Végtelen sorok konvergencia kritériumai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Végtelen sorok konvergencia kritériumai"

Átírás

1 Eötvös Loránd Tudományegyetem Természettudományi kar Végtelen sorok konvergencia kritériumai BSc szakdolgozat Készítette: Témavezeto : Bogye Tamara Szentmiklóssy Zoltán Matematika BSc adjunktus Matematika tanári Analízis szakirány Tanszék Budapest 20

2 Tartalomjegyzék Bevezetés 4. Végtelen sorok története 5.. Ókor Közép és koraújkor Alapok Alapfeltételek és deffiníciók Végtelen sorok és műveletek A legismertebb kritériumok Cauchy - kritérium Minoráns kritérium Majoráns kritérium Leibniz - kritérium Cauchy-féle Gyökkritérium d Alambert féle hányadoskritérium Kevésbé ismert kritériumok Hányados-minoráns kritérium Hányados-majoráns kritérium Raabe kritérium Kummer kritérium Bertrand - kritérium Gauss - kritérium

3 4.7. Integrálkritérium Kondenzációs kritérium Dirichlet I. kritériuma Dirichlet II. kritériuma Abel - kritérium További néhány kritérium Jermakov - kritérium Jame - kritérium Logaritmikus kritérium Végtelen sorok a középiskolában Számsorozatok Végtelen sorok Köszönetnyilvánítás 36 3

4 Bevezetés Szakdolgozatom témájaként a végtelen sorok konvergencia kritériumait választottam. Fontosnak tartottam, hogy olyan területét mutassam meg a matematikának, mely hozzám is közel áll. A tudományra fogékony embereket mindig is foglalkoztatta az a gondolat, hogy vajon mi lehet egy - egy végtelen sor összege, és ezt hogyan számolhatjuk ki. E, korokon átívelő problémára szeretnék néhány megoldást mutatni munkám során. 4

5 . fejezet Végtelen sorok története.. Ókor Az ókorban is gyakran voltak olyan problémák, feladatok, melyek megoldásához bizonyos sorozatok, sorok ismerete elengedhetetlen volt, ezért már az akkori tudósokat is mélyen foglalkoztatták. A babilóniai aritmetika foglalozott először a mértani sorozattal és a négyzetszámok sorozatával. Külön táblázatokon vezették az és az sorokat, melyekről elmondható, hogy általánosságban is ismert volt előttük első n elemeiknek összege és maga a kiszámítási folyamat is. Ám az egyiptomiaktól sem álltak távol ezen ismeretek. Ők a felezés, vagy ahogyan hívták kettőzés műveletével kapták az,, 8, 6, mértani sorozatot. Ezt főleg a gabonamennyiségek bizonyos törtrészeinek kiszámításakor hasznosították. Ismerték tehát a mértani és a számtani sorozat fogalmát is. Ezekre példát az Ahmesz-papirusz két feladata ad : 5

6 . 00 cipót 5 felé kell osztani, úgy, hogy a részek számtani sorozatot alkossanak, és a 3 nagyobb rész összegének a hetede legyen akkora, mint a két legkissebb rész összege. Megoldásnak a következőt adták: ( 2, 0 5, 20, 29, 38 ) ház mindegyikében 7 macska lakik, amelyek közül mindegyik megevett fejenkét 7 egeret, és minden egér 7 kalászt, és minden kalászban volt 7 szem búza. Mennyi ezek összege? Megoldásuk: 7 ház 49 macska 343 egér 240 kalász 6807 búzaszem 9607 A lapon tehát egy mértani sorozat első 5 eleme, melynek hányadosa 7, és maga az összeg fedezhető fel. Az ókori görögöknél pedig már felmerül a végtelen sok szám összegének a gondolata is. A leghíresebb feltevések a végtelen sorok összegével kapcsolatban Zénonhoz köthetőek, és az Ő paradoxonjaihoz. Ilyen ellentmondások, például, hogy a kilőtt íj sosem ér célba, ugyanis hiába cézunk például egy almára a nyíl először megteszi az almáig tartó távolság felét, majd a maradék távolság felét, majd a hátralévőnek a felét és így tovább. Ekkor ugyan azt az eredményt kapjuk, mint amikor megpróbálunk elindulni A pontból B pontba a fentiekhez hasonló módon. Illetve, hogy Akhilleusz akármennyire is gyorsabban tud futni a teknősnél sosem fogja utolérni. Persze Zénon még nem tudta, hogy végtelen sok szakaszt egymás után téve egy véges szakaszt kaphatunk. Ma már ezt is tudjuk, de ehhez még rengeteget kellett fejlődnie a tudománynak. Először majd 00 évvel Zénon után, Arisztotelész fedezte fel, hogy az egynél kisebb kvóciensű mértani soroknak véges összege van. Ő az a, a 2, a 3,...a n mértani sorozatot vizsgálta, melynek hányadosa. 4 6

