Boros Daniella Nappali tagozat Kereskedelem és marketing 2. évfolyam Gödöllő Neptun kód: OIPGB9

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Boros Daniella Nappali tagozat Kereskedelem és marketing 2. évfolyam Gödöllő Neptun kód: OIPGB9"

Átírás

1 Szent István Egetem Gazdaság- és Tásadalomtudomán Ka Koelácó- és egesszó analízs Boos Danella Nappal tagozat Keeskedelem és maketng. évfolam Gödöllő Neptun kód: OIPGB9

2 1. Célktűzések megfogalmazása Ekko dönt el a felhasználó, hog mlen jelenséget póbál magaázn és ehhez mlen adatbázs szükséges. Célom az, hog övden jellemezzem Magaoszág év keeskedelm kapcsolatát az euópa oszágokkal.. Adatbázs megteemtése Saját megfgelésből, kkédezés útján (pl.: kédőíves felméés),kísélet beállítása alapján, statsztka szolgálat Feltétel: Megbízhatóság Kellő számú megfgelés szükséges Magaoszág külkeeskedelm fogalmának étéke (mllád Ft) 1500 a főbb euópa oszágokkal 1997-ben Oszág Epot Impot) Auszta Belgum Csehoszág Fancaoszág Hollanda Lengeloszág Nag-Btanna Németoszág Olaszoszág Ooszoszág Svájc 7 49 Svédoszág Szlováka 54 1 Szlovéna Ukajna Foás: KSH: Maga Statsztka Évkönv táblázat Koelogam 1. ába

3 3. Függvén - specfkácó (függvén típusának kválasztása) Feladat: Olan egenes vag göbe megállapítása, amelek legjobban lleszkednek az eedet pontoka. Ehhez meg kell vzsgáln a kapcsolat ánát és szoosságát (koelácó), majd fel kell tán az ok-okozat összefüggéseket s (egesszó). Hpotézs: A koelogam alapján eg lneás kapcsolat feltételezhető a változók között. Valószínűsíthető, hog eg monoton növekvő lneás egesszós függvénnel leíható a kapcsolat Epot MFt ( ) Impot MFt ( ) Koelácó számítás Az epot és az mpot összefüggése ( ) ( ) ( ) ( ) Összesen Átlag Foás: Saját számítás. táblázat 3

4 Kovaanca Az átlagtól való eltéések szozatának átlaga. Előjele megadja a kapcsolat ánát. d d X Y C, ahol d d n Koelácós egüttható számítása (. táblázat): C= = 79730,48 (>0) 15 Ételmezés: Az epot és mpot között kapcsolat poztív ánú Koelácós egüttható Két mennség smév kapcsolatának szoosságát és ánát adja. Étéke -1 és 1 közé esk. C d d ( ) ( ) = d d ( ) ( ) Koelácós egüttható számítása (. táblázat): = = 0,98 Ételmezés: Az epot és az mpot között gen szoos (majd detemnsztkus), poztív kapcsolat áll fenn. A koelácós egüttható megbízhatóságának vzsgálata (t-póba) H 0 : =0 (a két változó között nncs lneás összefüggés) H 1 : 0 (a két változó között gazolható lneás összefüggés) Póbastatsztka: temp S Standat hba: S = 1 n t meghatáozása: n 1 H 0 elfogadása keül, ha t emp t /, n H 1 elutasítása keül, ha t emp > t /, n 4

5 t számítása: t = 0,98 15 =15,88 1 0,98 t emp =,16 - táblázatból Ételmezés: Az eedmén azt mutatja, hog 95% os megbízhatóság sznten a koelácós egüttható ételmezhető, hszen a számított t-éték nagobb, mnt a táblázatbel éték. Detemnácó-vzsgálat: A detemnácós egüttható ( ) megmutatja, hog a magaázóváltozó hán %-ban befolásolja az eedménváltozó szóódását. A detemnácós egüttható jellemz: A egesszós függvén lleszkedését, a modell magaázó eejét. A detemnácós egüttható számítása: D =. 100 = 0, = 95,1% Ételmezés: Az epot 95,1%-ban befolásolja az mpot szóódását. 5

