A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki, hogy ha vesszük függetle és egyforma eloszlású valószíűségi változó átlagát, akkor ez az átlag agyo általáos feltételek mellett egy kostashoz tart eseté. A részletesebb tárgyalásba meg kell értei, hogy milye értelembe tartaak ezek az átlagok kostashoz, illetve hogy milye feltételeket kell teljesíteie a valószíűségi változók eloszlásáak ahhoz, hogy egy ilye kovergecia érvéyes legye. Ezekívül szereték meghatározi a limeszbe megjeleő kostas értékét is. Mit láti fogjuk ez a szám agyo általáos esetbe azo valószíűségi változók várható értékével egyelő, amelyekek az átlagát tekitettük. Függetle valószíűségi változók kovergeciájáak a fogalmát több külöböző módo defiiálhatjuk, és e defiiciók midegyike értelmes. Ebbe az előadásba a agy számok erős és gyege törvéyét ismertetem, amelyek a majdem mideütt és a sztochasztikus kovergeciával kapcsolatosak. A agy számok erős törvéye aak adja meg a szükséges és elégséges feltételét, hogy függetle, egyforma eloszlású valószíűségi változók átlagai egy valószíűséggel tartsaak egy számhoz, a agy számok gyege törvéye pedig aak, hogy ez a kovergecia sztochasztikus értelembe teljesüljö. Mit láti fogjuk mid a agy számok erős mid a agy számok gyege törvéye bizoyos mometum jellegű feltételek teljesülése eseté érvéyes. Ezek a feltételek azt követelik meg, hogy a tekitett átlagba résztvevő valószíűségi változók csak viszoylag kis valószíűséggel vegyeek fel agy értékeket. Ez összhagba va a cetrális határeloszlástételről taultakkal. A cetrális határeloszlástétel akkor érvéyes, ha teljesül a Lideberg feltétel. Ez szité olya megkötést jelet, hogy a tekitett valószíűségi változók csak kis valószíűséggel veszek fel agyo agy értékeket. Az eredméyek jobb megértése érdekébe először áttekitem az eredméyekbe megjeleő kovergecia fogalmak közötti kapcsolatot. Felidézek több korábba tault eredméyt. Ugyacsak ismertetem a agy számok erős és gyege törvéyéek olya korábba tault, egyszerűsített változatát, amelyekbe ezeket az eredméyeket a szükségesél erősebb feltételek teljesülése eseté bizoyítottam be. E bizoyítások összehasolítása az eredeti eredméyek bizoyításával érthetőbbé teszi bizoyos érvelések szerepét és bizoyos részeredméyek jeletőségét. A bizoyítások sorá éháy ömagába is érdekes eredméy is megjeleik. Ilye eredméy a Kolmogorov egyelőtleség, amely függetle valószíűségi változók részletösszegeiek maximumáról ad olya becslést, mit amilyet a Csebisev egyelőtleség ad akkor, ha csak e szuprémum utolsó tagját becsüljük. Ezekívül bebizoyítok éháy olya eredméyt, amelyek bizoyítása az itt tárgyalt módszerek segítségével törtéik. Ilye a Kolmogorov-féle három sor tétel, amely megadja aak szükséges és elégséges feltételét, hogy végtele sok függetle valószíűségi változó összege egy valószíűséggel kovergáljo. Egy másik fotos tárgyaladó eredméy az úgyevezett Kolmogorovféle ulla egy törvéy, amely arra ad magyarázatot, hogy miért találkozuk függetle valószíűségi változók tulajdoságaiak a vizsgálatáál gyakra olya eseméyekkel,
amelyekek a valószíűsége bizoyos esetekbe ulla más esetekbe egy, de sohasem valamely e két szám közötti érték. Ahhoz, hogy a agy számok erős és gyege törvéyét megfogalmazhassuk, először meg kell aduk az eze eredméyekbe haszált kovergeciák defiicióját és tisztázuk kell ezek kapcsolatát egymással. Ezekívül felidézem az eloszlásba való kovergecia fogalmát is aak érdekébe, hogy ezt is összehasolíthassuk a feti két kovergeciafogalommal. Az egy valószíűségű kovergecia defiiciója: Valószíűségi változók ξ, =, 2,..., sorozata akkor kovergál egy valószíűséggel egy ξ valószíűségi változóhoz, ha egyrészt ezek a valószíűségi változók ugyaazo az Ω, A, P valószíűségi mező vaak defiiálva, másrészt P ω: lim ξ ω = ξω =. Megjegyzés: Az egy valószíűségi kovergecia fogalmát a mértékelméletbe is haszálják, de ott azt majdem mideütt való kovergeciáak is hívják. Az agol yelvű irodalomba az almost sure covegece, almost everywhere covergece vagy covergece with probability oe kifejezések haszálatosak. A sztochasztikus kovergecia defiiciója: Valószíűségi változók ξ, =,2,..., sorozata akkor kovergál sztochasztikusa egy ξ valószíűségi változóhoz, ha egyrészt ezek a valószíűségi változók ugyaazo az Ω, A, P valószíűségi mező vaak defiiálva, másrészt mide ε > 0 számra lim P ξ ω ξω > ε = 0. Megjegyzés: A mértékelméletbe előforduló kifejezések közül a mértékbe való kovergecia felel meg eek a fogalomak. Az egyetle apró külöbség a mértékelmélet és valószíűségszámítás szóhaszálata között abba va, hogy a mértékelméletbe véges, de em feltétleül valószíűségi azaz egyre ormált mértékeket tekiteek. Az eloszlásba való kovergecia defiiciója: Valószíűségi változók ξ, =, 2,..., sorozata akkor kovergál eloszlásba egy Fu eloszlásfüggvéyhez vagy az eze eloszlásfüggvéy által meghatározott eloszláshoz, ha lim Pξ < u = Fu mide olya u számra, ahol az F eloszlásfüggvéy függvéy folytoos. Azt modjuk, hogy a ξ, =,2,..., valószíűségi változók sorozata eloszlásba kovergál egy ξ valószíűségi változóhoz, ha ez a sorozat eloszlásba kovergál az Fu = Pξ < u eloszlásfüggvéyhez. A következő kapcsolat érvéyes a feti kovergeciafogalmak között. Egy valószíűségi kovergecia Sztochasztikus kovergecia Eloszlásba való kovergecia. 2
