A végeselem programrendszer általános felépítése (ismétlés)
|
|
- Emília Pataki
- 6 évvel ezelőtt
- Látták:
Átírás
1 SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kdolgozta: Szüle Veronka eg. ts.) IX. előadás A végeselem rogramrendszer általános feléítése (smétlés) A végeselem analízs a fzka szerkezet matematka modelljét testesít meg mel tartalmaz mnden olan jellemzőt (elemek eremfeltételek anagmnőségek stb.) mel a fzka valóságot modellez. A végeselem módszer elve a geometra véges elemekre való felosztása (úgnevezett végeselem háló készítése) az elemeket összekötő csomóontokra ható terhelések és ezek által létrejött kmenő mennségek között összefüggést meghatározó egenletrendszer megoldása. A végeselem analízs három können szétválasztható modulra bontható ezek az előkészítés (rerocess) megoldás (rocess) valamnt a kértékelés (ostrocess). Azonban ezeket a lééseket a döntés szakasz előz meg. 1. Döntés szakasz: tt szükséges megállaítan a robléma tíusát majd ennek megfelelően kjelöln a megoldáshoz használn kívánt módszert am az alább lééseket tartalmazza: Az adott fzka robléma tíusa (mechanka hőtan stb.) Az elemzés fajtája (statka dnamka stb.) Lneárs vag nemlneárs közelítéssel kívánjuk vzsgáln a valóságot Az alkalmazn kívánt modell tíusának megválasztása (3D-s testmodell héj rúd stb. Szmmetra követelmének teljesülése (fél neged modell tengelszmmetra cklkusság stb.) Alkalmazott elemtíusok kválasztása (háromszög négszög stb) Átlagos elem-élhossz (hálósűrűség) valamnt helenként hálósűrítés (részletesség) meghatározása Peremfeltételek heles megadása (bzonos alkatrészek kénszerekkel való helettesítése).
2 2. Előkészítés: a végeselem modell szmulácóra való előkészítése amel az következő léésekből áll: Anag tulajdonságok (anagjellemzők) defnálása ahol meg kell adn a szerkezet vag a szerkezet eges részenek (vonal felület vag akár véges elem) anagat anagjellemzőt. Geometra létrehozása (ez történhet a szoftver által nújtott eszközökkel vag mortálható CAD-fájlokból) ontok vonalak felületek térfogatok segítségével. Végeselem háló generálása (elemtíusok elemméretek elemkrtérumok megadása) az alább szemontok fgelembevételével: a hálót sűríten kell azokon a tartománokon ahol jelentősebb változás várható a mechanka mennségeket tekntve (éldául feszültség) a koncentrált erők vag nomatékok támadásontjára legen csomóont felvéve a megtámasztás helekre s kell csomóontnak esne. Peremfeltételek és terhelések (megfogások megtámasztások alkatrészkacsolatok kénszerek erők koncentrált vag megoszló erők nomatékok) megadása. Geometra modellezése Anagjellemzők megadása E
3 Végeselem felosztás generálása Knematka és dnamka eremfeltételek defnálása 3. Megoldás: a végeselem-számítás rész ahol a következő műveleteket kell elvégezn: a merevség mátrok és terhelésvektorok előállítása (először az eges elemekre majd az egész szerkezetre) csomóont terhelések és knematka eremfeltételek fgelembe vétele a szerkezet lneárs algebra egenletrendszerének megoldása amelnek segítségével meghatározásra kerülnek a szerkezet csomóont elmozdulása
4 Megoldás Merevség mátrok terhelésvektorok előállítása egenletrendszer megoldása elmozdulás mező számítása Kértékelés: eredmének megjelenítése elmozdulások reakcóerők alakváltozások feszültségek 3. Kértékelés: a felhasználó eldönt hog a szerkezet szlárdságtan állaota közül mt vzsgál részletesen és mt szemléltet. Íg lehetőség van éldául: A szerkezet ontjanak elmozdulását (deformált alak) megteknten vag a feszültségeket (az eges feszültség-koordnátákat külön-külön vag a redukált feszültségeket) kértékeln. A ma fejlett végeselem rogramok rengeteg segítséget nújtanak a munka ezen szakaszában (éldául mamáls feszültség helének értékének kjelzése alakváltozás anmácóként való megjelenítése). Az eredmén modellen való szemléltetése (éldául különböző színek segítségével) Deformácók alakváltozások megjelenítése anmácóként való ábrázolása. Mamum és mnmum értékek valamnt ezek helének bemutatása.