6 Regesszó számítás 4- A kválasztott függvén paaméteenek számítása () A egesszó-számítás az összefüggésekben lévő tendencát vzsgálja és a kapcsolat temészetét valamlen függvénnel íja le. Kétváltozós lneás egesszós modell: Y, ahol az tengel metszéspontja az egenes meedekségét meghatáozó ántangens véletlen változó (hbaténező) A egesszós modell feltételendszee 1. Az véletlen változó, melnek váható étéke 0. M ( )=0. Az vaancája, azonos valamenn étékée (ez a homoszkedasztctás feltétel) 3. Az étéke egmástól függetlenek. 4. A hbaténező nomáls eloszlású véletlen változó. A becsült egesszós függvén ˆ a b Legksebb négzetek módszee mn ˆ a egesszó függvént behelettesítve a célfüggvénbe a b mn eljutunk a nomál egenletekhez vag a nomálegenletek tanszfomálásával d meghatáozásához. b an b a b d, d eljutunk a paaméteek d d a b Paaméteek meghatáozása (. táblázat): ( ) ( ) b = 0, 795 ( )

7 REGRESSZIÓS FÜGGVÉNY: a b = 05 0, = 48,5 ˆ = 48,5 +0,795 a b = 0, ,5 R² = 0, Foás: Adatbázs alapján. ába Oszág Epot MFt () A egesszós étékek és eltéések kszámítása Impot MFt () ŷ 48,5 0, ŷ - ( ŷ - ) - ŷ ( - ŷ ) ˆ Auszta , 166,5 7719, 46,8 188,0. Belgum ,7-87,1 7579,6-4,7 608,7 3. Csehoszág , -108, ,8-1, 1,5 4. Fancaoszág ,0-49,7 470,4 17,0 88,0 5. Hollanda ,0-76,7 5887, -6,0 676,3 6. Lengeloszág ,0-80,7 651,8-57,0 35,6 7. Nag-Btanna ,1-61,6 3797,8-7,1 50,5 8. Németoszág 19 91,6 17,9 318,9 68,4 4679,9 9. Olaszoszág ,4-1,3 15,4 170,6 9108,8 10. Ooszoszág ,1-13,6 158,6-13,1 171,9 11. Svájc ,0-134, ,7-1,0 440,3 1. Svédoszág ,5-117, ,9-1,5 155,5 13. Szlováka ,4-113,3 1834,7-70,4 496, 14. Szlovéna ,9-118,9 1416,3-3,9 1081,1 15. Ukajna ,9 900, , -36,9 1358,3 Σ Átlag Foás: Saját számítás 3. táblázat Regesszós étékek számítása a kszámított paaméteek felhasználásával (3. táblázat). Az eedet adatokat a következő egesszós függvénbe behelettesítve: 7

8 5. Illeszkedésvzsgálat Ezzel méjük azt, hog az eedet megfgelések (-ok) menne lleszkednek a egesszós étékekhez, vags ŷ -ekhez. Két méőszáma s van, amel közül az egk felvesz az eedet adatok métékegségét és nagságendjét, míg a másodk százalékosan jellemz az llesztés hbát. Rezduáls szóás (abszolút hba): Kfejez, hog a egesszós becslések átlagosan mennvel tének el az megfgelt étéketől. ( ˆ) S e. n Relatív szóás (elatív hba): Kkfejez, hog a egesszós becslések átlagosan hán %-al tének el az megfgelt étéketől. Se VSe 100 Rezduáls szóás számítása: e ( ˆ) S e = n n 4903 = 61,41 mllád Ft. 15 Az llesztés elatív hbája: Se 61,41 VSe 100 = 100 9,99% 05 Ételmezés: Vags az eedet és a egesszós adatok átlagosan 61,41 mllád Ft-tal és átlagosan 9.99 %-kal tének el egmástól. 6. Szgnfkanca-vzsgálatok (a modell és a paaméteek tesztelése), Ezeke a vzsgálatoka egészt a kapcsolatok sztochasztkus jellege matt van szükség. Másészt tulajdonképpen tt s mntákkal dolgozunk, mndg magában hodozza a hba lehetőségé. Ezét, mnd a egesszós modellt, mnd a paaméteeket le kell teszteln, hog a feladata egételműen tudjak válaszoln. A modell tesztelése vaanca-analízssel (F-póba) Ténezők DF SS MS F F szgnfkancája SSR Regesszó(R) 1 ( ˆ ) MSR MSR= SSR /DFR 1% MSE Hba(E) n- SSE ( ŷ ) MSE= SSE /DFE Összesen(T) n-1 SST SSR SSE 4. táblázat 8

