Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör
|
|
- Zsanett Törökné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Koeláció- és egesszió-aalízis Az is előfodulhat, hogy két változó között ics semmilye kapcsolat: Az X és Y véletle változók között az alábbi ábáko Az állat becsült ko pozitív összefüggés em lieáis összefüggés egatív összefüggés va Előfodulhat, hogy X és Y között va kapcsolat, de em koelációs jellegű, ha például X övekedése kis x-eke Y övekedésével, agyobb x-eke pedig Y csökkeésével já együtt, mit a második ábá. Több változó eseté a statisztikai pogamok egy észe képes az ábákat az alábbi táblázatos módo megjeleítei: teljes súly teljes hossz otól tözs hossza pocak kököös méet hátsó láb hossza kö Peaso-féle koelációs együttható A koelációs kapcsolat eősségét itevallum skála eseté számszeűe a Peasoféle koelációs együtthatóval szokták méi, amit R(X,Y)-al jelölük. R ( X, Y) köüli éték gyege, --hez vagy -hez közeli éték eős egatív, illetve pozitív koelációs kapcsolatot jelez. A koelációs együttható éháy tulajdosága: Ha a változók függetleek, akko R(X,Y), de abból, hogy R(X,Y), em következik a változók függetlesége. R(X,Y) potosa akko áll fe, amiko a változók között lieáis a kapcsolat, azaz YaX+b, ekko R(X,Y) előjele megegyezik a előjelével. A koelációs együttható szimmetikus, a két változó felcseélhető. Nem szabad észátlagoka haszáli, met a kiejtett bizoytalaságok miatt a valóságosál eősebb összefüggést mutathat. Hogya lehet a koeláltságot a miták alapjá vizsgáli? ( x, y ),( x, y ),...,( x, y ). mitaelemek eseté xy i ( x x) ( y y) i ( ) x i s s ahol x, y a változók mitaátlaga, s x, s y pedig a becsült szóások. y,
2 Mivel a koelációs együttható a mitából számított becslés, ezét hibával tehelt. Akko sem kapuk potosa ullát, ha a két változó között ics koeláció, ezét el kell végezük az alábbi hipotézisvizsgálatot: Nullhipotézis: : R( X, Y) H, azaz H : µ Póbastatisztika: t s Szabadsági fok: - µ A agkoelációs együttható: Ha adataikat em itevallum skálá méjük, haem odiáliso, akko a Speama féle agkoelációs együtthatót haszálhatjuk: s 6 d, 3 ahol a mitaelemek száma, d a agok közti külöbségek. Ha az itevallum, vagy aáyskálá mét étékeket a agszámaikkal helyettesítjük vagy ha az odiális skálájú változókat az,, 3, kódokkal kódoljuk akko az ebből számolt Peaso-féle és a Speama féle együtthatók megegyezek. Így lehet kiszámítai a Speama féle együtthatót, ha a pogam csak Peaso-féle koelációs együtthatót tud számoli. A egessziószámítás célja Regesszió-aalízis A egessziószámítást akko haszáljuk, amiko függvéyszeű kapcsolatot keesük egy vagy több magyaázó változó (vagy függetle változó) és egy függő változó között. Szokásosa a magyaázó változókat X-ekkel, a függő változót pedig Y-al jelöljük. Feltételezzük, hogy az X-ek és az Y közötti összefüggés kifejezhető függvéy fomájába, azaz Y f(x) vagy Yf(X,X,,X ) Ahhoz, hogy egesszió számítást végezhessük, mid a magyaázó, mid a függő változót ismeük kell ugyaazoko a megfigyelési egységeke, azaz a kiiduló adatok egy magyaázó változó eseté (x,y ), (x,y ), (x 3,y 3 )... (x,y ) étékpáok, több magyaázó változó eseté pedig (x, x, x 3,, y ), (x, x, x 3,, y ), (x 3, x 3, x 33,, y 3 )... (x, x, x 3,, y ) vektook. Ez az úgyevezett adatmátix. A egessziószámítás szokásos kédésfeltevései Va-e bizoyos változók között összefüggés? Függ-e a bojak 3 apos testtömege a születési súlyuktól? Milye függvéyel (lieáis, expoeciális, stb.) íható le az összefüggés? Alkalmas-e eek az összefüggések a leíásáa a lieáis függvéy? Mi a függő változó váható étéke a magyaázó változó egy bizoyos étékéhez? Mekkoa 3 apos testtömeget váhatuk, ha a születési súly 45 kg? Mi a magyaázó változó feltételezhető étéke a függő változó egy bizoyos étékéhez? Mekkoa születési súly küszöb feletti állatokat szelektáljuk, ha az a cél, hogy 3 apos koba az állatok (legalábbis átlagba) eléjék az 55 kg-ot? A cél lehet oksági kapcsolat megállapítása X és Y között, gyaka azoba csak következteti szeeték az egyik változó étékéből a másika, a közöttük tapasztalt összefüggés alapjá.