5 4.3.Általánosított síkfeszültség állaot Az általánosított sík feszültség állaotot (ÁS) szokás tárcsafeladatnak lletve végeselem rogramokban Plane stress roblem -nek nevezn. Tárcsa: olan test amelnek egk mérete lénegesen ksebb mnt a másk kettő értelmezhető közésík és a terhelés vastagság ment eredője a közésíkba esk. v u 1. ábra: Általánosított síkfeszültség feladat A tárcsa saját síkjában terhelt lemez. A formulákban alkalmazott feszültségek valójában falvastagság mentén kézett átlagértékek de ezt külön nem jelöljük. A feszültség tenzor és a független elemeből kézett feszültség vektor:. Hasonló alakot ölt az alakváltozás tenzor és a független elemekből kézett alakváltozás vektor: A 2. z Az alakváltozás vektorban z mennséget azért nem tüntettük fel mert feszültség árja és íg az alakváltozás energában nem játszk szereet. z A feladat jellemzője hog a végeselem háló csomóontjaban csak ránú u v elmozdulás smeretlen araméterekről beszélünk valamnt ennek megfelelő működtethetők. erők
6 4.4.Sík alakváltozás állaot Az általánosított sík alakváltozás állaot (SA) kfejezést a végeselem rogramokban Plane stran roblem -nek nevezk. Síkalakváltozásról beszélünk ha a vzsgált testnek van eg ktüntetett síkja amellel árhuzamos valamenn sík alakváltozása azonos és a síkok távolsága nem változk. v u 2. ábra: Eg folómentén éített gát keresztmetszete eltételezésenk szernt a keresztmetszet síkjára merőlegesen végtelen hosszúnak tekntett test bármelk keresztmetszetében uganolan alakváltozás és feszültség állaot ébred. Az len testek mechanka modellje egségn vastagságú metszet. Ebben az esetben az alakváltozás tenzor és a független elemekből kézett alakváltozás vektor: A 2. Hasonló alakot ölt a feszültség tenzor és a független elemekből kézett feszültség vektor:. z A feszültség vektorban z mennséget azért nem tüntettük fel mert az alakváltozás energában nem játszk szereet hszen alakváltozás árja zérus. A feladat ktűzése hasonló a síkfeszültség állaothoz vags a végeselem háló csomóontjaban ránú u v elmozdulás smeretlen araméterekről beszélünk valamnt ennek megfelelő erők működtethetők.
7 4.5.Tengelszmmetrkus feladat orgás vag tengelszmmetrkus állaot kfejezést a végeselem rogramokban Asmmetrc roblem -nek nevezk. 3. ábra: orgásszmmetrkus bemetszett szakító róbatest terhelése és modellje A forgásszmmetrkus test geometrája és terhelése s forgásszmmetrkus bármelk merdán metszetében uganolan alakváltozás és feszültség állaot ébred. Ebben az esetben az alakváltozás tenzor és a független elemekből kézett alakváltozás vektor: 1 r rz r 2 A. 1 z zr z rz 2 A feladat megadása a síkfeszültség és síkalakváltozás állaottal megegezk vags a végeselem háló csomóontjaban csak rz ránú u w elmozdulás smeretlen araméterekről beszélünk valamnt ennek megfelelő r z erők működtethetők. A végeselem rogramokban általában az r koordnátának az koordnáta felel meg. A három feladat végeselemes vzsgálata azért nagon hasonló mert a csomóont elmozdulásnak csak síkba eső koordnátája fordul elő. A továbbakban részletesen csak a síkfeszültség állaotú feladat végeselemes előállítását részletezzük.