9 Az F-póba két sokaság (ténezők) szóásának összehasonlításáa ánuló póba MSR Póbastatsztka: F MSE Az adatok meghatáozása a táblázat szent képletekkel töténk. A modell elfogadható, ha F 1 1 /, DF, DF1 keül. < emp F F1 /, DF1, DF, ellenkező esetben elutasítása Számítások a 3. és 4. táblázat alapján Ténezők DF SS MS F F szgnfkancája Regesszó(R) , ,5 5,1 1% Maadék(E) ,4 3771,0 Összesen(T) ,9 Foás: Saját számítás 5. táblázat Táblázatból: F 1 1 /, DF, DF1 = 9,07 F1 /, DF1, DF =6157 Ételmezés: Látható, hog egesszós modell heltálló, hszen az F-éték szgnfkancája 1%-os. (9,07<5,1<6157) Paaméteek tesztelése t-póbával H 0 : b=0 (a két változó között nncs lneás összefüggés) H 1 : b 0 (a két változó között gazolható lneás összefüggés) H 0 elfogadása keül, ha t emp t /, n H 1 elutasítása keül, ha t emp > t /, n Paaméteek tesztelése t-póbával Póbastatsztka: t a a Sa t b b S b a paaméte becsült szóása (a standat hbája): Sa Se. S. e d. n n ( ) 9

10 b paaméte becsült szóása (b standat hbája): S b S e d Számítások a 3. és 4. táblázat alapján Egütthatók Standat hba t éték p éték Alsó hatá (h 1 ) Felső hatá (h ) "a" paaméte 48,5 18,66,60 0,00 0,93 97,97 "b" paaméte 0,795 0,05 15,88 0,001-0,64 10,75 Foás: Saját számítás 6. táblázat 7. A egesszós étékek konfdenca hatáanak (h 1, h ) a megállapítása egüttható t s tan dathba A hatáok meghatáozása: 1 ahol t a paaméteek táblázatbel étéke a nekk megfelelő szgnfka sznten 1 A konfdenca hatáanak (h 1, h ) kszámítása (6. táblázat): a paaméte táblázatbel étéke:,65 b paaméte táblázatbel étéke:3,01 8. Elasztctás (ugalmasság) meghatáozása, A ugalmasság (elasztctás) méőszám aa ad választ, hog ha X-et 1%-kal megnöveljük az hán %-os változást eedménez az Y változóban. Rugalmasság egüttható lneás egesszó esetén: b E a b A ugalmasság egüttható étéke átlaghelen: E b Ha, E <1, akko változó ugalmatlan az változóval Ha, E >1, akko változó ugalmas az változóval A ugalmasság kszámítása sz átlaghelen: 197 E 0,795 0,76 05 Ételmezés: A 197 mllád Ft-os epot 1%-os növekedésével 76 %-os lesz a behozatal météke. 10

11 Általános megállapítás: - A modell szgnfkánsnak teknthető, hszen a vaanca-analízs 99%-os megbízhatóságot mutatott, hszen a vaanca-táblázatban 0,01 az F szgnfkancája. - A paaméteek szntén szgnfkánsak, ugans az a paaméte szgnfkancája: 0,0, a b paaméte szgnfkancája: 0,01. - a = 48,5: epot nélkül 48,5 mllád Ft behozatala számíthatunk,(mnmum 0,93 mllád Ft, mamum 97,97 mllád Ft). - b = 0,79: az epot 1 mllád Ft-os növekedésével átlagosan 0,79 mlló Ft-os mpotnövekedése számíthatunk (mnmum -0,64 mlló Ft, mamum 8,94 mlló Ft). - A széles ntevallumok megbízhatóak, vszont lehet, hog ksebb megbízhatóságot választva még eálsabb kép alakult k volna. Mégs valósnak tatom, met az llesztés lazának mondható 9,99 % (az mpot adatok ( -ok) és a függvén pontja az úgnevezett egesszós étékek ( ŷ -tek) átlagosan távol állnak egmástól), és a két változó sem mutatott ugalmasságot egmással szemben ( E <1). A b paaméte ezét mutat len szélsőséges esetet (előfodulhat, hog nncs szükség behozatala, de az s előfodulhat a maga gazdaságnak nagon eős lesz az mpotgéne). 11

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr. Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós

Részletesebben

Változók közötti kapcsolatok vizsgálata

Változók közötti kapcsolatok vizsgálata ) Eseméek függetlesége: p(ab) p(a) p(b) ) Koelácó: vö. az tutív tatalommal Változók között kapcsolatok vzsgálata Akko poztív, ha és átlagosa ugaaa az áa té el a saját váható étékétől, egatív ha elletétes

Részletesebben

Többváltozós Regresszió-számítás

Többváltozós Regresszió-számítás Töváltozós Regresszó-számítás 4.-5. előadás Kvanttatív statsztka módszerek Dr. Szlág Roland Korrelácó Célja a kacsolat szorosságának mérése. X (X, X,, X ): magarázó változó(k), független változó(k) Y:

Részletesebben

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?

Variancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat? Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Képletgyűjtemény a Gazdaságstatisztika tárgy A matematikai statisztika alapjai című részhez

Képletgyűjtemény a Gazdaságstatisztika tárgy A matematikai statisztika alapjai című részhez Buaet űzak é Gazaágtuomá Egetem Gazaág- é Táaalomtuomá Ka Üzlet Tuomáok Itézet eezmet é Vállalatgazaágta Tazék Tóth Zuzaa Ezte Jóá Tamá Kéletgűtemé a Gazaágtatztka tág A matematka tatztka alaa című ézhez

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma

OLS regresszió - ismétlés Mikroökonometria, 1. hét Bíró Anikó A tantárgy tartalma OLS regresszó - smétlés Mroöonometra,. hét Bíró Anó A tantárg tartalma Leggaorbb mroöonometra problémá és azo ezeléséne megsmerése Egén vag vállalat adato Keresztmetszet és panel elemzés Vállalat, pacelemzés

Részletesebben

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések

Gyakorló feladatok a Kísérletek tervezése és értékelése c. tárgyból Lineáris regresszió, ismétlés nélküli mérések Gakorló feladatok a Kísérletek tervezése és értékelése c. tárgból Lneárs regresszó, smétlés nélkül mérések 1. példa Az alább táblázat eg kalbrácós egenes felvételekor mért adatokat tartalmazza: x 1.8 3

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán

Részletesebben

Relációk. Vázlat. Példák direkt szorzatra

Relációk. Vázlat. Példák direkt szorzatra 8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát

Részletesebben

Vázlat. Relációk. Példák direkt szorzatra

Vázlat. Relációk. Példák direkt szorzatra 7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Gömb illesztés. Korszerű matematikai módszerek a geodéziában

Gömb illesztés. Korszerű matematikai módszerek a geodéziában Gömb llestés Koseű matematka módseek a geodéában 13.11.5. Gömb llestése 1. Hán pont sükséges a feladat megoldásáho?. Hogan lehet meghatáon a gömb heletét, sugaát? 3. Hogan llessük be a RANSAC eljáásba?

Részletesebben

Tartóprofilok Raktári program

Tartóprofilok Raktári program Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente

Részletesebben

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus. Kétmtás t-próba ^t ȳ ( s +( s + + df + vag ha, aor ^t ȳ (s +s Welch-próba ^d ȳ s + s ( s + s df ( s ( s + d rtus t s (α, +t s (α, s + s Kofdecatervallum ét mta átlagáa ülöbségére SE s ( + s ( ±t (α,df

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

Adatelemzés és adatbányászat MSc

Adatelemzés és adatbányászat MSc Adatelemzés és adatbányászat MSc. téma Adatelemzés, statsztka elemek áttekntése Adatelemzés módszertana probléma felvetés módszer, adatok meghatározása nyers adatok adatforrás meghatározása adat tsztítás

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány

Részletesebben

A piaci (egytényezős) modellek és portfóliók képzése

A piaci (egytényezős) modellek és portfóliók képzése 0/9/05 A ac (egytényezős) modellek és otfólók kézése Beuházás és fnanszíozás döntések. konzultácó A ac (egytényezős) modellek szeee a befektetések étékelésében. Bevezetés az egytényezős modellek áttekntése.