Először megtárgyalom az egy valószíűségi és sztochasztikus kovergecia kapcsolatát. Ha ξ ω ξω egy valószíűséggel, akkor defiiálva az { } A = A ε = ω: sup ξ k ω ξω < ε k halmazokat kapjuk, hogy az egymásba skatulyázott A halmazokra, azaz A ω A 2, P A =. Ezért lim PA =. Mivel {ω: ξ ω ξω < = ε} A, P ξ ω ξω < ε, azaz P ξ ω ξω ε 0, ha. Ez azt jeleti, hogy az egy valószíűségű kovergeciából következik a sztochasztikus kovergecia. Megfogalmazom az alábbi állítást, amelyet em ehéz bebizoyítai. De mivel em lesz rá később szükségük, azért elhagyom a bizoyítást. Állítás: Valószíűségi változók ξ, =,2,..., sorozata, akkor és csak akkor kovergál egy valószíűséggel egy ξ valószíűségi változóhoz, ha az η = sup ξ k ξ valószíűségi k változók sorozata sztochasztikusa kovergál ullához, azaz mide ε > 0 számra lim P sup ξ k ξ > ε = 0. k Lássuk példát arra, hogy lehetséges olya ξ, =,2,..., és ξ valószíűségi változókat kostruáli, amelyekre a ξ, =,2,..., sorozat sztochasztikusa tart ξ- hez, de a ξ sorozat em kovergál egy valószíűséggel a ξ valószíűségi változóhoz. Tekitsük a következő Ω, A,P valószíűségi mezőt: Ω a [0,] itervallum, A a Borel mérhető halmazok σ-algebrája a [0,] itervallumo, a P valószíűségi mérték a Lebesgue mérték. Legye ξ x = { ha x [ 2 k 2 k, + 2 k 2 k] 0 ha x / [ 2 k 2 k, + 2 k 2 k] akkor ha 2 k < 2 k+, k =,2,..., és ξx = 0 mide 0 x számra. Ekkor P ξ ξ > ε = 2 k mide > ε > 0 számra, ha 2 k < 2 k+. Tehát a ξ, =,2,..., sorozat sztochasztikusa kovergál a ξ valószíűségi változóhoz. Viszot mivel lim sup ξ x = mide 0 x számra, ezért a ξ sorozat em kovergál egy valószíűséggel a ξ valószíűségi változóhoz. Másrészt tekitsük egy ξ valószíűségi változót és ξ, =,2,..., valószíűségi változók olya sorozatát, amelyre P ξ ξ > ε < mide ε > 0 számra. Ekkor = 3
a Borel Catelli lemmából következik, hogy a ξ sorozat egy valószíűséggel kovergál a ξ valószíűségi változóhoz. Ez azt jeleti, hogy egyrészt mit az előző példa mutatja a lim P ξ ξ > ε reláció teljesülése mide ε > 0 számra elegedő a sztochasztikus, de em elegedő az egy valószíűséggel való kovergeciához. Másrészt az erősebb P ξ ξ > ε < reláció teljesülése mide ε > 0 számra elegedő az egy = valószíűségi kovergeciához is. A sztochasztikus kovergecia és eloszlásba való kovergecia közötti kapcsolatra érvéyesek a következő állítások.. álllítás sztochasztikus és eloszlásba való kovergecia kapcsolatáról. Ha valamely ξ, =,2,..., valószíűségi változók sztochasztikusa kovergálak egy ξ valószíűségi változóhoz, akkor ezek a ξ valószíűségi változók eloszlásba is kovergálak ehhez a ξ valószíűségi változóhoz. Idoklás: Legye x folytoossági potja a ξ valószíűségi változó F eloszlásfüggvéyéek, és rögzítve egy ε > 0 számot válasszuk olya δ = δε > 0 számot, melyre Fx ε 2 Fx δ Fx + δ < Fx + ε 2. Ezutá válasszuk olya 0 = 0 ε,δ számot, amelyre P ξ ξ δ < ε 2. Ekkor Pξ < x < Pξ < x + δ + P ξ ξ δ Fx + δ + ε 2 Fx + ε. Másrészt Pξ > x < Pξ > x δ + P ξ ξ δ Fx δ + ε 2 Fx + ε, ha 0. Ie Fx ε Pξ < x Fx + ε 0 eseté. Mivel mide ε > 0 eseté érvéyes egy ilye becslés, ie következik a megfogalmazott állítás. Természetese lehetséges, hogy ξ valószíűségi változók egy sorozata eloszlásba kovergál egy ξ valószíűségi változóhoz, de sztochasztikusa em kovergál. Erre példa az az eset, amikor a ξ valószíűségi változók függetleek, és azoos eloszlásúak. Ekkor az eloszlásba való kovergecia yílvá teljesül, de ha a ξ valószíűségi változók eloszlása em elfajult, azaz a ξ valószíűségi változók em egyelőek egy kostassal egy valószíűséggel, akkor e valószíűségi változók em kovergálak sztochasztikusa. Viszot abba az esetbe, ha a limesz kostas akkor igaz a következő állítás: 2. állítás sztochasztikus és eloszlásba való kovergecia kapcsolatáról. Ha valamely ξ, =,2,..., valószíűségi változók egy a kostashoz kovergálak eloszlásba, azaz egy olya valószíűségi változóhoz, amelyek értéke egy valószíűséggel ez az a kostas, akkor a ξ, =,2,..., valószíűségi változók sorozata sztochasztikusa is kovergál ehhez az a kostashoz. Idoklás: A limeszkét megjeleő valószíűségi változó eloszlásfüggvéye az az Fx eloszlás, amelyre Fx = 0, ha x a, és Fx = ha x > a. Az Fx függvéyek az x = a potot kivéve mide pot folytoossági potja. Ezért mide ε > 0 számra lim Pξ < a + ε =, lim Pξ < a ε = 0. Ie következik, hogy lim P ξ ξ < ε = lim P ξ a < ε = lim Pξ < a + ε Pξ a ε =. Ie következik a 2. állítás eredméye. 4