8 4.6.Síkfeszültségű eremérték feladat Rugalmas ÁS eremérték feladat ktűzése a 4. ábrán látható. Az elmozdulás mező a helnek smeretlen függvéne: u u r u e v e u v ahol a felső ndeben a most a feladat síkbel jellegére utal. A vastagság ment átlagos alakváltozások síkbel része 1 A u u 2 ahol e e a síkbel nabla oerátor és a fel nem tüntetett síkra merőleges átlagos fajlagos núlás z kélettel számítható. 1 Az átlagos feszültségek tenzora (Hooke-törvén) és független elemenek oszlovektora: 2G A I 1. Az anagtörvén mátros formában s felírható: 1 E D Az egensúl egenlet: g g g g ahol g a gorsulás vektor (l. gravtácó forgás stb.) Knematka eremfeltétel: u r u r r A. u Dnamka eremfeltétel: n r A A síkbel feladat összesen 8smeretlen mezőt tartalmaz ezek egértelmű meghatározásához 8 skalár egenlet (részben arcáls dfferencálegenlet) és a megfelelő eremfeltételek állnak rendelkezésre. Azt a megoldást amel eleget tesz az előbb felsorolt egenleteknek egzakt megoldásának nevezzük. Természetesen most s közelítő megoldást keresünk a otencáls energa mnmuma elv felhasználásával.
9 A bevezetett mennségekkel a rugalmas síkbel feladatra a teljes otencáls energa az alább alakban írható 1 T T T u DdV u gdv u da 2 V V A Végeselem módszer alkalmazásakor az elemekre bontott tartománokon lokálsan aromált elmozdulással fejezzük k a otencáls energát: N elem e1 e u e e e ahol Nelem az elemek száma u energa e e 1 et e et e et e u D dv u g dv u da 2 V e V A az elemenként aromácóval kfejezett otencáls Végül a otencáls energa mnmum elvből határozhatók meg az elmozdulás mező smeretlen aramétere (csomóont elmozdulások).
3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
1. MÁSODRENDŰ NYOMATÉK
Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016
Pere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31
Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során
A végeselem módszer alapjai. 2. Alapvető elemtípusok
A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés
TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre
A szilárdságtan 2D feladatainak az feladatok értelmezése
A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai
3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben
1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára
13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai
Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk
Csatlakozás a végeselem modulhoz SolidWorks-ben
Csatlakozás a végeselem modulhoz SolidWorks-ben Meglévő alkatrész vagy összeállítás modellt ellenőrizhetünk különböző terhelési esetekben a CAD rendszer végeselem moduljával ( SolidWorks Simulation ).
2. Koordináta-transzformációk
Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,
Relációk. Vázlat. Példák direkt szorzatra
8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát
Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel.
Alkalmazások síkalakváltozásra: Gakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. SAF1. Az ábrán vázolt zárt vastagfal csövet
Vázlat. Relációk. Példák direkt szorzatra
7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
Statika gyakorló teszt I.
Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)
(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg.
SZÉCHENYI ISTVÁN EGYETEM MECHNIK - STTIK LKLMZTT MECHNIK TNSZÉK Elmélet kérdések és válaszok egetem alapképzésbe (Sc képzésbe) résztvevő mérökhallgatók számára () Mle esetbe beszélük tartós ugalomról?
V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I
ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára
Statika gyakorló teszt II.