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

Elektrokémia 02. (Biologia BSc )

Elektrokémia 02. (Biologia BSc ) Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI

Részletesebben

Mikro és makroökonómia BMEGT30A001 C1-es kurzus Jegyzet gyanánt 2018 ősz 3.ELŐADÁS

Mikro és makroökonómia BMEGT30A001 C1-es kurzus Jegyzet gyanánt 2018 ősz 3.ELŐADÁS Mkro és makroökonóma BMEGT30A001 C1-es kurzus Jegzet ganánt 2018 ősz Az tt közzé adott anag néhol részletesebb, néhol csak utal arra, amt órán vettünk. A számonkérés kzárólag az órán elhangzott anagból

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

9. évfolyam Javítóvizsga felkészülést segítő feladatok

9. évfolyam Javítóvizsga felkészülést segítő feladatok Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn

Részletesebben

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban?

véletlen : statisztikai törvényeknek engedelmeskedik (Mi az ami közös a népszavazásban, a betegségek gyógyulásában és a fiz. kém. laborban? BEVEZEÉS statsztka telese lakusokak: ag mukával gűtött adatok vzsgálata, abból következtetések levoása ( statstcal feece ) (Eg kcst sok hűhó semmét azaz Much ado about othg.) M s a statsztka? Eg populácóból

Részletesebben

MNB Füzetek 2003/12. Móré Csaba - Nagy Márton: 2003. December

MNB Füzetek 2003/12. Móré Csaba - Nagy Márton: 2003. December MNB Füzetek 2003/12 Móé Csaba - Nagy Máton: A PIACI STRUKTÚRA HATÁSA A BANKOK TEJESÍTMÉNYÉRE: EMPIRIKUS VIZSGÁAT KÖZÉP-KEET EURÓPÁRA 1 2003. Decembe 1 A szezők köszönttel tatoznak Kátay Gábonak és Méő

Részletesebben

Populáció nagyságának felmérése, becslése

Populáció nagyságának felmérése, becslése http:/zeus.yf.hu/~szept/kuzusok.htm Populáció agyságáak felméése, becslése Becsült paaméteek: N- az adott populáció teljes agysága (egyed, pá, stb) D- dezitás (sűűség), egységyi felülete/téfogata számított

Részletesebben

Statisztika II előadáslapok. 2003/4. tanév, II. félév

Statisztika II előadáslapok. 2003/4. tanév, II. félév Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az

Részletesebben

NEMPARAMÉTERES ELJÁRÁSOK

NEMPARAMÉTERES ELJÁRÁSOK Kály Zoltá: Statsztka II. NEMPARAMÉTERES ELJÁRÁSOK Az eddgek soá találkoztuk má olya eláásokkal, melyek a változók középétékét vzsgálták: egymtás-, páos-, függetle mtás t-póba, egy- és többszempotos vaaca

Részletesebben

Matematika szintfelmérő szeptember

Matematika szintfelmérő szeptember Matematika szintfelmérő 015. szeptember matematika BSC MO 1. A faglaltok éjszakáján eg közvéleménkutatásban vizsgált csoport %-ának ízlett az eperfaglalt, 94%-ának pedig a citromfaglalt. A két gümölcsfaglalt

Részletesebben

Statisztikai alapismeretek amit feltétlenül tudni kell

Statisztikai alapismeretek amit feltétlenül tudni kell Statztka alameetek amt feltétlenül tudn kell Sokaág é mnta fogalma Statztka (mnta jellemzője) é aaméte fogalma Váható éték é vaanca jellemző Sűűégfüggvén é elozláfüggvén Standad nomál -, t- é F-elozlá

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

Adatsorok jellegadó értékei

Adatsorok jellegadó értékei Adatsorok jellegadó értéke Varga Ágnes egyetem tanársegéd varga.ag14@gmal.com Terület és térnformatka kvanttatív elemzés módszerek BCE Geo Intézet Terület elemzés forgatókönyve vacsora hasonlat Terület

Részletesebben

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter

Idősorok elemzése előadás. Előadó: Dr. Balogh Péter Idősorok elemzése előadás Előadó: Dr. Balogh Péter Idősorok elemzése A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Az idősorokban

Részletesebben

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA)

Varianciaanalízis. Egytényezős kísérletek (Más néven: egyutas osztályozás, egyszempontos varianciaanalízis ANOVA) Varancaanalízs A varancaanalízs során kettőnél több sokaság középértékenek mnta alapán történő összehasonlítása történk zért nevezk a kétmntás t-próba általánosításának A nullhpotézs eldöntéséhez használuk