Ezutá megfogalmazom potosa, hogy mikor modjuk, hogy teljesül a agy számok gyege és erős törvéye, és megfogalmazok két tételt, amelyek megadják e két törvéy teljesüléséek a szükséges és elégséges feltételét. Ezt a két eredméyt összehasolítom. Nagy számok gyege törvéyéek a defiiciója. Legye ξ, =,2,..., függetle, egyforma eloszlású valószíűségi változók sorozata egy valószíűségi mező, S = ξ k, k =,2,... Azt modjuk, hogy ezek a ξ, =,2,..., valószíűségi változók teljesítik a agy számok gyege törvéyét, ha létezik olya E szám, amelyre teljesül, hogy az S, =,2,..., valószíűségi változók sztochasztikusa kovergálak az E számhoz, azaz ahhoz a valószíűségi változóhoz, amely egy valószíűséggel az E kostassal egyelő. Nagy számok erős törvéyéek a defiiciója. Legye ξ, =,2,..., függetle, egyforma eloszlású valószíűségi változók sorozata egy valószíűségi mező, S = ξ k, k =,2,... Azt modjuk, hogy ezek a ξ, =,2,..., valószíűségi változók teljesítik a agy számok erős törvéyét, ha létezik olya E szám, melyre teljesül, hogy az S, =, 2,..., valószíűségi változók egy valószíűséggel kovergálak az E számhoz, azaz ahhoz a valószíűségi változóhoz, amely egy valószíűséggel az E kostassal egyelő. Tétel a agy számok erős törvéyéről. Legye ξ, ξ 2,..., függetle, egyforma eloszlású valószíűségi változók sorozata, és defiiáljuk e sorozat S = ξ k, =,2,..., részletösszegeit. Ha E ξ =, akkor az S ω, =,2,..., sorozat egy valószíűséggel diverges. Ha E ξ <, akkor a ξ,ξ 2,... sorozat teljesíti a agy számok erős törvéyét E = Eξ kostassal, azaz ebbe az esetbe S ω lim = Eξ majdem mide ω Ω-ra. Tétel a agy számok gyege törvéyéről. Legye ξ k, k =,2,..., függetle, egyforma eloszlású valószíűségi változók sorozata valamely F eloszlásfüggvéyel. Eze valószíűségi változók ξ k, =,2,..., átlagai akkor és csak akkor teljesítik a agy számok gyege törvéyét, azaz akkor és csak akkor kovergálak sztochasztikusa esetébe valamely a, < a <, számhoz, ha teljesülek a u relációk. A lim u u számmal ahová az u lim x[f x + Fx] = 0, és lim xf dx = a x u u xf dx = a feltételbe szereplő a szám, megegyezik azzal az a ξ k, =,2,..., átlagok kovergálak. 5
A feti két tétel összehasolításából következik, hogy ha teljesülek a agy számok erős törvéyéről szóló tétel feltételei, akkor a agy számok gyege törvéyéről szóló tétel feltételeiek is teljesüliük kell. Lássuk be közvetleül ezt az állítást. A Lebesgue tételből és az E ξ < relációból következik, hogy lim xf dx = u xf dx = Eξ. Másrészt x Fx uf du, és lim uf du = 0 x x x szité a Lebesgue tétel szerit. Tehát lim x Fx = 0, ha E ξ <. Hasolóa x lim xf x = 0 ebbe az esetbe. x Aak érdekébe, hogy a agy számok gyege és erős törvéyéek a kapcsolatát jobba megértsük tekitsük éháy példát.. példa. Tekitsük függetle, egyforma eloszlású valószíűségi változók olya ξ,ξ 2,..., sorozatát, amelyekek va sűrűségfüggvéyük, és az fx = C x α, ha x, fx = 0, ha x < alakú, ahol α >, és a C = Cα kostas úgy va választva, hogy fx dx =, azaz fx sűrűségfüggvéy. Ha α > 2, akkor E ξ = x fx dx <, és érvéyes a agy számok erős törvéye. Ha α = 2, akkor E ξ = x fx dx =, és a agy számok erős törvéye em teljesül. Sőt, ebbe az esetbe Fx = C x x dx = Cx, ha x >, ezért lim xfx = C > 0, és a agy számok gyege 2 x törvéye sem teljesül. Ha < α < 2, akkor szité sem a agy számok erős sem a agy számok gyege törvéye em teljesül. 2. példa. Tekitsük függetle, egyforma, Cauchy eloszlású ξ,ξ 2,..., valószíűségi változókat, azaz olya valószíűségi változókat, amelyekek fx = π +x, < x < 2, alakú sűrűségfüggvéyük va. Az első példa érvelése az α = 2 esetbe mutatja, hogy ezek a valószíűségi változók sem teljesítik a agy számok gyege törvéyét. Sőt, mit később láti fogjuk, eek a sorozatak a következő evezetes tulajdosága is megva. E valószíűségi változók ξ átlagaiak az eloszlása mide számra ugyaaz a Cauchy eloszlás, mit a ξ valószíűségi változó eloszlása. 3. példa: Legye ξ k, k =,2,..., függetle, egyforma eloszlású valószíűségi változók sorozata, az fu =, ha u > 3, fu = 0, ha u 3, képlettel megadott C u 2 log u C du u 2 log u sűrűségfüggvéyel. A C kostast az = reláció határozza meg. u >3 Defiiáljuk az S = m ξ k, =,2,..., részletösszegeket. Ekkor E ξ =, ezért ezek a valószíűségi változók em teljesítik a agy számok erős törvéyét. Másrészt az S átlagok sztochasztikusa tartaak ullához, azaz mide ε > 0 számra P S > ε 0, ha. Ez azt jeleti, hogy ez a sorozat teljesíti a agy számok gyege törvéyét. A 3. példa idoklása: E valószíűségi változókra E ξ = ufu du = 2C 3 u log u du =, mert x 3 u log u du = [log log u]x 3, és lim log log x =. Ez például oa látható, x hogy az x log x primitív függvéye a log log x függvéy. Ez azt jeleti, hogy ez a sorozat em teljesíti a agy számok erős törvéyét. Mivel a ξ valószíűségi változók 6 u u
sűrűségfüggvéye páros függvéy, aak megmutatása érdekébe, hogy az S = ξ k valószíűségi változók sztochasztikusa tartaak ullához a agy számok gyege törvéyéről szóló tétel alapjá elég megmutati azt, hogy lim x[ Fx + F x] = lim x x x x 2C u 2 du = 0. log log u a 2C u 2 log log u Mivel mide ε > 0 számhoz létezik olya x = xε küszöbidex, amelyre ε u, ha u x, ezért x 2C 2 x u 2 log log u du εx x u 2 du = ε, ha x xε. Mivel ez az egyelőtleség mide ε > 0 számra érvéyes, ie következik az a formulába megfogalmazott reláció. Később, a gyakorlato megtárgyalom, hogya lehet a 3. példa állítását közvetleül, a agy számok gyege törvéyéről szóló tétel felhaszálása élkül bebizoyítai. A feti példák hasolítottak egymáshoz abba, hogy midegyikbe a sűrűségfüggvéy a plusz-miusz végtele köryezetébe aszimptotikusa úgy viselkedett, mit u 2 szorozva egy logaritmus hatváy redű korrekciós taggal. E korrekciós tag agysága befolyásolta, hogy bízoyos itegrálok kovergesek-e vagy divergesek, és ettől függött, hogy teljesül-e a agy számok erős vagy gyege törvéye. Láttuk, hogy a agy számok külöböző törvéyeit kimodó tételekbe és példákba az játszott fotos szerepet, hogy az összeadadók eloszlásfüggvéyei hogya viselkedek a ± köryezetébe, milye gyorsa tartaak ott az eloszlásfüggvéyek egyhez illetve ullához. Ettől függ ugyais, hogy az ott szereplő itegrálok kovergesek vagy divergesek. Rátérek a agy számok erős törvéyéek a bizoyítására. A bizoyításba haszos az alábbi lemma, amely azt a tulajdoságot, hogy egy valószíűségi változó abszolut értékéek a várható értéke véges ekvivales módo fejezi ki a valószíűségi változó eloszlásfüggvéyéek a segítségével. Lemma aak jellemzéséről, hogy egy valószíűségi változó abszolut értékéek a várható értéke mikor véges. Egy ξ valószíűségi változó abszolut értékéek E ξ várható értéke akkor és csak akkor véges, ha P ξ > <. A lemma bizoyítása. Vezessük be a következő ξ valószíűségi változót: ξ = j, ha j < ξ j, j =,2,... Ekkor P0 ξ ξ =, ezért a ξ és ξ valószíűségi változók várható értéke egyszerre véges vagy végtele. Másrészt E ξ = jp ξ = j = jpj < ξ j, ezért eek az összegek a kovergeciáját vagy divergeciáját j= kell vizsgáluk. Felírhatjuk, hogy jpj < ξ j = jp ξ > j P ξ > j. j= 7 = j= j=
Redezzük át a feti összeget a következő módo. Tetszőleges N számra N jpj < ξ j = j= = N j= N jp ξ > j P ξ > j j= P ξ > jj + j NP ξ > N = N j= P ξ > j NP ξ > N. Megmutatom, hogy N határátmeettel a feti relációból következik a Lemma állítása. Valóba, ha E ξ <, akkor választható egy K < szám úgy, hogy tetszőleges N egész számra NP ξ > N j=n+ jpj < ξ j jpj < ξ j K. Ebbe a becslésbe a K kostas em függ az N j= számtól. Így az előző becslés alapjá az E ξ < esetbe létezek olya uiverzális L és K számok, amelyekre L N j= P ξ > j K mide N =,2,... számra, és ie P ξ > j <. és lim j= Ha E ξ =, akkor N j= N j= N= P ξ > j =, mert ekkor P ξ > j N jpj < ξ j =. N jpj < ξ j, j= Megjegyzés: Az összegek a feti számolásba törtét átredezését Abel-féle átredezések evezik, és ez sokszor haszos. Az Abel-féle átredezés egyébkét az itegrálszámításba alkalmazott parciális itegrálás diszkrét megfelelője. Megjegyzem, hogy eek a feti lemmáak igaz a következő általáosítása, amelyet hasolóa lehet bizoyítai. De mivel erre em lesz szükségük, eek bizoyítását elhagyom. A várható érték létezéséről szóló lemma általáosítása. Egy ξ valószíűségi változó akkor és csak akkor teljesíti az E ξ r < mometum feltételt valamely r számra, ha r P ξ > <. = 8
A agy számok erős törvéyéek először a egatív felét bizoyítom be. A agy számok erős törvéyéről szóló tételek ezt a részét az alábbi lemma tartalmazza. Lemma függetle, egyforma eloszlású em itegrálható valószíűségi változók átlagáak a viselkedéséről. Ha ξ,ξ 2,... függetle, egyforma eloszlású valószíűségi változók, és E ξ =, akkor az S ω = ξ k ω, =,2,..., átlagok sorozata majdem mide ω Ω elemi eseméyre diverges. A lemma bizoyítása. Felhaszájuk azt a lemmát, amely azt jellemzi, hogy egy valószíűségi változó abszolut értékéek a várható értéke mikor véges. Eze eredméy, az E ξ = reláció és a ξ j valószíűségi változók azoos eloszlása miatt érvéyes a P ξ > = P ξ > = reláció. A ξ valószíűségi változók = = függetlesége miatt az {ω: ξ ω > } eseméyek is függetleek. Ezért a Borel Catelli lemmából következik, hogy majdem mide ω Ω-ra ξ ω > végtele sok az ω elemi eseméytől függő idexre. Tekitsük egy olya ω Ω elemi S ω eseméyt, amelyre lim az ω elemi eseméytől. Ilye ω potokba a lim lim S ω S ω = lim = a valamilye véges a számra. Ez az a szám függhet ξ ω ulla valószíűségi halmazo teljesülhet. S ω = a reláció is teljesül. Ezért = 0. Ez a reláció viszot, mit láttuk, csak egy A agy számok erős törvéyéről szóló tétel kovergecia részéek bizoyítása megfelelő becslések alkalmazását igéyli. Aak érdekébe, hogy a bizoyításba felmerülő problémákat és godolatokat jobba megértsük, felidézem e tétel azo gyegébb változatáak a bizoyítását, amelyet a bevezető valószíűségszámítás előadáso ismertettem. j= A agy számok erős törvéyéről szóló tétel egy gyegébb változata. Legye ξ,ξ 2,..., függetle, egyforma eloszlású valószíűségi változók sorozata egy Ω, A,P valószíűségi mező, amelyekre teljesül az Eξ 4 < feltétel, és vezessük be az S = ξ j valószíűségi változókat. Ekkor az S ω valószíűségi változók majdem mide ω Ω-ra kovergálak az Eξ, számhoz, azaz eze valószíűségi változók sorozata teljesíti a agy számok erős törvéyét az E = Eξ kostassal. A tétel bizoyítása. Bevezetve a ξ j = ξ j Eξ j, j =,2,..., valószíűségi változókat olya függetle, egyforma eloszlású valószíűségi változókat kapuk, amelyekek a várható értéke ulla, és E ξ 4 < 0. Ezekívül ξ j = ξ j + Eξ. Ezért elég beláti a tétel állítását ulla várható értékű valószíűségi változók átlagára. j= Tekitsük ezt az esetet, és számoljuk ki az E S j= 4 = 4 Eξ + + ξ 4 9
várható értékeket. ES 4 = Eξ + + ξ 4 = Eξk 4 + 6 + 2 j<k k<l j j k, j l Eξ 2 jeξ 2 k + 4 EξjEξ 2 k Eξ l } {{ } =0 j,k j k + 24 Eξ j Eξ k Eξ l Eξ m } {{ } j<k<l<m =0 = Eξ 4 + 3 Eξ 2 2, EξjEξ 3 k } {{ } =0 ezért P S > ε = P = S 4 > ε 4 Eξ4 + 3 Eξ 2 2 ε 4 4 ε 4 E S = ES4 4 ε 4 cost. 2 ε 4. Ebből a becslésből következik, hogy = P S > ε < mide ε > 0 számra, és a Borel Catelli lemma köyebbik feléből következik, hogy mide ε > 0 számra és majdem mide ω Ω potba teljesül, hogy ε, ha 0 ω. Alkalmazva ezt a relációt mide ε = k törvéyét. S ω számra k =,2,..., megkapjuk a agy számok erős A bizoyításba függetle, ulla várható értékű egyforma eloszlású valószíűségi változók átlagáak a egyedik mometumára adtuk jó becslést, és ebből a becslésből következett a agy számok törvéye. Ahhoz azoba, hogy ezt a becslést végre tudjuk hajtai, szükség volt arra a feltételre, hogy a tekitett valószíűségi változókak létezik egyedik mometuma. Felmerül a kérdés, hogya lehet a feti érvelést úgy módosítai, hogy az megadja a agy számok törvéyét jóval gyegébb mometum feltételek eseté is. Ha a tekitett valószíűségi változókak létezik második mometuma, de eél erősebb mometumfeltételt em teszük fel, akkor az előző módszer megfelelője a Csebisev egyelőtleség alkalmazása lee függetle, egyforma eloszlású valószíűségi változók átlagára. Felidézem a Csebisev egyelőtleséget. Csebisev egyelőtleség: Ha egy ξ valószíűségi változó második mometuma Eξ 2 = m 2, akkor tetszőleges x > 0 számra P ξ > x m 2 x 2. 0
Ie következik, ha ezt az egyelőtleséget a ξ = ξ Eξ valószíűségi változóra alkalmazzuk, hogy P ξ Eξ > x Var ξ x 2, Függetle, ulla várható értékű és véges második mometummal redelkező ξ, ξ 2,..., valószíűségi változók S = ξ j összegéek eloszlására a Csebisev egyelőtleség a következő becslést adja. j= P S > x = P j= ξ j > x Var S x 2 = Var ξ j j= x 2 Ha függetle, egyforma eloszlású ulla várható értékű valószíűségi változók átlagát tekitjük, akkor a feti egyelőtleség a P S > ε Eξj 2 j= ε 2 2 = Eξ2 ε 2 becslést adja. Ebből a becslésből következik a agy számok gyege törvéye, de em következik a agy számok erős törvéye. Viszot az alább ismertetedő Kolmogorov egyelőtleség segítségével, amely tekithető a függetle valószíűségi változók összegéek eloszlásáról szóló Csebisev egyelőtleség élesítéséek is, be lehet bizoyítai a agy számok törvéyét az általáos esetbe. Ismertetem ezt az eredméyt. Kolmogorov egyelőtleség. Legyeek ξ,...,ξ függetle, em feltétleül egyforma eloszlású valószíűségi változók, Eξ k = 0, Eξk 2 = Varξ k = σk 2, S k = k ξ p, k =,...,. Ekkor mide x > 0-ra. P sup k S k x ES2 x 2 = σk 2 x 2 Tekitsük függetle, ulla várható értékű, véges második mometummal redelkező valószíűségi változók sorozatát, és legye S az első tag részletösszege. Nyilvávaló, hogy sup S k ω S ω. Viszot vaak a valószíűségszámításak olya eredmé- k yei, amelyek azt fejezik ki, hogy a tekitett sup k p= S k ω kifejezés em sokkal agyobb, mit az ebbe a szuprémumba szereplő utolsó S ω tag. Ezekbe az eredméyekbe aak a valószíűségét hasolítják össze, hogy e két kifejezés értéke agyobb, mit valamilye x > 0 szám, és ezek bizoyos értelembe azoos agyságredűek.
A Kolmogorov egyelőtleség is tekithető ilye jellegű eredméyek. Ez az egyelőtleség ugyaazt a felső becslést adja a P sup S k ω > x valószíűségre, mit k amit a Csebisev egyelőtleség ad a P S ω > x valószíűségre. A Kolmogorov egyelőtleség bizoyítása előtt megmutatom, hogya lehet eze egyelőtleség és az alább megfogalmazott em valószíűségszámítás jellegű eredméyt tartalmazó Kroecker lemma segítségével bebizoyítai a agy számok erős törvéyét az általáos esetbe. A Kroecker lemma bizoyítását is későbbre halasztom. Kroecker lemma: Ha az a és q, =,2,..., valós számokak olya sorozatai, amelyekre a összeg koverges, a q sorozat mooto ő és lim q =, akkor = a k q k = 0. lim q Érdemes a Kroecker lemma következméyekét megfogalmazi aak alábbi speciális esetét, amelyet a = x és q = választással kapuk. Kroecker lemma következméye. Legye x, =,2,..., valós számok olya sorozata, amelyre a x összeg koverges. Ekkor lim x k = 0. = A agy számok erős törvéyét a feti eredméyek segítségével fogom bebizoyítai az általáos esetbe. A bizoyításba alkalmas csokítást foguk alkalmazi, amely lehetővé teszi, hogy véges második mometummal redelkező valószíűségi változókkal dolgozzuk. A agy számok törvéyéről szóló tétel koverges részéek a bizoyítása a feti eredméyek segítségével. Azt kell megmutati, hogy ameyibe ξ,ξ 2,..., függetle, egyforma eloszlású valószíűségi változók, és E ξ <, akkor Eξ k ω Eξ valószíűséggel. Bevezetve a ξ = ξ Eξ, =,2,..., valószíűségi változókat em ehéz beláti, hogy az állítást elegedő beláti ulla várható értékű valószíűségi változók átlagára. Ezért a továbbiakba felteszem, hogy Eξ = 0. Vezessük be a ξ valószíűségi változó ξ = ξ + ξ, ξ = ξ I ξ, ξ = ξ I ξ > alakú felbotását, ahol IA az A halmaz idikátorfüggvéyét jelöli. Felhaszálva a lemmát aak jellemzéséről, hogy egy valószíűségi változó abszolut értékéek a várható értéke mikor véges kapjuk, hogy Pξ k 0 = P ξ k > k <. Ezért a Borel Catelli lemma alapjá egy valószíűséggel csak véges sok k idexre teljesül a ξ k ω 0 reláció, és ξ k ω 0 egy valószíűséggel. A tétel bizoyításához 2
azt kell beláti, hogy a Ezelőtt azt mutatom meg, hogy Eξ k = ξ k ω 0 egy valószíűséggel reláció szité teljesül. Eξ k Eξ k ω 0. Valóba, E ξ I ξ k 0, ha, mert az E ξ < relációból következik, hogy E ξ I ξ k 0, ha k. Eze össszefüggés alapjá a tétel bizoyításához azt kell igazoli, hogy ξ kω Eξ kω 0 egy valószíűséggel. Eek érdekébe először azt mutatom meg, hogy k 2 Var ξ k Eze állítás igazolásáak céljából írjuk fel az k 2 Eξ 2 k <. k 2 Eξ 2 k k 2 j 2 Pj ξ k < j = k 2 j= k j 2 Pj ξ < j j= egyelőtleséget, és összegezzük ezt mide k =, 2,... idexre. Azt kapjuk, hogy k 2 Eξ 2 k k 2 amit állítottam. cost. k j 2 Pj ξ < j = j= j 2 Pj ξ < j j= jpj ξ < j cost.e ξ + <, j= k 2 k=j Az előző egyelőtleség és a Kolmogorov egyelőtleség segítségével belátom, hogy a ξ k ω Eξ k ω k végtele összeg valószíűséggel koverges. b 3
Ehhez elég azt megmutati, hogy a T ω = ξ k ω Eξ k ω k, =,2,..., sorozat egy valószíűséggel Cauchy sorozat. Viszot a Kolmogorov egyelőtleség alapjá P sup T k T > ε = lim P sup T k T > ε k< N k<n = lim N P ε 2 j= mide -re és ε > 0-ra. Ezért P sup k<n k j ξ j Eξ j j= > ε j 2 Eξ 2 j j 2 Eξ j Eξ j 2 ε 2 sup k,l< T k ω T l ω > 2ε P + P sup T l ω T ω > ε l< Vezessük be az A = A ε = {ω: sup k,l< j= sup T k ω T ω > ε k< 2 ε 2 j= j 2 Eξ 2 j. T k ω T l ω > 2ε}, =,2,... halma- zokat. Mivel lim j Eξ 2 2 j = 0, az utolsó becslésből következik, hogy lim PA = j= 0. Mivel az A halmazok egymásba skatulyázottak, A A 2 A 3 ezért ez a reláció azt jeleti, hogy majdem mide ω-hoz létezik olya = ω, ε idex, amelyre ω / A, azaz T k ω T l ω 2ε. Mivel ez mide ε > 0 számra igaz, sup k,l< ie következik, hogy a T ω sorozat Cauchy sorozat majdem mide ω Ω elemi eseméyre, és a b reláció érvéyes. A Kroecker lemma következméye és a b reláció alapjá ξ k Eξ k 0 egy valószíűséggel. A tétel bizoyítását befejeztük. Be kell még bizoyítai a Kolmogorov egyelőtleséget és a Kroecker lemmát. A Kolmogorov egyelőtleség bizoyítása: Defiiáljuk a τω = mi{k: k ; S k ω x} valószíűségi változót. τω = ha S k ω < x mide k -re. Azt állítom, hogy ES 2 τω ES2. c Az utolsó egyelőtleség és a Csebisev egyelőtleség alapjá P max S k > x = P S τω > x ES2 τω k x 2 ES2 x 2, 4
és ez a Kolmogorov egyelőtleség. A kívát egyelőtleség bebizoyításáak érdekébe vegyük észre, hogy ES 2 ESτω 2 = ES S k S S k + 2S k I{τω = k} = ES S k 2 I{τω = k} + 2 ES S k S k I{τω = k}. Mivel az S S k és S k I{τω = k} valószíűségi változók függetleek, az S S k a ξ l, l = k +,...,, az S k I{τω = k} az ξ l, l =,...,k valószíűségi változóktól függ, és ES S k = 0, ezért ES S k S k I{τω = k} = ES S k ES k I{τω = k} = 0. Ie következik, hogy a d azoosság jobboldaláak a második tagja ulla. Mivel az első tag egy em egatív valószíűségi változók várható értékéek az összege, ezért a d azoosságból következik az c reláció. A Kolmogorov egyelőtleséget bebizoyítottuk. A Kroecker lemma bizoyítása. A bizoyítás az u. Abel féle átredezés módszeré alapul. Vezessük be az s = a k meyiségeket. Legye q 0 = 0. Ekkor q a k q k = q k= s k s k+ q k = s + q + q s k q k q k. Rögzítve egy tetszőlegese kis ε > 0 számot válasszuk egy olya N = Nε küszöbidexet, amelyre igaz, hogy s k < ε ha k > N. Ez lehetséges, mert lim s = 0. Mivel q k q k 0 mide k idexre a q k sorozat mootoitása miatt, ezért q k=n Másrészt, mivel lim q = és lim s = 0 lim s k q k q k εq q N ε. q q s + q + N s k q k q k = 0. d A feti becslésekből következik, hogy lim sup q a k q k ε. 5
Mivel ez az állítás tetszőleges ε > 0-ra igaz, ie következik a Kroecker lemma. A agy számok erős törvéyéek bizoyításáak fotos része volt azo b formulába megfogalmazott állítás igazolása a Kolmogorov egyelőtleség segítségével, amely szerit a ξ k Eξ k k összeg koverges. Természetes módo felmerül az az általáosabb kérdés, hogy végtele sok függetle valószíűségi változó összege mikor koverges. A Kolmogorov egyelőtleség segítségével erre a kérdésre is kielégítő választ lehet adi. Ismertetek két ilye jellegű eredméyt. Az első eredméy, amelyet Kolmogorov-féle egy-sor tételek is evezek az irodalomba egy gyakra jól haszálható, egyszerűe elleőrizhető feltételt ad a kovergecia teljesülésére. A második, az irodalomba Kolmogorov-féle három sor tételek hívott eredméy, amely eek élesítése, megadja aak szükséges és elégséges feltételét, hogy végtele sok függetle valószíűségi változó összege egy valószíűséggel kovergáljo. Ismertetem ezt a két eredméyt. Kolmogorov-féle egy sor tétel. Legyeek ξ,ξ 2,..., függetle valószíűségi változók, amelyekek létezek véges Eξk 2 < második mometumai mide k =,2,... számra, és Eξ k = 0 mide k =,2,... idexre. Ha Var ξ k <, akkor a ξ k sorozat egy valószíűséggel kovergál. Kolmogorov-féle három sor tétel. Legyeek ξ,ξ 2,..., függetle valószíűségi változók. Rögzítsük valamely C > 0 számot, és defiiáljuk a ξ k = ξ ki{ ξ k < C} valószíűségi változókat, k =,2,..., ahol IA az A halmaz idikátorfüggvéye. A ξ k véletle összeg akkor és csak akkor koverges egy valószíűséggel, ha a ξ k, k =,2,..., valószíűségi változók sorozata teljesíti a következő feltételeket: i Pξ k ξ k = P ξ k C <, ii A iii Eξ k Var ξ k <. összeg koverges.. megjegyzés: A Kolmogorov-féle három sor tétel eredméye speciálisa azt is jeleti, hogy ha a bee szereplő i, ii és iii feltétel teljesül valamilye C > 0 számra, akkor az mide C > 0 számra teljesül. Ezt em ehéz közvetleül beláti, de eek bizoyításától eltekitek. Viszot megmutatom, hogy ameyibe függetle valószíűségi változók sorozata teljesíti a Kolmogorov-féle egy sor tétel feltételeit, akkor teljesíti a Kolmogorov-féle három sor tétel feltételeit is. Ez speciálisa azt is jeleti, hogy a Kolmogorov-féle egy sor tétel bizoyítását elhagyhatjuk, elég a Kolmogorov-féle három sor tételt bebizoyítai. Ha függetle ξ,ξ 2,..., valószíűségi változók sorozata teljesíti a Kolmogorov-féle egy sor tételét, azaz Eξk 2 <, Eξ k = 0 mide k =,2,... idexre, és Eξk 2 <, 6
akkor ezek a valószíűségi változók teljesítik a Kolmogorov-féle három sor tétel feltételeit is. Az i feltétel teljesül, mert a Csebisev egyelőtleség alapjá Pξ k ξ k = P ξ k C C Eξ 2 2 k, ezért Pξ k ξ k = C Eξ 2 k 2 <. Érvéyes a ii feltétel alábbi élesebb változata is: Eξ k <. Valóba, mivel Eξ k = 0, ezért Eξ k = Eξ ki ξ k > C C Eξ2 k I ξ k > C C Eξ2 k, és ie Eξ k C Eξk 2 <. Végül a iii reláció is teljesül, mert Var ξ k Eξk 2 <. 2. megjegyzés: A Kolomogorov-féle három sor tétel aak adja meg a szükséges és elégséges feltételét, hogy függetle valószíűségi változók összege egy valószíűséggel kovergáljo. Érdemes megjegyezi, hogy ameyibe e feltételek valamelyike em teljesül, és a tekitett összeg em kovergál egy valószíűséggel, akkor az csak ulla valószíűséggel kovergálhat. Közbülső eset icse. Tehát em lehetséges megadi például olya függetle valószíűségi változókat, amelyek összege modjuk /2 valószíűséggel kovergál és /2 valószíűséggel divergál. Ez következik a valószíűségszámítás egyik alapvető eredméyéből, az úgyevezett 0 törvéyből, amelyet a három sor tétel bizoyítása utá fogok tárgyali. A Kolmogorov-féle három sor tételek itt csak az elégséges részét bizoyítom be, a feltételek szükségességéek bizoyítását a kiegészítésbe teszem meg. Eek az az oka, hogy egyrészt alkalmazásokba az elégségesség a Tétel fotos része, másrészt a szükségesség bizoyítása az ittei tárgyalástól eltérő módszert igéyel. Láttuk ugyais, hogya lehet függetle valószíűségi változók szőráségyzeteiek az ismeretébe e változók összegeit megbecsüli. De, ha a függetle valószíűségi változók összegéek a kovergeciájából a valószíűségi változók szóráségyzeteiek összegére akaruk következteti, akkor ez új godolatokat igéyel. A Kolmogorov-féle három sor tétel elégségesség részéek bizoyítása. Azt akarjuk megmutati, hogy ameyibe a függetle ξ valószíűségi változók teljesítik az i, ii és iii feltételeket, akkor a T = ξ k ω, =,2,..., valószíűségi változók egy valószíűséggel kovergesek. Hasolóa érvelve, mit amikor a agy számok erős törvéyéek a kovergecia részét bizoyítottuk, megmutathatjuk, hogy elég beláti azt, hogy tetszőleges ε > 0 számra lim P Vegyük észre, hogy m P sup ξ k > ε m k= k= m sup ξ k > ε m k= 0. Pξ k ξ k m + P sup 7 m k= ξ k > ε
továbbá k= Pξ k ξ k m + P sup ξ k Eξ k > ε sup m k= m k= m k= m Eξ k Pξ k ξ k 0 eseté az i feltétel miatt, és sup m ha > ε a ii feltétel miatt. Végül a Kolmogorov egyelőtleség alapjá m P sup ξ k Eξ k > ε Var ξ k k= 4 2 ε 2 0, ha m k=, Eξ k k= < ε 2, a iii tulajdoság miatt. Ezekből az egyelőtleségekből következik a Kolmogorov-féle három sor tételbe megfogalmazott kovergecia, ha teljesülek az i iii feltételek. Következő lépésbe az úgyevezett Kolmogorov-féle ulla egy törvéyt tárgyalom, amely iformálisa és kissé pogyolá megfogalmazva azt modja ki, hogy egy olya eseméyek, amely függetle valószíűségi változók sorozatáak csak a végtele távoli tagjaitól függ vagy ulla vagy egy a valószíűsége. Kissé potosabba, olya eseméyeket tekitük, amelyekre igaz az, hogy bármely idexre azok bekövetkezése vagy be em következése em függ a ξ ω,...,ξ ω valószíűségi változók értékeitől. Aak érdekébe, hogy a tételt potosa meg tudjam fogalmazi először bevezetem a farok σ-algebra fogalmát. Valószíűségi változók sorozata által meghatározott farok σ-algebra defiiciója. Legye ξ,ξ 2,..., valószíűségi változók sorozata valamely Ω, A,P valószíűségi mező. E valószíűségi változók sorozata által meghatározott F farok σ-algebrát az F = F képlet határozza meg, ahol F = Bξ,ξ +,... a legszűkebb olya = σ-algebra, amelyre ézve a ξ,ξ +,... valószíűségi változók midegyike mérhető. Ezutá megfogalmazom a Kolmogorov-féle ulla egy törvéyt. Kolmogorov-féle ulla egy törvéy. Legye ξ,ξ 2,..., függetle valószíűségi változók sorozata egy Ω, A, P valószíűségi mező, és tekitsük e sorozat által meghatározott F farok σ-algebrát. Ha egy A eseméyre A F, akkor vagy PA = 0 vagy PA =. A tétel bizoyítása. Tekitsük egy A F eseméyt, és jelölje B az A eseméytől függetle eseméyekből álló redszert, azaz B B akkor és csak akkor, ha PA B = PAPB. Azt állítom, hogy F B, ahol F = Bξ,ξ 2,... a legszűkebb olya σ- algebra, amelyre ézve a ξ,ξ 2,... valószíűségi változók midegyike mérhető. Valóba, tetszőleges =,2,... számra mide B Bξ,...,ξ, eseméy függetle az A eseméytől, mert A F F +, és a F + = Bξ +,ξ +2,... és Bξ,...,ξ σ-algebra elemei egymástól függetle eseméyek. Vezessük be a µ B = PA B és µ 2 B = PAPB halmazfüggvéyeket mide B A halmazra. Láttuk, hogy µ B = µ 2 B mide B F = Bξ,...,ξ 8 =