3 Feltétel: a magyaázó és a függő változó egyaát itevallum skálá méhető. Példa: A születési súly és a 3 apos testtömeg összefüggése 3 bojú adatai alapjá (Bajcsy Á. Csaba és mukatásai, Szülészeti Taszék) apos testtömeg (kg) Születési súly (kg) Melyik legye a magyaázó és melyik a függő változó? Ez midig attól függjö, hogy milye iáyú oksági kapcsolatot, illetve milye véletle hatásokat tételezük fel a változók között, és NE attól, hogy melyik változót szeeték a másik alapjá előejelezi. Előfodulhat, hogy az ismeetle X-et szeeték meghatáozi a megfigyelt Y-ból, bá a egessziós modell Yf(X)+ε. Ez az úgyevezett ivez egesszió. Bá egyételmű a pozitív összefüggés a két adat között, a szóódás túlságosa agy ahhoz, hogy a születési súly alapjá jó előejelzést adhaták a 3 apos testtömege. Véletleség a magyaázó és a függő változóba A függő változó midig valószíűségi változó, a magyaázó változók azoba em biztos. Általába úgy godoljuk, hogy Y két függetle, additív kompoese botható: az egyik az X-ektől függ, a másik pedig egy, az X-ektől függetle véletle fakto, azaz Yf(X)+ε. magyaázó változó(k) hatása A magyaázó változóba háomféle véletleséget szoktak megkülöbözteti: X em véletle változó, a kísélet vezetője állítja be X étékét a temészet állítja be, de az potosa ismet A mét X em azoos az Y-t befolyásoló változóval (méési potatlaság miatt, vagy met X elvot, em méhető, pl. ha X itelligecia IQ). Ezt az esetet itt em tágyaljuk. függő változó véletle kompoes (mide egyéb hatás) Fel szokás tei, hogy a véletle kompoes váható étéke, azaz E(ε) és hogy eloszlása szimmetikus, a statisztikai tesztek kedvéét pedig még azt is, hogy omális eloszlású.