7 .2. Közép és koraújkor A középkorban csak a fizikai problémákkal kapcsolatban merültek fel a végtelen sorok és azok összegei. Ám az elkövetkezendő korokban óriási fejlődésnek indult a tudomány ezen ága. A XVI. században Francois Viete megadta a mértani sor összegének képletét. A XVII. században Gregory De Saint Vincent Zenon paradoxonjait vizsgálta. Ő mutatta meg, hogy, ha egy mértani sor kvóciense -nél kisebb, akkor is véges az összege. Még Newton előtt alkalmazta a binomiális tételt, és ismerte az arctan x hatványsorát is. Tudta ugyanis, hogy y = +x 2 görbe alatti terület [0, x] intervallum felett épp arctan x, az +x 2 osztásból kapta: Ebből = x 2 + x 4 x x 2 Tehát x 0 dx. = x +x 2 0 ( x2 + x 4 x 6...) dx. arctan x = x x3 3 + x5 5 x Ez az úgynevezett Gregory sor, ami azonos arctan x Taylor-sorával (40 évvel Taylor előtt). Ugyan ebben a században Nicolaus Mercator hasonlóan nyerte az ln( + x) Mercator sorát. Az ezt követő időkben két kivánló tudós egymással párhuzamosan fedezte fel a differenciál, és integrál számítást, mely nagy előrelépés volt a végtelen sorok fejlődésében is. Ezen tudósok Sir Isaac Newton és Gottfried Wilheim Leibniz voltak. Newton kezdte el alkalmazni azt a módszert, hogy az integrálandó függvényt először hatványsorba fejtette, majd ezt integrálta. Sorbafejtési eljárásához használta a binomiális tételt, racionális függvényeknél a Gregory eljárás, határozatlan együtthatók módszerét, új változók bevezetését. Eleinte azt hitte minden függvény hatványsorba fejthető, ezáltal az integrlás könnyed eljárássá válik majd. Csak később jött rá, hogy ez koránt sincs így. Ezzel szemben Leibniz nem akart minden függvényt sorba fejteni, inkább zárt alakkal szeretett dolgozni. Többek között előállították a már emlegetett ln( + x)-et, de a sin x és cos x is az Ő munkásságuk gyümölcse. Brook Taylor Newton interpolációs képletét áltlánosítva kapta a Taylor-sort. Ennek egyik speciális alakját később, de Taylortól eltérő 7

8 módon állította elő Maclaurin. A XVIII. század nagy alakjai, Leonhard Euler, Joseph Louis Lagrange, és Pierre Simon Laplace munkásságát is rendkívül fontos megemlíteni. 797-ben Lagrange megjelentette Théorie des fonctious analytiques ( Az analitikus függvények elmélete) című könyvét. Ebben a differenciálás algebrai módszereit részletezi. Többek között bizonyította, hogy előállítható minden f(x + h) = f(x) + a h + a 2 h a n h n + R n alakú Taylor - sorral csak algebrai úton, majdnem mindenütt. A differenciál hányadosokat Taylor sor együtthatóiént értelmezte. Így a határérték fogalmát kikerülte. Fő hibája, hogy csak az analitikus függvényekre érvényes. Elsőként határozta meg a (R n ) maradéktagot konkrét függvényeknél, és először állította elő a Taylor - sor maradéktagját integrál alakban. Ő használta először a középértéktételt, a derivált kifejezést, és az f (x) illetve az f (n) (x) jelöléseket. A XVIII. században meghatározták a konvergencia pontos fogalmát, feltételét, és a végtelen sorok összegét helyesen értelmezték. A nagy áttörést a XIX. században Augustin Louis Cauchy felfedezései hozták meg. Meghatározta, hogy egy végtelen sor összege részletösszegek sorozatának hatátértéke, tehát egy sor akkor konvergens, ha ez a határérték létezik. A váltakozó előjelű sorokra bevezette az abszolút konvergencia fogalmát. