Végtelen sorok konvergencia kritériumai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Végtelen sorok konvergencia kritériumai"

Átírás

1 Eötvös Loránd Tudományegyetem Természettudományi kar Végtelen sorok konvergencia kritériumai BSc szakdolgozat Készítette: Témavezeto : Bogye Tamara Szentmiklóssy Zoltán Matematika BSc adjunktus Matematika tanári Analízis szakirány Tanszék Budapest 20

2 Tartalomjegyzék Bevezetés 4. Végtelen sorok története 5.. Ókor Közép és koraújkor Alapok Alapfeltételek és deffiníciók Végtelen sorok és műveletek A legismertebb kritériumok Cauchy - kritérium Minoráns kritérium Majoráns kritérium Leibniz - kritérium Cauchy-féle Gyökkritérium d Alambert féle hányadoskritérium Kevésbé ismert kritériumok Hányados-minoráns kritérium Hányados-majoráns kritérium Raabe kritérium Kummer kritérium Bertrand - kritérium Gauss - kritérium

3 4.7. Integrálkritérium Kondenzációs kritérium Dirichlet I. kritériuma Dirichlet II. kritériuma Abel - kritérium További néhány kritérium Jermakov - kritérium Jame - kritérium Logaritmikus kritérium Végtelen sorok a középiskolában Számsorozatok Végtelen sorok Köszönetnyilvánítás 36 3

4 Bevezetés Szakdolgozatom témájaként a végtelen sorok konvergencia kritériumait választottam. Fontosnak tartottam, hogy olyan területét mutassam meg a matematikának, mely hozzám is közel áll. A tudományra fogékony embereket mindig is foglalkoztatta az a gondolat, hogy vajon mi lehet egy - egy végtelen sor összege, és ezt hogyan számolhatjuk ki. E, korokon átívelő problémára szeretnék néhány megoldást mutatni munkám során. 4

5 . fejezet Végtelen sorok története.. Ókor Az ókorban is gyakran voltak olyan problémák, feladatok, melyek megoldásához bizonyos sorozatok, sorok ismerete elengedhetetlen volt, ezért már az akkori tudósokat is mélyen foglalkoztatták. A babilóniai aritmetika foglalozott először a mértani sorozattal és a négyzetszámok sorozatával. Külön táblázatokon vezették az és az sorokat, melyekről elmondható, hogy általánosságban is ismert volt előttük első n elemeiknek összege és maga a kiszámítási folyamat is. Ám az egyiptomiaktól sem álltak távol ezen ismeretek. Ők a felezés, vagy ahogyan hívták kettőzés műveletével kapták az,, 8, 6, mértani sorozatot. Ezt főleg a gabonamennyiségek bizonyos törtrészeinek kiszámításakor hasznosították. Ismerték tehát a mértani és a számtani sorozat fogalmát is. Ezekre példát az Ahmesz-papirusz két feladata ad : 5

6 . 00 cipót 5 felé kell osztani, úgy, hogy a részek számtani sorozatot alkossanak, és a 3 nagyobb rész összegének a hetede legyen akkora, mint a két legkissebb rész összege. Megoldásnak a következőt adták: ( 2, 0 5, 20, 29, 38 ) ház mindegyikében 7 macska lakik, amelyek közül mindegyik megevett fejenkét 7 egeret, és minden egér 7 kalászt, és minden kalászban volt 7 szem búza. Mennyi ezek összege? Megoldásuk: 7 ház 49 macska 343 egér 240 kalász 6807 búzaszem 9607 A lapon tehát egy mértani sorozat első 5 eleme, melynek hányadosa 7, és maga az összeg fedezhető fel. Az ókori görögöknél pedig már felmerül a végtelen sok szám összegének a gondolata is. A leghíresebb feltevések a végtelen sorok összegével kapcsolatban Zénonhoz köthetőek, és az Ő paradoxonjaihoz. Ilyen ellentmondások, például, hogy a kilőtt íj sosem ér célba, ugyanis hiába cézunk például egy almára a nyíl először megteszi az almáig tartó távolság felét, majd a maradék távolság felét, majd a hátralévőnek a felét és így tovább. Ekkor ugyan azt az eredményt kapjuk, mint amikor megpróbálunk elindulni A pontból B pontba a fentiekhez hasonló módon. Illetve, hogy Akhilleusz akármennyire is gyorsabban tud futni a teknősnél sosem fogja utolérni. Persze Zénon még nem tudta, hogy végtelen sok szakaszt egymás után téve egy véges szakaszt kaphatunk. Ma már ezt is tudjuk, de ehhez még rengeteget kellett fejlődnie a tudománynak. Először majd 00 évvel Zénon után, Arisztotelész fedezte fel, hogy az egynél kisebb kvóciensű mértani soroknak véges összege van. Ő az a, a 2, a 3,...a n mértani sorozatot vizsgálta, melynek hányadosa. 4 6

7 .2. Közép és koraújkor A középkorban csak a fizikai problémákkal kapcsolatban merültek fel a végtelen sorok és azok összegei. Ám az elkövetkezendő korokban óriási fejlődésnek indult a tudomány ezen ága. A XVI. században Francois Viete megadta a mértani sor összegének képletét. A XVII. században Gregory De Saint Vincent Zenon paradoxonjait vizsgálta. Ő mutatta meg, hogy, ha egy mértani sor kvóciense -nél kisebb, akkor is véges az összege. Még Newton előtt alkalmazta a binomiális tételt, és ismerte az arctan x hatványsorát is. Tudta ugyanis, hogy y = +x 2 görbe alatti terület [0, x] intervallum felett épp arctan x, az +x 2 osztásból kapta: Ebből = x 2 + x 4 x x 2 Tehát x 0 dx. = x +x 2 0 ( x2 + x 4 x 6...) dx. arctan x = x x3 3 + x5 5 x Ez az úgynevezett Gregory sor, ami azonos arctan x Taylor-sorával (40 évvel Taylor előtt). Ugyan ebben a században Nicolaus Mercator hasonlóan nyerte az ln( + x) Mercator sorát. Az ezt követő időkben két kivánló tudós egymással párhuzamosan fedezte fel a differenciál, és integrál számítást, mely nagy előrelépés volt a végtelen sorok fejlődésében is. Ezen tudósok Sir Isaac Newton és Gottfried Wilheim Leibniz voltak. Newton kezdte el alkalmazni azt a módszert, hogy az integrálandó függvényt először hatványsorba fejtette, majd ezt integrálta. Sorbafejtési eljárásához használta a binomiális tételt, racionális függvényeknél a Gregory eljárás, határozatlan együtthatók módszerét, új változók bevezetését. Eleinte azt hitte minden függvény hatványsorba fejthető, ezáltal az integrlás könnyed eljárássá válik majd. Csak később jött rá, hogy ez koránt sincs így. Ezzel szemben Leibniz nem akart minden függvényt sorba fejteni, inkább zárt alakkal szeretett dolgozni. Többek között előállították a már emlegetett ln( + x)-et, de a sin x és cos x is az Ő munkásságuk gyümölcse. Brook Taylor Newton interpolációs képletét áltlánosítva kapta a Taylor-sort. Ennek egyik speciális alakját később, de Taylortól eltérő 7

8 módon állította elő Maclaurin. A XVIII. század nagy alakjai, Leonhard Euler, Joseph Louis Lagrange, és Pierre Simon Laplace munkásságát is rendkívül fontos megemlíteni. 797-ben Lagrange megjelentette Théorie des fonctious analytiques ( Az analitikus függvények elmélete) című könyvét. Ebben a differenciálás algebrai módszereit részletezi. Többek között bizonyította, hogy előállítható minden f(x + h) = f(x) + a h + a 2 h a n h n + R n alakú Taylor - sorral csak algebrai úton, majdnem mindenütt. A differenciál hányadosokat Taylor sor együtthatóiént értelmezte. Így a határérték fogalmát kikerülte. Fő hibája, hogy csak az analitikus függvényekre érvényes. Elsőként határozta meg a (R n ) maradéktagot konkrét függvényeknél, és először állította elő a Taylor - sor maradéktagját integrál alakban. Ő használta először a középértéktételt, a derivált kifejezést, és az f (x) illetve az f (n) (x) jelöléseket. A XVIII. században meghatározták a konvergencia pontos fogalmát, feltételét, és a végtelen sorok összegét helyesen értelmezték. A nagy áttörést a XIX. században Augustin Louis Cauchy felfedezései hozták meg. Meghatározta, hogy egy végtelen sor összege részletösszegek sorozatának hatátértéke, tehát egy sor akkor konvergens, ha ez a határérték létezik. A váltakozó előjelű sorokra bevezette az abszolút konvergencia fogalmát. Összefüggést adott az abszolútértékű tagok álltal alkotott sor konvergenciája és az eredeti sor konvergenciája között. Konvergencia vizsgálati eredménye - képpen megfogalmazott több konvergencia kritérimot is. Ezek közül a leghíresebb a Róla elnevezett Cauchy-féle konvergencia kritérium. Bevezette a komplex változójú hatványsoroknál a konvergencia kör fogalmát, amely kiszámítható az r = lim sup n a n Ez az úgy nevezetett Cauchy-Hadamard formula. A függvény hatványsorának konvergenciája nem feltétlenül jelenti azt, hogy a sor az alapfüggvényhez tart. Észrevette, hogy ha két sor abszolút konvergens, akkor direkt szorzatuk is konvergens. És a határértéke az alapsor határértékeinek szorzata. Ezután Peter Gustav Lejenue Dirichlet, német matematikus, akinek a nevéhez fűződik az előírt peremértékű harmonikus függvények problémája. Ő fedezte fel, hogy az 8

9 a, a + b, a + 2b, a + 3b... a + nb számtani sorozatban végtelen sok prímszám van, ha a, b-nek nincs közös osztója, kivéve az egyet. A tudomány további fejlődését olyan kiemelkedő matematikusok segítették, mint Georg Friedrich Bernhard Riemann, Simeon Devis Poisson, Moritz Cantor, Georg Gaberiel Stokes, Karl Teodor Wilhelm Weierstrass, Karl Fridrich Gauss, Jean Baptiste Joseph Fouier, Henry Louis Lebesgue, Haar Alfréd, Fehér Lipót, Riesz Frigyes, Ernst Fischer. Természetesen napjainkban is vannak akik e tudományág elkötelezett hívei. 9

10 2. fejezet Alapok 2.. Alapfeltételek és deffiníciók Ebben a fejezetben bevezetem a végtelen sor fogalmát, a konvergenciáját, és a sorokkal való néhány műveletet Definíció. []A a n végtelen sor részletösszegein az s n = n a i, n Z + számokat értjük. Ha a részletösszegekből képzett (s n ) sorozat konvegens és határértéke A, akkor azt mondjuk, hogy a a n végtelen sor konvergens és az összege A. Ennek jelölése a n = A. Tehát s 0 = 0 a k = a 0 k=0 s = a k = a 0 + a k=0 s n = n a k = a 0 + a +...a n k=0 Amennyiben az (s n ) sorozat divergens akkor azt mondjuk, hogy a a n végtelen sor divergens. Ha lim n s n = (vagy ) akkor azt mondjuk, hogy a n végtelen sor összege (vagy ). Ennek jelölése a n = (illetve ) Példa. [] sor n-dik részletösszege s n = n igaz, hogy lim n s n = 2 ezért a sor konvergens és összege 2. i= i=0 2 i = 2 2 n. Mivel 0

11 2..3. Tétel. []Ha (a n ) sor konvergens, akkor lim n a n = 0. Bizonyítás. A sor összege legyen A. Mivel a n = (a a n ) (a a n ) és (a a n ) = s n (a a n ) = s n igaz, ezért a n = s n s n Tehát a n A A = 0. Ám ez a tételben szereplő feltétel a konvergenciához szükséges, de nem elégséges feltétele. Erre jó példa a következő: Példa. []Vegyük a úgynevezett végtelen harmonikus sort. n Bizonyítás. Nézzük a sor s n, n-ik részletösszegét, amely ( n ) és s 2n-t. s 2n s n = ( n ) ( n ) = ( n+ + n n ) 2n n = 2 n-re. Tegyük fel, hogy a harmonikus sor konvergál A-hoz. Ekkor, ha n akkor s 2n s n A A = 0, ami nem lehet. Tehát a sor divergens Tétel. []. Egy nem negatív tagú sor akkor és csak akkor konvergens ha részletösszegeinek sorozata korlátos felölről. 2. Ha egy nem negatív tagú sor divergens akkor az összege végtelen. Bizonyítás. A sor tagjai nem negatívak, akkor a sor részletösszegeinek sorozata monoton nő. Ha ezen sorozat korlátos felülről, akkor konvergens, ha viszont nem korlátos akkor a végtelenhez tart. Tehát a végtelen sor vagy konvergens, vagy divergens és az összege végtelen. Így a végtelen harmonikus sor is divergens és az összege Tétel. []Cauchy - kritérium A a n végtelen sor akkor és csak akkor konvergens, ha ɛ > 0 - hoz N index, hogy n N és bármely m n -re a n+ + a n a m < ɛ.

12 2.2. Végtelen sorok és műveletek Tétel. []Ha a n sor konvergens és összege A, valamint n=0 és összege B akkor (a n ± b n ) sor is konvergens és összege A ± B. n=0 b n sor is konvergens Tétel. []Adott a a n sor, mely konvergens és összege A, valamint a c R szám. n=0 Akkor a c a n sor is konvergens és összege c A. n= Tétel. []Konvergens sorba tetszőleges számú zárójelet beiktatva, nem változik a konvergencia ténye és a sor összege Tétel. []Bármely a n végtelen sornak elhagyva valahány véges számú tagját, n=0 sor konvergenciája illetve divergenciájának ténye nem változik Tétel. []Bármely a n végtelen sorhoz hozzáadva valahány véges számú tagot, a n=0 sor konvergenciájának illetve divergenciájának a ténye nem változik Definíció. []A a n konvergens sor első n (n Z + ) tagjának elhagyásával nyert h n = n =n+ n=0 a n konverges sor összegét az eredeti sor maradékösszegének hívjuk Tétel. [] a n konvergens sor maradékösszegeinek h n (n Z + ) végtelen sorozata nullsorozat. n= Definíció. []A a n végtelen sort abszolút konvergensnek nevezzük, ha a a n sor konvergens. n=0 n=0 n= Tétel. []. Minden abszolút konvergens sor konvergens. 2. Egy abszolút konvergens sor bármely átrendezettje is abszolút konvergens, és összege megegyezik az eredeti sor összegével. n= Definíció. []A a n végtelen sort feltételesen konvergensnek mondjuk, ha konvergens, de nem abszolút konvergens. 2

13 2.2.. Definíció. []Az (a n ) számsorozatot akkor nevezzük korlátos változásúnak, ha (an+ a n ) sor abszolút konvergens Tétel. []Riemann átrendezési tétele Ha (a n ) sor feltételesen konvergens akkor az átrendezettjei között van olyan amelyiknek az összege, van amelyiknek, minden A R számra van olyan amelyik konvergens és az összege A, és olyan is van amelyik divergens és nincs összege. 3

14 3. fejezet A legismertebb kritériumok 3.. Cauchy - kritérium 3... Tétel. []A a n végtelen sor akkor és csak akkor konvergens, ha ɛ > 0 - hoz N index, hogy n N és bármely m n -re a n+ + a n a m < ɛ Minoráns kritérium Tétel. []Ha 0 a n,b n és N, hogy az a n b n n > N-re valamint a n divergens, akkor a b n is divergens Példa. [] Tudjuk, hogy n kérdéses sort. Tehát a konvergens - e vagy divergens? 2n+ divergens és 3n < 2n+. Tehát a sor divergens. 2n+ = 3n 3 n sor minorálja a 3.3. Majoráns kritérium Tétel. []Ha 0 a n,b n és N, hogy az a n b n n > N-re valamint b n konveges, akkor a a n is konvergens Példa. []Konvergens - e vagy divergens az alábbi sor? 4

15 . létezik egy n 4 +5n 25 n úgy, hogy n < n. Például konvergens sor majorálja az eredeti sort. Tehát sor konvergens. n 4 +5n 25 n=n 2 n Leibniz - kritérium Tétel. []Ha az (a n ) sorozat monoton csökkenő és nullához tart, akkor ( ) n a n sor konvergens. Bizonyítás. A sor n-ik részletösszege legyen s n. A feltételből következik, hogy s 2 s 4... s 2n s 2n s 2n 3... s 3 s n-re. Így (s 2n ) sorozat monoton csökkenő és alulról korlátos, míg az s 2n sorozat monoton növő és felülről korlátos. Ebből következően mind kettő konvergens. Mivel igaz, hogy s 2n s 2n = a 2n 0 lim n s 2n = lim n s 2n Amiből következik, hogy az (s n ) sorozat konvergens Példa. []Döntsük el a következő sorról, hogy konvergens - e vagy divergens? ( ) n n+. Az n+ sorozatról tudjuk, hogy monoton fogyó nullsorozat, ezért n (n+2) n (n+2) a sor a Leibniz - kritérium szerint konvergens. Az n+ n (n+2) = n+2 n (n+2) = n+2 n (n+2) n (n+2) = n n (n+2) n Cauchy-féle Gyökkritérium Tétel. []. Ha olyan q < szám, hogy n a n < q teljesül elég nagy n esetén, akkor a n sor abszolút konvergens. 2. Ha lim n n a n <, akkor a n sor abszolút konvergens. 3. Ha végtelen sok n index esetén n a n akkor a a n sor divergens. n=0 5

16 Bizonyítás.. feltétel szernt a n < q n minden elég nagy n esetén. A q n geometriai sorról tudjuk (q R). Ha q, akkor [2.3 Tétel] szerint a sor divergens mivel a konvergenciához szükséges feltétel nem teljesül: lim q k 0. Ugyanis ha q < akkor ugyanis lim n q n+ = 0. s n = q k = qn+ q és q k = lim s n = q Példa. []Konvergens vagy divergens a ( ) n5 sor? n 4 A fenti tételt alkalamazva: Tudjuk, hogy lim n ( n n ) nn e Megjegyzés n ( ) n 4 n5 = ( ) n4. n 4 <. Tehát az eredeti sor konvergens.. A gyökritérium feltételei, nem szükségesek ahhoz, hogy egy sor konvergens legyen. n Például: konvergens, pedig lim n 2 n = n lim n n (a n ) = feltételből sem a sor konvergenciájára, sem pedig a divergenciájára vonatkozólag semmit sem következtethetünk. Például: sor konvergens, míg divergens, n 2 n n n pedig lim n = lim n 2 n = n a n sor konvergenciájához nem elég, hogy elég nagy n-re n a n <. Mert ebből csak az következik, hogy a n < elég nagy n-re, és nem az, hogy a n 0 ami a konvergenciához lenne szükséges feltétel. 6

17 3.6. d Alambert féle hányadoskritérium Tétel. []Legyen a n, a n > 0 n Z + sor konvergens, ha q R, melyre fennáll: n=0 A sor divergens ha a n+ a n. Bizonyítás. qk+ q k q k, k=0 a n+ a n q < n Z +. 0 < q < konvergens sor két egymást követő tagjának hányadosa = q. Tudjuk, hogy igaz, ha a a k, a k > 0 konvergens (ahol a k melynek tagjai véges sok tag kivételével a k sor tagjait minorálják) és a k, igaz, hogy a k+ a k a k+ a k tagjának hányadosa, így ha a k, hogy a k+ a k a k+ a k Megjegyzés: k=0 a k is konvergens. k=0 a k divergens. k=0 a k > 0 tagjaira divergens sor két egymást követő k=0 a k > 0 divergens és a k, k=0 a k > 0 tagjaira igaz,. A hányadoskritérium feltételei nem szükségesek, hogy egy sor konvergens legyen. n Például sor konvergens, annak ellenére, hogy lim 2 n 2 n =. (n+) 2 Tehát nem létezik olyan q <, hogy igaz lenne n 2 (n+) 2 n Z +. < q minden elég nagy 2. Ha lim n a n+ a n = feltételből sem a konvergenciára sem a divergenciára nem lehet következtetni, például divergens, konvergens, n n 2 pedig lim n n n+ = lim n n2 (n+) 2 = Következmény. []Ha a n > 0 akkor a n konvergens. n=0 lim n a n+ a n < és 0 lim k a k+ a k < Példa. []Konvergens - e az a n = 2n n! n n végtelen sor? a n+ 2 n+ (n+)! (n+) n+ 2 = n n! n n a n = Mivel tudjuk, hogy 2 n 2 (n+)! (n+) n (n+) 2 n n! = 2 n n n = n+ n+ n = + n n+ 2n (n+)! n 2 n n! (n+) n. Ezért a fenti egyenlet tovább egyenlő: n n = 2 n n 7

18 Tehát a n konvergens. 2 2 <. (+ n )n e Állítás. []Ha (a n ) sorozat tagjai különböznek 0-tól, akkor lim sup a n+ a n < akkor lim sup n a n < Következmény. []Ha (a n ) sorozat tagjai nullától különböznek és a n sorról a hányadoskritériummal eldönthető, hogy konvergens-e, akkor a gyökritériummal is. De fordítva sajnos ez nem igaz Példa. [] n x n sor abszolút konvergenciája x < esetén a hányados kritériummal: n=0 (n+) x n+ = x n+ n x n n x <, ha n. Gyökkritériummal: n n x n = n n x n = n n x x 3 n ha n páros Példa. []Adott (a n ) = n=0 5 n ha n páratlan Gyökitériummal: Hányadoskritériummal: aa n+ a n = Tehát: lim sup a n+ a n lim n 2n a 2n = 3 lim n 2n+ a 2n+ = 5 sup n a n = 3 konvergens. ( )n ha n páros ( )n ha n páratlan = gyökkritériummal könnyedén míg hányadoskritériummal nem dönthető el ez esetben a konvergencia. 8

19 4. fejezet Kevésbé ismert kritériumok 4.. Hányados-minoráns kritérium Ha (z n ) pozitív tagú sor divegens, N Z + pedig olyan, hogy ettől kezdve k egészre a k > 0 és a k+ a k z k+ z k akkor (a k ) sor is divergens. Bizonyítás. A fenti feltételben szereplő egyenlőtlenséget N < n mellett k = N-re, k = N + -re...,k = n indexre felírva majd összeszorozva őket kapjuk, hogy N < n a n a N zn z N 4.2. Hányados-majoráns kritérium Ha (z n ) pozitív tagú konvergens sor, N Z + pedig olyan, hogy ettől kezdve k Z a k+ a k z k+ z k akkor (a n ) abszolút konvergens sor. Bizonyítás. A fenti feltételben szereplő egyenlőtlenséget N > n melett k = N-re, k = N + -re...,k = n indexre felírva majd összeszorozva őket kapjuk, hogy N < n a n a N zn z N 9

20 4.3. Raabe kritérium Tegyük fel, hogy pozitív egész n-re az a n > 0 sorozat, és legyen R n = n ( an a n+ ). Ha lim inf R n > (a n ) sor konvergens. 2. Ha R n egy indextől kezdve (a n ) sor divergens. Bizonyítás.. A feltétel szerint olyan pozitív r és olyan pozitív egész N index melytől teljesül a következő egyenlőtelenség: n ( an a n+ ) > + r Ha ezt a kövezkező módon átrendezzük: n a n (n + ) a n+ > r a n+, n N majd N, N +,..., n indexekre alkalmazzuk: N a N (N + ) a N+ > r a N+ (N + ) a N+ (N + 2) a N+2 > r a N+2. n a n (n + ) a n+ > r a n+ majd az egyenlőtlenségeket összeadva, a bal oldalt felülről becsülve: adódik. Ezt átalakítva N a N > N a N (n + ) a n+ > r N a N r > n+ e=n+ a e. n+ a e e=n+ 20

21 Majd mindkét oldalhoz hozzáadjuk a N a e -t. e= N a N r + N e= a e > n+ e= a e. A bal oldalon álló szám a jobb oldali részletösszegek felső korlátja, így ebből következik, hogy a e konvergens. 2. Az előzőekhez hasonlóan adódik, csak itt n ( an a n+ ), n N összefüggést alakítjuk át és írjuk fel N, N +,...,n indexekre. Majd az így nyert egyenlőtlenségeket összeadva, (n + )-el elosztva N a N n+ a n+ kapjuk. Itt már minoráns kritériumot alkalmazva kiderül, hogy a e divergens sor Példa. []Döntsük el a következő sorról, hogy konvergens - e vagy sem! n ( α n) = an sorozatból képzett végtelen sor. Ha α 0 akkor a n pozitív tagú sorozat. Alkalmazzuk a Raabe - kritériumot: R n = n (( Kis trükkel átalakítjuk: α! n! (α n)! α! (n+)! (α (n+)!) ) ) = n ( n+ α n ). R n = n ( n α+α+ ) = n ( + α+ n ) = (α + ) α +. n α n α n α 2

22 4.4. Kummer kritérium Tegyük fel, hogy pozitív egész n-re a n melyre igaz, hogy =. Ekkor c n. Ha lim inf(c n a n a n+ c n+ ) > 0 (a n ) konvergens. > 0, és c n pozitív tagú segédsorozat, 2. Ha egy indextől nézve c n a n a n+ c n+ 0 a n divergens. Bizonyítás.. lim inf(c n a n a n+ c n+ ) > 0 feltételből következik, hogy létezik olyan ɛ R +, hogy egy N indextől kezdve Ebből következik, hogy c n a n a n+ c n+ ɛ. c n a n c n+ a n+ ɛ a n+. Tehát (c n a n ) egy indextől monoton csökkenő pozitív tagú sorozat így konvergens. cn a n c n+ a n+ konvergens sor, mert n esetén s n = n c k a k c k+ a k+ = c a c n a n c a lim n c n a n. k= Alkalmazzuk a majoránskritériumot így ɛ a n konvergens. Tehát a n is konvergens. 2. A feltétel szerint létezik olyan N index, amelytől kezdve Tehát akkor az Mivel c n hogy a n divergens. c n a n a n+ c n+ 0 a n a n+ c n c n+ = cn c n+. = ezért a hányados - minoráns kritériumot alkalmazva kapjuk, 22

23 4.5. Bertrand - kritérium Tegyük fel, hogy pozitív egész n-re a n > 0 sorozat és B n = (n ( an a n+ ) ) ln n, n Z +.. Ha lim inf B n > konvergens a a n sor 2. Ha egy indextől kezdve B n a n divergens. Bizonyítás.. A Kummer kritériumot alkalmazzuk c n = n ln n, n Z +, n 2 segédsorozattal. lim inf(n ln n a n a n+ (n + ) ln(n + )) > 0 átalakítjuk: lim inf(ln n (n ( an a n+ ) ) + (n + ) ln n n+ ) > 0 majd a következő összefüggés: (n + ) ln n n+ = (n + ) ln( + n ) = ln( + n )(n+) segítségével kapjuk: lim inf ln n(n ( an a n+ ) ) <, ami a kritérium feltétele a konvergenciához. 2. Itt ugyanúgy a Kummer kritériumot alkalmazzuk a c n = n ln n, n 2 segédsorozattal. Azaz, ha: (n ln n a n a n+ (n ) ln(n + )) 0 Akkor átrendezve: ln n (n ( an a n+ ) ) + (n + ) ln n n+ ) 0 23

24 kapjuk. Az (n + ) ln n vizsgálva kapjuk, hogy egyenlő n+ ln( + n )(n+) - hez. Tehát (n + ) ln n n+ <. így kapjuk, hogy: ln n (n ( an a n+ ) ). Tehát a végtelen sor divergens Példa. [] n 2 ln n n 2 konvergens Példa. []További pédák divergens sorokra: vagy a n 2 ln n n n 2 n ln n 4.6. Gauss - kritérium Tegyük fel, hogy pozitív egész n-re a n > 0 sorozat, és olyan α, β R +, γ R és (b m ) korlátos sorozat, hogy an a n+ = α + γ n + bn n +β, n Z + akkor, ha. α > esetén konvergens, α < esetén pedig divergens a (a n ) végtelen sor. 2. Ha α = és γ > akkor konvergens. Ha pedig α = és γ akkor (a n ) végtelen sor divergens. Bizonyítás. 2. α = esetén a Raabe - kritériumot alkalmazva lim n n ( an a n+ ) = lim n γ + bn n β = γ. Ekkor γ > esetben (a n ) konvergens, γ < esetén deivergens. Amennyiben γ = Bertrand - kritériummal belátható, hogy divergens. Ugyanis lim n n ( an a n+ ) ln n = lim bn ln n n β = 0, ami kisebb mint. 24

25 . Ha α >, akkor hányadoskritériummal lim n a n+ a n = lim n α+ γ n + bn n +β = α ami kisebb, mint, tehát a (a n ) sor konvergens. Ha az α < akkor értelemszerűen adódik, hogy α > tehát a sor divergens Integrálkritérium Tétel. []Legyen a Z és f : [a, ] R félegyenesen monoton csökkenő és nem negatív függvény. f(n) végtelen sor akkor és csak akkor konvergens (illetve divergens), ha a Példa. [] n=0 n=a f(x)dx improprius integrál konvergens (divergens). n konvergens -e? n 2 +2 x dx = lim y x 2 +2 n x dx = x 2 +2 lim y [ 2 ln(x2 + 2)] y = lim y ( 2 ) ln(y2 + 2) 2 ) ln(2 + 2) = Tehát a sor divergens. lim y ( 2 ) ln(y2 + 2) 2 ) ln(3) = lim y 2 ln( y ) Példa. [] n α α > hiperharmonikus sor konvergens -e? y dn = lim n α y n α dn = lim n [ n α+ α+ ]y = lim n ( y α ). α α Tehát az intergrál konvergens, ebből következően a hiperharmonikus sor is könvergens. 25

26 4.8. Kondenzációs kritérium Tétel. []Legyen (a n ) sorozat monoton csökkenő és nem negatív, akkor (a n ) és (2n a 2 n) végtelen sorok egyszerre konvergensek, vagy egyszerre divergensek. Bizonyítás. A fenti két sor mindeggyike nem negatív tagú, tehát a konvergencia attól függ, hogy a részletösszeg - sorozat korlátos - e felülről. Ehhez kellenek s n = n a k illetve S n = n 2 k a 2 k k= k= sorok részletösszegei. Illetve s 0 = 0 és S 0 = 0. Mivel ezen felül a 2n a i i > 2 n így S n S n = 2 n a 2 n s 2 n+ s 2 n S n = n (S k S k ) n (s 2 k+ s 2 k) = s 2 n+ s 2. k= k= Tehát ha (S n ) felülről korlátos, akkor (s 2 n+) is. monoton növő, korlátos felülről, ugyanis a 2 n a i amiből adódik (a n ) sor (s n ) részletösszeg - sorozat i 2 n így S n S n = 2 n a 2 n 2 (s 2 n s 2 n ) S n = (S k S k ) 2 (s 2 n s ). Tehát, ha (s n ) felülről korlátos akkor (S n ) is az Példa. []Konvergens vagy divergens a A kondenzációs kritérium alapján Mivel tudjuk, hogy e 2n 2n x 2 n = n e n 2 n 2 n e 2n = végtelen sor?. e 2n konvergens, ezért az erederi sor is konvergens Definíció. []Az (a n ) számsorozatot, akkor nevezzük korlátos változásúnak, ha n (a n+ a n ) sorozatból képzett végtelen sor abszolút konvergens. Egy számsorozat pontosan akkor korlátos változású, ha előállítható két konvergens monoton növő sorozat különbslge ként. 26

27 4.9. Dirichlet I. kritériuma Tétel. []Ha (b n ) sorozat (s n ) részéletössezeg - sorozata korlátos, és (a n ) korlátos változású nullsorozat, akkor a sn (a n a n+ ) és a (a n b n ) sor is konvergens, összegeik pedig egyenlőek. Bizonyítás. s n (a n a n+ ) sor abszolút konvergens, ugyanis ha a tagok abszolútértékét nézzük, akkor a belőlük képzett sor a részletösszegeinek alapján korlátos. n s k (a k a k+ ) = n n s k a k a k+ sup{ s k } a k a k+ k= k= k= ahol k, n Z +. A s n (a n a n+ ) abszolút konvergens sor, így konvergens is. Vezessük be az s 0 = 0 jelöléssel k Z + -ra y k = s k s k -et, így: n a k y k = n a k (s k s k ) = n a k s k n a k s k = k= k= k= k= n a k s k n a k+ s k = a n s n + n s k (a k a k+ ). k= k= k= Mivel (s n ) korlátos sorozat, (a n ) pedig nullsorozat, ezért (a n s n ) nullsorozat. Ha nézzük a két sor határértékét, akkor n a k y k = lim n a n s n + (a k a k+ ) s k = s k (a k a k+ )-et k= k= k= kapjuk, amit bizonyítani is szerettünk volna Dirichlet II. kritériuma Tétel. []Tegyük fel, hogy (b n ) sorozat részletösszegeinek sorozata korlátos, és az (a n ) monoton csökkenő és nullához tart. Ekkor a n b n végtelen sor konvergens. Bizonyítás. Kell, hogy ha (a n ) monoton csökennő nullsorozat, akkor korlátos változású. (an a n+ ) állandó előjelű, nem negatív előjelű tagú sorra: n a k a k+ = n (a k a k+ ) = a n a n+ a k= ha n. Majd Dirichlet I. tétele alapján (a n b n ) konvergens. k= 27

28 Megjegyzés. Dirichlet I. kritériumának következménye Dirichlet II. kritériuma. 2. Dirichlet II. kritérium speciális esete a Leibnzt - kritériummal egyezik meg. Méghozzá (b n ) = ( ) n illetve (b n ) = ( ) n esetekben Példa. []Nézzük a cos n. A (b n n) = (cos n) sorozat részletösszegei korlátosak az (a n ) = pedig monoton csökkenő nullsorozat. Belátni az s n n = sorról kell azt, hogy valóban korlátos. Ötlet: szorozzunk sin 2. s n sin = n cos k sin = cos sin cos(n ) sin + cos n sin = k= ( sin( ) + sin( + )... sin((n ) ) + sin((n ) + ) sin(n 2 ) + sin(n + 2 )) = 2 (sin(n + 2 ) sin 2 ). így s n = sin(n+ 2 ) sin 2 2 sin, tehát tényleg korlátos az s n. Ebből következően 2 cos n n konvergens. 4.. Abel - kritérium 4... Tétel. []Ha b n sor konvergens, az (a n ) pedig korlátos változású sorozat, akkor a n b n sor konvergens. Bizonyítás. Mivel (a n ) korlátos változású, ezért konvergens. részletösszegeinek sorozata korlátos. k= b n sor konvergens, akkor lim n a n s n = lim n a n lim n s n = lim n a n így a n b n konvergens, és a n b n = lim n a n b n + s n (a n a n ). (Dirichlet I. konvergenciájának bizonyítása alapján) b n 28

29 4..2. Példa. []Döntsük el, hogy konvergens - e a 9 2 n n! = n n! sorozat? n! ( 2 )n sor konvergens az Abel - kritérium szerint, ugyanis a n = n! monoton csökkenő nullasorozat, és ( 2 )n konvergens mértani sor. 29

30 5. fejezet További néhány kritérium 5.. Jermakov - kritérium 5... Tétel. []Tegyük fel, hogy f : [0, ] R + monoton csökkenő függvény, és lim n e n f(e n ) f(n) λ > akkor f(n) sor divergens Példa. []Döntsük el, hogy a = λ. Amennyiben λ < akkor f(n) sor konvergens, ha pedig n=2 (n 2) konvergens-e vagy sem! n ln n A jermakov kritériumot alkalmazva f(x) =, x [2, ] függvényre: x ln x f(e x ) e x f(x) = e x x ex x ln x Tehát a feltételek alapján a sor divergens. = ln x 5.2. Jame - kritérium Tétel. []Adott (a n ) nem negatív tagú sor és J n = ( n a n ) n lnn.. Amennyiben lim inf J n > akkor (a n ) végtelen sor konvergens. 2. Ha egy indextől kezdve a J n, akkor (a n ) divergens. 30

31 5.3. Logaritmikus kritérium Tétel. []Adott (a n ) pozitív tagú sor és L n = ln an ln n, (n 2, n Z+ ).. Ha lim inf L n > akkor a n konvergens 2. Ha egy indextől kezdve L n akkor (a n ) divergens Példa. []Döntsük el, hogy a n=3 (ln ln n) ln n A logaritmikus kritérium alapján a ( ) ln (ln ln n) L n = lnn ln n = ln(ln ln n)ln n ln n Tehát a feltétel szerint a sor konvergens. = konvergens-e vagy sem! ln n ln ln ln n lnn = ln ln ln n. 3

32 6. fejezet Végtelen sorok a középiskolában 6.. Számsorozatok A középiskolában a diákok először a számsorozat fogalmával és tulajdonságaival ismerkednek meg. A függvényekre vonatkozó ismereteikből kiindulva a valós értékű függvények értelmezési tartományának vizsgálatával jutnak el a valós számsorozat fogalmához Példa. [Számsorozatra], 5, 7, 9, 3... Ez f(x) függvény szerint: f() a = f(2) 5 a 2 = 5 f(3) 7 a 3 = 7. Az a i a sorozat i. eleme, az a n pedig az n. tag (álltalános tag). Ezek után a hozzárendelési módból kiindulva tárgyaljuk a sorozat megadási lehetőségeit. Ez történhet a tagok felsorolásával, vagy szövegesen, képlettel esetleg rekurzívan - megtudjuk az első néhány elemet, majd képletet adunk a további elemek kiszámítására. 32

33 6..2. Példa. [Szöveges megadás] A 2 számjegyeinek sorozata Példa. [Felsorolással való megadás] Ez a prímszámok sorozata Példa. [Képlettel való megadás] Példa. [Rekurzív megadás] a = a 2 = 4 a 3 = a 4 = 4 a 5 = {a n } = 2 n+ 3 a = a 2 = a 3 = 2... a n = a n 2 + a n Fibonacci-sorozat. A könnyebb átláthatóság és szemléltetés érdekében megmutatunk kétféle ábrázolási módot. Az egyik, mely szerint koordináta-rendszerben bejelöljük a sorozat néhány elemét, majd levonjuk a következtetést, hogy a grafikon diszkrét pontokból áll. A másik ábrázolási mód pedig, hogy számegyenesen szemléltetjük a sorozat tagjait. A következőkben a függvénytani tulajdonságok állnak az óra középpontjában. Tanult függvénytulajdonságok alapján értelmezzük a korlátosság, monotonitás, határérték fogalmait Példa. [] sorozatot tekintve {a n } = n 2 n+2 < n 2 n+2 = n+2 4 n+2 = 4 n+2 < Ezen a pélán keresztül a diákok maguk tapasztalhatják és fogalmazhatják meg, hogy a sorozat korlátos és monoton növő. Rájönnek, hogy a korlátosság vizsgálata az értékkészletre vonatkozik, a monotonitásnál pedig az értelmezési tartományon vizsgáljuk az értékkészlet elemeit.több példán keresztül szemléltetés és ábrázolás útján a konvergencia és a határérték fogalmát is megtaníthatjuk. Ezután pontos definíciót is adhatunk ezekre a fogalmakra. 33

34 6..7. Definíció. []Egy sorozat konvergens és határértéke az A valós szám, ha bármely ɛ > 0 számhoz N pozitív egész küszöbindex, hogy bármely n N + esetén igaz, hogy a n A < ɛ. Azt is mondhatnánk, hogy a sorozatnak csak véges sok tagja van a határérték tettszőlegesen kis környezetén kívül. Ez a fogalom a diákok számára nehéznek és emészthetetlennek bizonyul. Ezért rengeteg példa gyakorlásával érhetünk el sikert. Ezen példák megoldása közben jön elő a divergens sorozat elnevezés is. Ezzel párhuzamosan fedezik fel, hogy:. Konvergens sorozatnak csak egy határértéke van. 2. Minden konvergens sorozat korlátos. 3. Minden monoton korlátos sorozat konvergens. 4. Vannak olyan sorozatok, amelyek nem konvergensek, de van konvergens részsorozatuk. Minezdek áttekintése után a sorozatokkal végzett műveletek tárgyalásába kezdünk.a függvények kapcsán már tanulták a műveleteket ezért egy művelet megadása után mintaszerűen végezhetik a többit. Az összeg -, különbség -, szorzat - és a hányados sorozat határértékére vonatkozó szabályokat illetve a rendőr szabályt mondjuk ki és bizonyítjuk. Legvégül a majdani könnyebb számítások érdekében tárgyaljuk néhány nevezetes sorozat hatáértékét. Ilyan sorok például az. a n = sorozat, melynek konvergenciáját az arkhimédészi - axióma alapján vezetjük n le. 2. A mértani sorozat melyet megvizsgálunk a kvóciens nagyságának szempontjából. 3. a n = n a 4. a n = n n 5. a n = an n! 6. a n = ( + n ) n 7. Számtani sorozatok Végül rengeteg gyakorló feladattal sajátítjuk el a határértékek kiszámítását. 34

35 6.2. Végtelen sorok A végtelen sorokat Zenon paradoxonjai alapján játékosan vezetjük be és vetjük fel az összegzés problémáját. A konklúzió levonása után pontos definíciót adunk a végtelen sorokra, melyet a számsorozatból vezetünk le. Mindezek után a mértani sor részletösszegsorozatát a sor összegét és a konvergencia fogalmát tisztázzuk. Tárgyaljuk a nevezetes végtelen sorok határértékét. Levezetjük az összehasonlító (hányados, majoráns), hatvány illetve gyökkritériumot. Gyakorlásra kíválóak az alábbi példák: Döntsük el, hogy az alábbi sorok konvergensek - e vagy divergensek? ( n+ ) 3n ( n(n+2) ) ( x n n! n=0 ) 0 n , 5 + 5, Egy 24 cm oldalú négyzet alakú papírlapot négy kisebb négyzetre vágunk, melyek oldala 2 cm. Három négyzetet oldalaikkal egymás melléhelyezünk. A negyediket négy kisebb négyzetre vágjuk, melyek oldalai 6 cm-esek. Ezek közül hármat a nagyobb négyzetek mellé teszünk. A negyedik négyzetet ismét négy kisebb négyzetre vágjuk, és az eljárást a végtelenségig folytatjuk. Határozza meg az egymás melletti négyzetek oldalainak együttes hosszát! 35

36 Köszönetnyilvánítás Ezúton szeretnék köszönetet mondani témavezetőmnek, Szentmiklóssy Zoltánnak, aki türelmével, tudásával, szakmai tapasztalatával segítette munkámat. Hálával tartozom még évfolyamtársamnak, Szabó Dávidnak, aki bevezetett a L A TEX rejtelmeibe. Végül de nem utolsó sorban szüleimnek, akik mindvégig mellettem álltak, támogattak, és akik nélkül mindez sosem sikerült volna. 36

37 Irodalomjegyzék [] CSÁSZÁR ÁKOS, Végtelen sorok. Tankönyvkiadó, Budapest, 979. [2] DR. SZARKA ZOLTÁN, Végtelen sorozatok és sorok I. és II. kötet. Magas szinten könnyedén sorozat. LSI Alkalmazástechnikai Tanácsadó Szolgálat, Budapest, 988. [3] FARKAS MIKLÓS - HOFFMAN TIBORNÉ, Matematika IV. kötet - Végtelen sorok. Műegyetemi Kidaó, 994. [4] LACZKOVICH MIKLÓS - T. SÓS VERA, Analízis II. Nemzeti Tankönyvkiadó, Budapest, [5] URBÁN JÁNOS, Határérték - számítás. Műszaki kiadó, Budapest, [6] SZILÁGYI TIVADAR, Végtelen sorok, hatványsorok. sztiv/5vs.pdf [7] SZILÁGYI TIVADAR, Végtelen sorok, hatványsorok. sztiv/5vs.pdf [8] [9] SDT.SULINET.HU 37

Végtelen sorok konvergencia kritériumai

Végtelen sorok konvergencia kritériumai Eötvös Loránd Tudományegyetem Természettudományi kar Végtelen sorok konvergencia kritériumai BSc szakdolgozat Készítette: Témavezeto : Bogye Tamara Bátkai András Matematika BSc egyetemi docens Matematika

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

Analízis ZH konzultáció

Analízis ZH konzultáció Analízis ZH konzultáció 1. Teljes indukció Elméleti segítség: n=1-re bebizonyítani (vagy arra az n-re, ahonnan az állítást igazolni szeretnénk) feltesszük, hogy n-re igaz az állítás -> n+1-re is igaz lesz?

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

SZTE TTIK Bolyai Intézet

SZTE TTIK Bolyai Intézet Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged,

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

NUMERIKUS SOROK I. A feladat ekvivalens átfogalmazása a következő végtelen sok tagú összegnek a meghatározása ) 1 21

NUMERIKUS SOROK I. A feladat ekvivalens átfogalmazása a következő végtelen sok tagú összegnek a meghatározása ) 1 21 NUMERIKUS SOROK I. Ha az {a n } (n N) sorozat elemeiből egy új {s n } (n N) sorozatot képezünk olyan módon, hogy s = a, s 2 = a + a 2,, s n = a + a 2 + + a n,, akkor ezt numerikus sornak (vagy csak simán

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Sorozatok határértéke VÉGTELEN SOROK

Sorozatok határértéke VÉGTELEN SOROK Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11. ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

Eger, augusztus 31. Liptai Kálmán Eszterházy Károly Főiskola Matematikai és Informatikai Intézet

Eger, augusztus 31. Liptai Kálmán Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tartalomjegyzék Előszó................................. 5. Függvénytani alapismeretek..................... 7. Valós számsorozatok......................... 9 3. Valós számsorok............................

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék

Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA 1. 2011. Tartalomjegyzék Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA.. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika. elektronikus

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak

JPTE PMMFK Levelező-távoktatás, villamosmérnök szak JPTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) (Összeállította: Kis Miklós) Tankönyvek Megegyeznek az 1. félévben használtakkal.

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

2. Reprezentáció-függvények, Erdős-Fuchs tétel

2. Reprezentáció-függvények, Erdős-Fuchs tétel 2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Függvények vizsgálata

Függvények vizsgálata Függvények vizsgálata ) Végezzük el az f ) = + polinomfüggvény vizsgálatát! Értelmezési tartomány: D f = R. Zérushelyek: Próbálgatással könnyen adódik, hogy f ) = 0. Ezután polinomosztással: + ) / ) =

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Analízis házi feladatok

Analízis házi feladatok Analízis házi feladatok Készült a PTE TTK GI szakos hallgatóinak Király Balázs 200-. I. Félév 2 . fejezet Első hét.. Házi Feladatok.. Házi Feladat. Írjuk fel a következő sorozatok 0.,., 2., 5., 0. elemét,

Részletesebben

Valós függvénytan Elektronikus tananyag

Valós függvénytan Elektronikus tananyag Valós függvénytan Elektronikus tananyag Valós függvénytan: Elektronikus tananyag TÁMOP-4.1.2.A/1-11/1 MSc Tananyagfejlesztés Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a

Részletesebben

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt,

n 2 2n), (ii) lim Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, (ii) 3 t 2 2t dt, 205.05.9. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg a h() = 3 2 függvény deriváltját az = 2 helyen. 8pt 2. Határozzuk meg a következő határértékeket:

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Analízis Gyakorlattámogató jegyzet

Analízis Gyakorlattámogató jegyzet Analízis Gyakorlattámogató jegyzet Király Balázs. március. Tartalomjegyzék Előszó 7 I. Analízis I. 9. Számhalmazok tulajdonságai.. Gyakorlat.......................................... Házi Feladatok.....................................

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet

Feladatok a levelező tagozat Gazdasági matematika I. tárgyához. Halmazelmélet Debreceni Egyetem, Közgazdaságtudományi Kar Feladatok a levelező tagozat Gazdasági matematika I. tárgyához a megoldásra feltétlenül ajánlott feladatokat jelöli Halmazelmélet () Legyen A = {, 3, 4}, B =

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Elérhető maximális pontszám: 70+30=100 pont

Elérhető maximális pontszám: 70+30=100 pont Villamosmérnök Szak Távoktatás 2. félév Matematika kollokvium 2008. dec. 20. Név: Neptun Kód: Tanár: Fel.: Elm.: Hf.: Össz.: Oszt.: Vajda István Rendelkezésre álló idő: 105 perc Elérhető maximális pontszám:

Részletesebben

-ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha. -ra nézve (szigorú) abszolút minimumhelye, ha minden

-ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha. -ra nézve (szigorú) abszolút minimumhelye, ha minden Analízis-lexikon abszolút maximumhelye Legyen hogy tetszőleges függvény, és része értelmezési tartományának Azt mondjuk, az -nek -ra nézve (szigorú) abszolút maximumhelye (minimumhelye), ha minden esetén

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE

EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE EGYVÁLTOZÓS FÜGGVÉNYEK FOLYTONOSSÁGA ÉS HATÁRÉRTÉKE BÁTKAI ANDRÁS Ennek a jegyzetnek az elsődleges célja, hogy a matematika tanárszakos analízis előadást kísérje és a vizsgára készülést segítse. A jegyzet

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László, Pap Gyula (DE) Gazdasági matematika I. 1 / 123 Kötelező irodalom: LOSONCZI LÁSZLÓ,

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Függvények csoportosítása, függvénytranszformációk

Függvények csoportosítása, függvénytranszformációk Függvények csoportosítása, függvénytranszformációk 4. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények csoportosítása p. 1/2 Függvények nevezetes osztályai Algebrai függvények

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Gazdasági matematika I.

Gazdasági matematika I. Gazdasági matematika I. Losonczi László, Pap Gyula Debreceni Egyetem, Informatikai Kar I. félév Előadó: Hajdu Lajos Losonczi László, Pap Gyula (DE) Gazdasági matematika I. I. félév 1 / 124 Félévközi kötelező

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz

Obudai Egyetem RKK Kar. Feladatok a Matematika I tantárgyhoz Obudai Egyetem RKK Kar Feladatok a Matematika I tantárgyhoz Gyakorló Feladatok a Matematika I Tantárgyhoz Els rész: Feladatok. Halmazelmélet, Számhalmazok, Függvények... Feladat. Legyen A = { : + 3 = 3},

Részletesebben