4 Koeláció- vagy egessziószámítás? A legfotosabb külöbségek a két módsze között: A koelációszámítás szimmetikus kapcsolatot tételez fel az X és Y között, míg a egesszió számítás egy bizoyos iáyú (X Y) kapcsolatot, Míg a koelációszámításba midkét változó valószíűségi változó, a egesszió számításba X em feltétleül az (em feltétleül függ a véletletől). A koelációszámításak ics ételme akko, ha az X étékeit a kíséletező állítja be (pl. egy gyógysze dózisát). Gyaka midkét módsze alkalmazható, ha megfelelőe átfogalmazzuk a kédéseket. Midig godoljuk meg azoba, melyik fogalmazás tüközi jobba, hogy valójába mi is édekel! NE haszáljuk egessziószámítást ha két méési módsze közötti egyezést vizsgáluk, és em pedig azt, hogy hogya fejezhető ki egyik méési eedméy a másikkal. Ilyeko a koelációelemzések sics ételme, hisze az eős koeláció sem feltétleül jelet jó egyezést eős koelációt kaphatuk agy szisztematikus hiba (tozítás) eseté is (ha X X +, a koelációs együttható ). Ha a méési eedméyek egyezése édekel, legjobb, ha a külöbséggel (abszolút vagy elatív) számoluk. Végezhetük azoba egesszió- (em koeláció!) számítást, ha az egyik méési módszet potosak tekitjük, és aa vagyuk kívácsiak, hogya lehet a másikat koigáli. ha em tudjuk eldötei, melyik változót tekitsük magyaázó és melyiket függő változóak (ez em csupá techikai kédés, haem a véleméyüket tüközi aól, hogy mi mitől függ, illetve, hogy mit tételezük fel a véletle faktookól). ha tudjuk, hogy a magyaázó változó a függő változóval azoos agyságedű véletle hibával tehelt. Lieáis egesszió egy magyaázó változóval (simple liea egessio) A lieáis modell egy magyaázó változóval: ( X) β + β + ε f X Y Az együtthatókat az adatokból a legkisebb égyzetek módszeével becsüljük (least squaes), azaz úgy választjuk a paaméteeket, hogy a ( yi f( x i )) miimális legye. Ezt az alábbi becsléssel éjük el: i égyzetösszeg Az előző miatt hipotézisvizsgálata va szükség, hogy valóba függ-e az Y az X-től. Eek meete kétféle lehet: t-póba: Nullhipotézis: H β, azaz Y em függ X-től a modellbe : b Póba-statisztika: t (lásd később a képletet) SE b ( ) Szabadsági fokok száma: - ( xi x)( yi y) b, y b x i ( xi x) i b Vigyázat! Ez a képlet akko is ad eedméyt, ha valójába ics kapcsolat! Y estimated lie Yb +b X obseved data tue lie Yβ +β X X
5 F-póba: Csak több magyaázó változó eseté külöbözik Teljes eltéés égyzetösszeg: SSQt ( yi y) i Reziduumok égyzetösszege: SSQ ( yi f( xi) ) i, szabadsági fok -, szabadsági fok - (b i becsült) A számított és a valódi étékek külöbségéek égyzetösszege, ezt em magyaázza a modell Magyaázott égyzetösszeg: SSQ SSQ t Az Y igadozásáak az a észe, amelyet X változása magyaáz SSQt SSQ Póbastatisztika: F, szabadsági fokok, - SSQ Feltételek: Ahhoz, hogy a modellt alkalmazi lehesse, a következőkek teljesüli kell: E ( ε) ε szóása mide megfigyelt étéke ugyaakkoa ε étékei függetleek egymástól és X-től ε omális eloszlású Az illeszkedés jóságáak méése: Detemiációs együttható, R SSQt SSQ SSQ t (a koelációs együttható égyzete) Azt mutatja meg, hogy X változása meyie magyaázza Y változását Étéke és kötött lehet. A paaméteek szóásáak becslése ei i ε, ahol ei yi f( xi) s s b sε, s s x b? s x Ezeket felhaszálva az - szabadsági fokú t-eloszlásból a két paamétee lehet kofideciaitevallumot adi. Eek megfelelőe fel lehet ajzoli két kofideciatatomáyt, az elsőt a egessziós egyeese, a bővebbet pedig X adott étéke eseté Y-a. Az ábá (a bojak adatai), a lila voalak jelölik a egessziós egyeese voatkozó, a zöld voalak pedig az egyes potoka voatkozó 95%-os kofidecia-sávot. Az X tatomáy szélei felé haladva a becslések egye bizoytalaabbak. (A legkisebb a bizoytalaság az X étékek átlagáál.) day body weight (kg) 4 Bith weight (kg)
6 A változók taszfomálása A taszfomációk olyako segíthetek, amiko a megfigyelt adatoka a lieáis egesszió közvetleül em alkalmazható. Néha elméleti megfotolásokból következik, hogy a változók közötti kapcsolat em lieáis: Testhossz testtömeg ( gömb / ellipszoid téfogata hatváyfüggvéy) Gyógysze dózis hatás göbéje (logisztikus göbe vagy hasoló S-alakú göbe) Másko a megfigyelt adatok ugya egyételműe aa utalak, hogy az X és az Y között va összefüggés, de ha a potoka egyeest illesztük, az illeszkedés agyo ossz. Az első esetbe az elméleti megfotolások aa voatkozóa is útmutatást adak, hogy milye függvéytípust válasszuk, a másodikba pedig az adatok gafikus ábázolása segíthet: A kétváltozós szóásdiagamok a modell-választáshoz yújtaak segítséget, A hisztogam, boxplot, stb. az adatok eloszlásáak vizsgálatába (eziduálisok omalitása, függetleségük X-től!). Azokba az esetekbe, amiko az X és Y közötti összefüggés em lieáis, lieáis összefüggés állhat fe valamely X és Y taszfomált változók között. Ha elméleti megfotolásokból em következik, hogy milye taszfomációval édemes póbálkozi, akko szóásdiagamok segítségével választhatjuk ki a legmegfelelőbbet. Mivel a legtöbb számítógépes pogamba egy gombyomással kéhető, a logaitmustaszfomációt póbáljuk ki utiszeűe! Midig godoljuk végig, hogy egy ilye taszfomáció itepetálható-e, meg tudjuke magyaázi, mi az ételme. expoeciális göbe log. skála az y tegelye egyees hatváyfüggvéy log. skála midkét tegelye egyees logaitmus-göbe log. skála az x tegelye egyees A taszfomációk éithetik mid a egessziós függvéyt, mid a véletleséget a modellbe (utóbbit akko, ha a függő változót taszfomáljuk). Példák: Ha a egesszió lieáissá válik az Y log-taszfomálásával: log Y β + β X + ε, akko a függvéy expoeciális, multiplikatív hibával: Y e β e β X e ε Multiplikatív hiba: a véletle fakto em hozzáadódik a függvéyétékhez, haem összeszozódik vele. Ekko agyobb függvéyétékhez agyobb Y szóás tatozik.
7 Ha a egesszió lieáissá válik X és Y log-taszfomálásával: logyβ +β log X +ε, akko a függvéy hatváyfüggvéy, multiplikatív hibával: Y e β x β e ε Ha a egesszió lieáissá válik az X log-taszfomálásával: Y β +β log X +ε, akko a függvéy logaitmus-függvéy, multiplikatív hibával. Ugyailye eltejedt a hatváy- és a gyök-taszfomáció. A gyökök (elatíve) összehúzzák a agy étékek tatomáyát, az (egyél agyobb) hatváyok pedig a kis étékekét. Ha a mét étékek helyett agokkal dolgozuk, a változót teljese skála-függetleé tehetjük. Megjegyzések: A fet említettek mid mooto taszfomációk. Ha a változó étéktatomáya szűk, a agok kivételével az összes többi kb. egyeétékű. Gyakoisági adatoka az acsi taszfomációt szokták alkalmazi. A taszfomációk statisztikai modell hiáyába is haszosak lehetek. Segíthetek az adatok jobb megismeésébe és ábázolásába, szebb gafikook készítésébe, stb. Példa a taszfomációs lehetőségeke az összefüggés lieaizálásába: 5 4 eedeti összefüggés égyzetgyök Y Megjegyzések: A taszfomációkat emcsak az összefüggés lieaizálásáa, haem szóáskiegyelítése és az eloszlások szimmetizálásáa is szokták haszáli. (Pesze előfodulhat, hogy az a taszfomáció, amely lieaizálja az összefüggést, elotja a szóások egyelőségét, stb.) A taszfomáció megválasztásáál fotos szempot az itepetálhatóság. A taszfomáció útjá tötéő lieaizálás em az egyetle lehetőség a emlieáis össze-függések kezelésée. Létezek eljáások lieáissá em taszfomálható ( itisically oliea ) modellek illesztésée is egyedik gyök Y logaitmus Y
8 Ami idé kimaadt: Lieáisa visszavezethető egessziók Többszöös (multiple) egesszió Többszöös és paciális koeláció Poliomiális egesszió
Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör
Korreláció- és regresszió-analízis Az X és Y véletlen változók között az alábbi ábrákon pozitív összefüggés nem lineáris összefüggés negatív összefüggés van Előfordulhat, hogy X és Y között van kapcsolat,
RészletesebbenAz átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
RészletesebbenBIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
RészletesebbenVirág Katalin. Szegedi Tudományegyetem, Bolyai Intézet
Függetleségvizsgálat Virág Katali Szegedi Tudomáyegyetem, Bolyai Itézet Függetleség Függetleség Két változó függetle, ha az egyik változó megfigyelése a másik változóra ézve em szolgáltat iformációt; azaz
RészletesebbenStatisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
RészletesebbenVII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
RészletesebbenA biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RészletesebbenPopuláció nagyságának felmérése, becslése
http:/zeus.yf.hu/~szept/kuzusok.htm Populáció agyságáak felméése, becslése Becsült paaméteek: N- az adott populáció teljes agysága (egyed, pá, stb) D- dezitás (sűűség), egységyi felülete/téfogata számított
RészletesebbenMatematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
RészletesebbenA szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai
05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:
RészletesebbenMatematika B4 I. gyakorlat
Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a
RészletesebbenRudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
Részletesebbenbiometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
RészletesebbenKomplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós
Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.
Részletesebben1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Részletesebben2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
Részletesebben(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
RészletesebbenKutatói pályára felkészítı modul
Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI
RészletesebbenVáltozók közötti kapcsolatok vizsgálata
) Eseméek függetlesége: p(ab) p(a) p(b) ) Koelácó: vö. az tutív tatalommal Változók között kapcsolatok vzsgálata Akko poztív, ha és átlagosa ugaaa az áa té el a saját váható étékétől, egatív ha elletétes
RészletesebbenA matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
RészletesebbenFeladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
RészletesebbenDiszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
RészletesebbenPopuláció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia
RészletesebbenSzámsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
RészletesebbenStatisztika 1. zárthelyi dolgozat március 18.
Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati
RészletesebbenKomplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
RészletesebbenInnen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
RészletesebbenSorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
RészletesebbenALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
RészletesebbenMatematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
RészletesebbenA statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Részletesebbenf (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
RészletesebbenMegjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
RészletesebbenSorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
Részletesebben1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
RészletesebbenStatisztikai hipotézisvizsgálatok
Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók
RészletesebbenVillamos gépek tantárgy tételei
Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot
RészletesebbenMatematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok
RészletesebbenA G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
Részletesebben3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
Részletesebben6. Számsorozat fogalma és tulajdonságai
6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.
Részletesebben2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;
Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:
RészletesebbenMegoldás: Először alakítsuk át az a k kifejezést: Ez alapján az a 2 a n szorzat átírható a következő alakra
. Adott z =, =,3, + 3 soozt. Számíts ki lim 3 htáétéket. Megoldás: Előszö lkítsuk át z k kifejezést: k = + k 3 = k3 k 3 + = (k (k + k + (k + (k k + = k k + k + k + k k +, k =,3, Ez lpjá z szozt átíhtó
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 09 ÉRETTSÉGI VIZSGA 0 május 8 MATEMATIA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fotos tudivalók Formai előírások: A dolgozatot
Részletesebben18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható
8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.
RészletesebbenPályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
Részletesebben18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK
Matematika emelt szit Javítási-értékelési útmutató MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 0. október. Fotos tudivalók
Részletesebben( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
RészletesebbenNUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.
NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a
RészletesebbenSZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo
SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő
RészletesebbenNevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
Részletesebben3.3 Fogaskerékhajtások
PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás
RészletesebbenCserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-
ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük
RészletesebbenFIZIKA I. KATEGÓRIA 2015-ben, a Fény Évében
Oktatási Hivatal A 014/015. taévi Oszágos Középiskolai Taulmáyi Vesey dötő oduló FIZIKA I. KATEGÓRIA 015-be, a Féy Évébe MEGOLDÁSI ÚTMUTATÓ Zóalemez leképezési tulajdoságai Bevezető: A méési eladat egy
Részletesebbenképzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal
5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve
RészletesebbenA függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
RészletesebbenV. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
RészletesebbenZavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.
Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet
RészletesebbenHiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai
közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet
RészletesebbenMinta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe
RészletesebbenGyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
RészletesebbenSorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
RészletesebbenEgy lehetséges tételsor megoldásokkal
Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe
RészletesebbenMegjegyzések. További tételek. Valódi határeloszlások. Tulajdonságok. Gyenge (eloszlásbeli) konvergencia
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 5. Megjegyzések. A tétel feltételei gyegíthetőek: elég, ha a függetle, azoos eloszlású változók várható értéke véges.
RészletesebbenIngatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
RészletesebbenGAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
RészletesebbenA statisztika részei. Példa:
STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,
RészletesebbenKidolgozott feladatok a nemparaméteres statisztika témaköréből
Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.
Részletesebben10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
Részletesebben8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
Részletesebben2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
RészletesebbenIII. Kvantitatív változók kapcsolata (korreláció, regresszió)
III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1611 ÉRETTSÉGI VIZSGA 017. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fotos tudivalók Formai előírások: 1. Kérjük,
RészletesebbenI. FEJEZET BICIKLIHIÁNYBAN
I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük
Részletesebben1. gyakorlat - Végtelen sorok
. gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )
RészletesebbenDebreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet
Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak
Részletesebben3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató
RészletesebbenA figurális számokról (IV.)
A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe
RészletesebbenI. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.
I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.
RészletesebbenFüggvényhatárérték-számítás
Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről
RészletesebbenKalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
RészletesebbenKAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn
A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója
Részletesebben4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!
4. Test feletti egyhatározatlaú poliomok Klasszikus algebra előadás Waldhauser Tamás 2013 április 11. Eddig a poliomokkal mit formális kifejezésekkel számoltuk, em éltük azzal a lehetőséggel, hogy x helyébe
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
RészletesebbenKvantummechanika gyakorlo feladatok 1 - Megoldások. 1. feladat: Az eltolás operátorának megtalálásával teljesen analóg módon fejtsük Taylor-sorba
Kvatummechaika gyakorlo felaatok - Megolások felaat: z eltolás operátoráak megtalálásával teljese aalóg móo fejtsük Taylor-sorba a hullámfüggvéyt a változójába: ψr θ ϕ + ϕ ψr θ ϕ + ψr θ ϕ ϕ + ψr θ ϕ ϕ
RészletesebbenBruttó kereslet Nettó kereslet (1) 5. elıadás: Vétel és eladás indulókészlettel; Intertemporális választások. Indulókészlet
(C http://kgt.be.hu/ 5. elıadás: Vétel és eladás idulókészlettel; Itetepoális választások uttó keeslet ettó keeslet ( uttó keeslet: ait a fogyasztó téylegese elfogyaszt (hazavisz a piacól ( ( Jele:, vagy,
Részletesebben24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
RészletesebbenV. Az egyváltozós valós függvények analízisének elemei
Az egyváltozós valós függvéyek aalíziséek elemei Soozat hatáétéke egye a, és b egye a -, és b - Ige egye a -, és b - Nem egye a -, és b - 6 Nem egye a -, és b - 7 Nem egye a _- i, és b 8 Ige egye a _-
Részletesebben3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló
. Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV
RészletesebbenPÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László
PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés
Részletesebben7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
RészletesebbenVÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
RészletesebbenNEMPARAMÉTERES ELJÁRÁSOK
Kály Zoltá: Statsztka II. NEMPARAMÉTERES ELJÁRÁSOK Az eddgek soá találkoztuk má olya eláásokkal, melyek a változók középétékét vzsgálták: egymtás-, páos-, függetle mtás t-póba, egy- és többszempotos vaaca
Részletesebben1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
RészletesebbenHajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011
1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }
RészletesebbenAz iparosodás és az infrastrukturális fejlődés típusai
Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa
Részletesebbenmin{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:
. A szupréum elv. = H R felülr l körlátos H fels korlátai között va legkisebb, azaz A és B a A és K B : a K Ekkor ξ-re: mi{k R K fels korlátja H-ak} } a A : a ξ : ξ fels korlát A legkisebb fels korlát
Részletesebben