Statika gakorló teszt II. Készítette: Gönczi Dávid Témakörök: (I) Egszerű szerkezetek síkbeli statikai feladatai (II) Megoszló terhelésekkel kapcsolatos számítások (III) Összetett szerkezetek síkbeli statikai
Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK.. Példa:. MEHNIK-STTIK GYKORLT (kidolgozta: Triesz Péter, eg. ts.; Tarnai Gábor, mérnöktanár) Összetett szerkezetek statikája (három csuklós ív, Gerber tartó)
SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)
SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A
az eredő átmegy a közös ponton.
M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös
Y 10. S x. 1. ábra. A rúd keresztmetszete.
zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott
Kiegészítés a felületi hullámossághoz és a forgácsképződéshez. 1. ábra. ( 2 ) A szögváltozó kifejezése:
Kegészítés a felület hullámossághoz és a forgácsképződéshez Két korább dolgozatunkban [ KD1 ], [ KD2 ] s foglalkoztunk már a fapar forgácsoláselméletben központ szerepet játszó felület hullámosság kalakulásával,
A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.
9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása végeselemes módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 213. október 8. Javítva: 213.1.13. Határozzuk
Mechanizmusok vegyes dinamikájának elemzése
echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.
GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára. A 4. gyakorlat anyaga. Adott: Geometriai méretek:
SZÉCHENYI ISTVÁN EGYETEM KÖZLEKEDÉSI ÉS GÉPÉSZMÉRNÖKI INTÉZET ÁLTALÁNOS GÉPÉSZETI TANSZÉK GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára A 4. gyakorlat anyaga Feladat: Saját síkjában
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált
2. Közelítő megoldások, energiaelvek:
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, eg. ts.) IV. eőadás. Közeítő megodások, energiaevek:.4. Ritz-módszer,.4.. Lineáris
10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai
(C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti
Tartóprofilok Raktári program
Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente
Mikro és makroökonómia BMEGT30A001 C1-es kurzus Jegyzet gyanánt 2018 ősz 3.ELŐADÁS
Mkro és makroökonóma BMEGT30A001 C1-es kurzus Jegzet ganánt 2018 ősz Az tt közzé adott anag néhol részletesebb, néhol csak utal arra, amt órán vettünk. A számonkérés kzárólag az órán elhangzott anagból
7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.
Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Hely és elmozdulás - meghatározás távolságméréssel
Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja
MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:
Mérnöki alapok 5. előadás
Mérnök alapok 5. előadás Készítette: dr. Várad Sándor Budapest Műszak és Gazdaságtudomán Egetem Gépészmérnök Kar Hdrodnamka Rendszerek Tanszék, Budapest, Műegetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével
Példa: Tartó lehajlásfüggvényének meghatározása a Rayleigh Ritz-féle módszer segítségével Készítette: Dr. Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2013. szeptember 23. Javítva: 2013.10.09.
Nemlineáris függvények illesztésének néhány kérdése
Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk
Végeselem módszer 7. gyakorlat
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 7. gyakorlat (kidolgozta: Szüle Veronika egyetemi ts.) Feladat: harang sajátrezgéseinek meghatározása 500 100 500 1000 250 250 1.
Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .
Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban
A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I
GÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR ALKALMAZOTT MECHANIKA TANSZÉK A V É G E S E L E M M Ó D S Z E R M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki
Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim
Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök
Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
időpont? ütemterv számonkérés segédanyagok
időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások
Többváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.
TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású
6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
MECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül
DFTH november
Kovács Ernő 1, Füves Vktor 2 1,2 Elektrotechnka és Elektronka Tanszék Mskolc Egyetem 3515 Mskolc-Egyetemváros tel.: +36-(46)-565-111 mellék: 12-16, 12-18 fax : +36-(46)-563-447 elkke@un-mskolc.hu 1, elkfv@un-mskolc.hu
5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája
TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...
Mechanika II. Szilárdságtan
echanika II. Szilárdságtan Zalka Károl / q / B Budapest, 05 Zalka Károl, 05, e-kiadás Szabad ezt a kiadvánt sokszorosítani, terjeszteni és elektronikus vag bármel formában tárolni. Tilos viszont a kiadvánt
Írja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
Másodfokú függvények
Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)
STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A
6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)
SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy
A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként
A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni
MUNKAGÖDÖR TERVEZÉSE
MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek
a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont
1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza
2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:
Teljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok
Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
A statika és dinamika alapjai 11,0
FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-
A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például
HELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
CAD technikák Mérnöki módszerek gépészeti alkalmazása
Mérnöki módszerek gépészeti alkalmazása XI. előadás 2008. április 28. MI A FEM/FEA? Véges elemeken alapuló elemzési modellezés (FEM - Finite Element Modeling) és elemzés (FEA - Finite Element Analysis).
Kalkulus II., harmadik házi feladat
Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség
Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki
Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. mőszaki számítások: - analitikus számítások gyorsítása, az eredmények grafikus
Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE
Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik
A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:
14. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Tarnai Gábor, mérnöktanár) Érdes testek - súrlódás
SZÉCHENYI ISTVÁN EYETEM LKLMZOTT MECHNIK TNSZÉK 4. MECHNIK-STTIK YKORLT (kidolgozt: Trni ábor, mérnöktnár) Érdes testek - súrlódás 4.. Péld. dott: z ábrán láthtó letőn elhelezett test méretei és terhelése.
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK
KÖZLEKEDÉSGÉPÉSZ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA MINTAFELADATOK 1. feladat 1 pont (Feleletválasztás) Témakör: Közlekedési ismeretek Húzza alá a helyes választ, vagy karikázza be annak betűjelét!
Végeselem analízis 7. gyakorlat (kidolgozta: Dr. Pere Balázs)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis 7. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test stacionárius hővezetési feladata és hőfeszültségeinek
Robotok direkt geometriája
Robotok drekt geometrája. A gyakorlat célja Drekt geometra feladatot megvalósító osztály mplementálása. A megvalósított függvénycsomag tesztelése egy Stanford kar végberendezése pozícójának meghatározásához.
Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM Rúdszerkezet sajátfrekvenciája ÓE-A05 alap közepes haladó
1.1. Halmazelméleti alapfogalmak
. Halmazok, relációk, függvének.. Halmazelméleti alapfogalmak... A halmaz fogalma A halmazt a halmazelmélet alapfogalmának tekintjük és ezért nem definiáljuk. Szokás azt mondani, hog a halmaz különböző
Halmazok Egész számok
Halmazok.. Egész számok A,,,,,,,, számokat egész számoknak nevezzük. ármel két egész szám összege, szorzata, különbsége is egész szám..5. ábra Adóslevél.6. ábra Az adósságok könvelése is megkívánta a negatív
BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3
BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F
KERESZTMETSZETI JELLEMZŐK
web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,
Az 1. gyakorlat anyaga. B x. Rácsos szerkezet definíciója: A rudak kapcsolódási pontjaiban (a csomópontokban) csuklók
SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK VÉGESELEM MÓDSZER Az 1. gyakorlat anyaga Feladat: síkbeli rácsos tartó F 1 A y F 2 6x5 m F3 10 m B x Adott: Anyag: E = 2,1 10
A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.
modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
VASBETON LEMEZEK. Oktatási segédlet v1.0. Összeállította: Dr. Bódi István - Dr. Farkas György. Budapest, 2001. május hó
BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke VASBETON LEMEZEK Oktatási segédlet v1.0 Összeállította: Dr. Bódi István - Dr. Farkas Görg Budapest, 001. május
- Anyagi pontrendszer: anyagi pontok halmaza / összessége.
LFGLK mechnk fk egk (klsskus) résterülete mechnk tárg: testek (ng pontok ng pontrendserek) heletváltottó mogásnk és eeket létrehoó htásoknk (erőknek) vsgált vsgált testek hlmállpot sernt besélhetünk: -
Darupályák ellenőrző mérése
Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)