisztikus

Részletesebben

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1. PROGRAMTERVEZŐ MATEMATIKUS SZAK II. ÉVF. III. FÉLÉV GYAKORLÓ FELADATOK AZ II. ANALÍZIS ZH-RA Primitívfüggvéy keresés. Adja meg az f függvéy egy primitívfüggvéyét: f) = 6 8 + 3 b) f) = + 3 f) = + 5 ) /

Részletesebben

hidrodinamikai határátmenet

hidrodinamikai határátmenet Véletle közegű kizárási folyamat, hidrodiamikai határátmeet Diplomamuka Írta Horváth Aja Alkalmazott matematikus szak Témavezető: Nagy Katali Egyetemi doces Differeciálegyeletek Taszék Budapesti Műszaki

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1. Határátmeet Határértékszámítás.. Tétel. (Nevezetes sorozatok) 005..5 Készítette: Dr. Toledo Rodolfo (a)... α (α > 0) (b) (c) 0 0... 0 (α > 0) α q (d) c (c > 0) ha q > = ha q = 0 ha q < diverges korlátos

Részletesebben

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.

Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel? 1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

A1 Analízis minimumkérdések szóbelire 2014

A1 Analízis minimumkérdések szóbelire 2014 A1 Aalízis miimumkérdések szóbelire 2014 Halmazelmélet és komplex számok 1. Halmaz, metszet, uió, külöbség halmaz: em defiiált alapfogalom o jelölés: A, B halmazok; a A; a em B (em defiiáljuk) o üreshalmaz:

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia

Megjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.

Részletesebben

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2 ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat! megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

Valószínűségszámítás alapjai szemléletesen

Valószínűségszámítás alapjai szemléletesen ### walszam07-jav-80.doc, ### 08.0.3., :00' http://math.ui-pao.hu/~szalkai/walszam07.pdf Valószíűségszámítás alapjai szemléletese /Kézirat, 08-0-3. / dr.szalkai Istvá Pao Egyetem, Veszprém Matematika Taszék

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

BSc Analízis I. előadásjegyzet

BSc Analízis I. előadásjegyzet BSc Aalízis I. előadásjegyzet 2009/200. őszi félév Sikolya Eszter ELTE TTK Alkalmazott Aalízis és Számításmatematikai Taszék 200. április 30. ii Tartalomjegyzék Előszó v. Bevezetés.. Logikai állítások,

Részletesebben

DISZTRIBÚCIÓK. {x R N φ(x) 0}

DISZTRIBÚCIÓK. {x R N φ(x) 0} DISZTRIBÚCIÓK. Kovergecia és folytoosság.. Emlékeztetük, hogy egy φ : R N K folytoos függvéy tartója, Supp φ a halmaz lezártja. {x R N φ(x) 0} Defiíció. Jelölje D(R N ) az R N -e értelmezett K értékű kompakt

Részletesebben

Draft version. Use at your own risk!

Draft version. Use at your own risk! BME Matematika Itézet Aalízis Taszék Adai Attila Bevezető aalízispéldák példatár éháy BSc-s órához 8 Tartalomjegyzék. Halmazalgebra. Teljes idukció 3. Relációk, függvéyek 3 4. Számosságok 6 5. A valós

Részletesebben

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány

Valószín ségszámítás 2 gyakorlat Alkalmazott matematikus szakirány Valószí ségszámítás gyakorlat Alkalmazott matematikus szakiráy Játékszabályok Az óráko részt kell vei, maximum 3-szor lehet hiáyozi. Aki többször hiáyzik, em ka gyakjegyet. 00 + x otot lehet szerezi a

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

1. Sajátérték és sajátvektor

1. Sajátérték és sajátvektor 1. Sajátérték és sajátvektor Leképezés diagoális mátrixa. Kérdés Mely bázisba lesz egy traszformáció mátrixa diagoális? A Hom(V) és b 1,...,b ilye bázis. Ha [A] b,b főátlójába λ 1,...,λ áll, akkor A(b

Részletesebben

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden Kétváltozós függvéek Defiíció: f: R R vag z f(,) Szeléltetés:,,z koordiátaredszerbe felülettel Pl z + forgási paraboloid z R ( + ) félgöb z + + forgási iperboloid (két köpeű) z + forgási iperboloid (eg

Részletesebben