Részletesebben

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 3. előadás. Előadó: Dr. Ertsey Imre Statsztka I. 3. előadás Előadó: Dr. Ertsey Imre Vszonyszámok Statsztka munka: adatgyűjtés, rendszerezés, összegzés, értékelés. Vszonyszámok: Két statsztka adat arányát kfejező számok, Az un. leszármaztatott

Részletesebben

A végeselem programrendszer általános felépítése (ismétlés)

A végeselem programrendszer általános felépítése (ismétlés) SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kdolgozta: Szüle Veronka eg. ts.) IX. előadás A végeselem rogramrendszer általános feléítése (smétlés) A végeselem

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

Kísérlettervezési alapfogalmak:

Kísérlettervezési alapfogalmak: Kísérlettervezés alapfogalmak: Tényező, faktor (factor) független változó, ható tényező (kezelés, gyógyszer, takarmány, genotípus, élőhely, stb.) amnek hatását a kísérletben vzsgáln vagy összehasonlítan

Részletesebben

A hitelértékelési kiigazítás tőketartalékolásának új szabályozása

A hitelértékelési kiigazítás tőketartalékolásának új szabályozása Tanulmányok Közgazdaság Szemle, LXV. évf., 18. febuá (161 184. o.) Boos Péte A htelétékelés kgazítás tőketatalékolásának ú szabályozása A htelétékelés kgazításból (cedt valuaton adustment, CVA) adódó veszteségek

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Koeláció- és egesszió-aalízis Az is előfodulhat, hogy két változó között ics semmilye kapcsolat: Az X és Y véletle változók között az alábbi ábáko Az állat becsült ko pozitív összefüggés em lieáis összefüggés

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

Neoklasszikus növekedési modellek

Neoklasszikus növekedési modellek Neoklasszikus egionális növekedési modellek Regionális gazdaságtan 2007/2008. tanév Regionális növekedési modellek Neoklasszikus növekedési modellek Robet Solow, kínálati tényezők Endogén növekedési modellek

Részletesebben

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG

MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről

Részletesebben

Portfóliók képzése és a portfólió értékelés mértékei. A portfóliókockázat. elemzése. Az arbitrázs-értékelés modellje és alkalmazása.

Portfóliók képzése és a portfólió értékelés mértékei. A portfóliókockázat. elemzése. Az arbitrázs-értékelés modellje és alkalmazása. Beuházás és fnanszíozás döntések Levelező. konzultácó Potfólók kézése és a otfóló étékelés météke. A otfólókockázat secáls esetenek elemzése. Az abtázs-étékelés modellje és alkalmazása. A otfolók kézése,

Részletesebben

Közgazdaságtan - 3. elıadás

Közgazdaságtan - 3. elıadás Közgazdaságtan - 3. elıadás A FOGYASZTÓI DÖNTÉS TÉNYEZİI 1 A FOGYASZTÓI DÖNTÉS ELEMEI Példa: Eg személ naponta 2000 Ft jövedelmet költhet el pogácsára és szendvicsre. Melikbıl mennit tud venni? 1 db pogácsa

Részletesebben

Y 10. S x. 1. ábra. A rúd keresztmetszete.

Y 10. S x. 1. ábra. A rúd keresztmetszete. zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott

Részletesebben

= és a kínálati függvény pedig p = 60

= és a kínálati függvény pedig p = 60 GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Biológiai anyagok hatásának értékelése, ha közvetlen fizikai vagy kémiai analízis nem alkalmazható.

Biológiai anyagok hatásának értékelése, ha közvetlen fizikai vagy kémiai analízis nem alkalmazható. Boassa Bológa anagok hatásának értékelése, ha közvetlen fzka vag kéma analízs nem alkalmazható. Alapja standard készítménnel való összehasonlítás: a vzsgált anag mlen mennsége ad uganakkora hatást, mnt

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva?

3. Egy ξ valószínűségi változó eloszlásfüggvénye melyik képlettel van definiálva? . z és események függetlensége melyik összefüggéssel van definiálva? P () + P () = P ( ) = P ()P () = P ( ) = P () P () 2. z alábbi összefüggések közül melyek igazak, melyek nem igazak tetszőleges és eseményeke?