halmazra. Ezekívül, mid µ mid µ 2 mérték az A σ-algebrá. Továbbá az előbb defiiált F halmazredszer algebra, és az F algebrát tartalmazó legszűkebb σ-algebra a F σ-algebra. Mivel egy mérték kiterjesztése egy algebráról az őt tartalmazó legszűkebb σ-algebrára egyértelmű, ie következik, hogy µ B = µ 2 B, azaz PA B = PAPB mide B F halmazra, mit állítottam. A bebizoyított állításból speciálisa az is következik, hogy mide A F eseméy függetle ömagától, azaz PA = PA 2. Ez az összefüggés úgy is felírható, hogy PA PA = 0, azaz vagy PA = 0 vagy PA =, és ezt kellett beláti. Nem ehéz beláti, hogy aak az eseméyek a bekövetkezése, hogy függetle ξ,ξ 2,... valószíűségi változók ξ k ω összege kovergál em függ az első éháy ξ k valószíűségi változó értékétől, ezért ez az eseméy eleme az F σ-algebráak. Így eek az eseméyek a valószíűsége vagy ulla vagy a Kolmogorov-féle ulla egy törvéy alapjá. Hasolóa, aak a valószíűsége, hogy függetle valószíűségi változók T ω = ξ k ω átlagai Cauchy sorozatot alkotak, azaz kovergesek, vagy ulla vagy egy a Kolmogorov-féle ulla egy törvéy alapjá. Aak a valószíűsége, hogy a < limif T limsup T ω < b szité vagy ulla vagy egy tetszőleges a és b számokra. Eze észrevétel segítségével be lehet láti, hogy a T valószíűségi változók sorozata vagy valószíűséggel diverges, vagy létezik egy olya < a < szám, hogy a T sorozat egy valószíűséggel ehhez az a számhoz kovergál. A Kolmogorov féle ulla-egy törvéy segítségével az is látható, hogy tetszőleges q, ha sorozatra P lim sup q ξ k = A = valamely A számra. Az, hogy A = vagy A = szité lehetséges ebbe a relációba. Hasoló állítás érvéyes akkor is, ha limsup helyett limif-et tekitük. Rátérek a agy számok gyege törvéyéek a tárgyalására. Nem ehéz beláti ezt az állítást a Csebisev egyelőtleség segítségével függetle, egyforma eloszlású véges második mometummal redelkező valószíűségi változók átlagaira. De, mit láttuk, ha függetle, egyforma eloszlású valószíűségi változók abszolut értékéek véges a várható értéke akkor ezek átlagai teljesítik a agy számok erős és ezért a agy számok gyege törvéyét is. Ez azt jeleti, hogy a véges második mometumok követelése túl erős feltétele a agy számok gyege törvéyéek. Megfogalmaztam egy eredméyt, amely megadja aak szükséges és elégséges feltételét, hogy teljesüljö a agy számok gyege törvéye. Ez a feltétel kissé gyegébb követelméyt ír elő aál, hogy az átlagba résztvevő valószíűségi változók abszolut értékéek legye véges a várható értéke. Alább megfogalmazok majd bebizoyítok egy tételt, amely a agy számok gyege törvéyéek feltételeit megadó eredméy élesítéséek tekithető. Tétel függetle, egyforma eloszlású valószíűségi változók átlagaiak sztochasztikus kovergeciájáról. Legye ξ,ξ 2,..., függetle, egyforma eloszlású valószíűségi változók sorozata, és jelölje Fx e valószíűségi változók eloszlásfüggvéyét. Akkor és csak akkor létezik valós számok olya A, =,2,..., sorozata, amelyre a 9
T = ξ k A, =,2,..., sorozat sztochasztikusa ullához tart, ha teljesül a lim x Fx+F x = 0 feltétel. Ha létezik valós számok ilye A sorozata, akkor x az választható, mit A = xf dx, =,2,... Az előző tétel alapjá a agy számok gyege törvéye akkor és csak akkor teljesül valamely a kostassal, ha lim x Fx + F x = 0, és lim xf dx = a. x Ahhoz, hogy belássuk eze eredméy segítségével a a agy számok gyege törvéyéről u szóló tételt, elegedő megmutati, hogy az adott feltételek mellett a lim xf dx = u u a reláció érvéyes valós u és emcsak egész számokra. Ez következik a lim u [u] x u xfdx lim [u] + F[u] + F [u] = 0 u becslésből, ahol [u] az u szám egész részét jelöli. Ez a becslés a lim x Fx + x F x = 0 reláció következméye. Az előadás fő részébe a függetle, egyforma eloszlású valószíűségi változók átlagaiak sztochasztikus kovergeciájáról szóló tételek csak az elégségesség részét bizoyítom. A szükségességről szóló rész bizoyítását a kiegészítésbe ismertetem. A függetle, egyforma eloszlású valószíűségi változók átlagaiak sztochasztikus kovergeciájáról szóló tétel elégségesség részéek a bizoyítása. Tegyük fel, hogy a ξ k valószíűségi változók Fx eloszlásai teljesítik a lim x Fx+F x = 0 feltételt. x Adott egész számra defiiáljuk a ξ k = ξ k = ξ k I ξ k és ξk = ξ k = ξ k ξ k, k, valószíűségi változókat. Ekkor ξ k = ξ k + ξ k, ezért elegedő azt megmutati, hogy ξ k A 0 és ξ k 0, ahol sztochasztikus kovergeciát jelöl. A második reláció következik a tétel feltételeiből, mert P ξ k 0 P ξ k = [F + F] 0, ha. Az első reláció a Csebisev egyelőtleség segítségével bizoyítható, mert mide ε > 0 számra P ξ k A > ε = P ξ k E ξ k > ε Ezért a bizoyítás befejezéséhez elég azt megmutati, hogy lim Var ξ E ξ 2 = u 2 F du = L 20 L u 2 F du + Var ξ 2 ε L u Var ξ u 2 F du = Var ξ ε. = 0. Mivel