Részletesebben

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus)

(eseményalgebra) (halmazalgebra) (kijelentéskalkulus) Valószínűségszámítás Valószínűség (probablty) 0 és 1 között valós szám, amely egy esemény bekövetkezésének esélyét fejez k: 0 - (sznte) lehetetlen, 0.5 - azonos eséllyel gen vagy nem, 1 - (sznte) bztos

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Nemparaméteres eljárások

Nemparaméteres eljárások Nemparaméteres eljárások Bevezetés Az ntervallum vagy a hányados skálán végzett méréseknél az adatokból számolhatunk átlagot, szórásnégyzetet, szórást Fontos módszerek alapulnak ezeknek a származtatott

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

10. előadás: Vonalas létesítmény tegelyvonalának kitűzése. (Egyenes, körív, átmeneti ív) *

10. előadás: Vonalas létesítmény tegelyvonalának kitűzése. (Egyenes, körív, átmeneti ív) * 10. előadás: Vonalas létesítmény tegelyvonalának ktűzése. (Egyenes, köív, átmenet ív)* 10. előadás: Vonalas létesítmény tegelyvonalának ktűzése. (Egyenes, köív, átmenet ív) * 10.1. Vonalas létesítmények

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

A költségvetési korlát

A költségvetési korlát A költségvetési korlát A gakorlatban a jószágkosarak több, nagon sok termékből állnak. Mi eg kéttermékes modellt feltételezünk, íg a döntési roblémát grafikusan is tudjuk ábrázolni. Első termék:, második

Részletesebben

2. személyes konzultáció. Széchenyi István Egyetem

2. személyes konzultáció. Széchenyi István Egyetem Makroökonóma 2. személyes konzultácó Szécheny István Egyetem Gazdálkodás szak e-learnng képzés Összeállította: Farkas Péter 1 A tananyag felépítése (térkép) Ön tt áll : MAKROEGENSÚL Inflácó, munkanélkülség,

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a bometrába Dr. Dnya Elek egyetem tanár PhD kurzus. KOKI, 205.0.08. ADATREDUKCIÓ I. Középértékek Adatredukcó. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények:

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

Méréselmélet: 5. előadás,

Méréselmélet: 5. előadás, 5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

ADATREDUKCIÓ I. Középértékek

ADATREDUKCIÓ I. Középértékek ADATREDUKCIÓ I. Középértékek Adatredukcó 1. M a középérték: azonos fajta számszerű adatok közös jellemzője. 2. Követelmények: a) Számított középérték: közbenső helyet foglaljanak el, azaz mn középérték

Részletesebben

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola

Dr. Ratkó István. Matematikai módszerek orvosi alkalmazásai. 2010.11.08. Magyar Tudomány Napja. Gábor Dénes Főiskola Dr. Ratkó István Matematka módszerek orvos alkalmazása 200..08. Magyar Tudomány Napja Gábor Dénes Főskola A valószínűségszámítás és matematka statsztka főskola oktatásakor a hallgatók néha megkérdezk egy-egy

Részletesebben

Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály)

Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály) 1. Számítsuk ki a következő szorzatok értékét! (a) 3 3 3 (b) 7 3 7 3 1 9. Számítsuk ki a következő hánadosokat! (a) (b) 1 0 1 0 3. Döntsük el, melik szám a nagobb! (a) ( 3) vag ( ) 3 (b) Mivel tudjuk,

Részletesebben

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Nemparaméteres módszerek. Krisztina Boda PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Nemparaméteres módszerek Krsztna Boda PhD SZTE ÁOK Orvos Fzka és Orvos Informatka Intézet Paraméteres próbák Paraméter: egy szám, amely a populácó eloszlását jellemz (és általában meghatározza). A normáls

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok

Részletesebben

SZOLVENCIATŐKE MINT FIXPONT

SZOLVENCIATŐKE MINT FIXPONT SZÜLE BORBÁLA SZOLVENCIATŐKE MINT FIXPONT A tanulmányban a szező a fixpont-iteáció témájával foglalkozik egy elméleti modellben, a biztosítók szolvenciatőkéjének számolásával kapcsolatban. A téma aktualitását

Részletesebben

Többváltozós Regresszió-számítás

Többváltozós Regresszió-számítás Töváltozós Regresszió-számítás 3. előadás Döntéselőkészítés módszertana Dr. Szilágyi Roland Korreláció Célja a kacsolat szorosságának mérése. Regresszió Célja a kacsolatan megfigyelhető törvényszerűség

Részletesebben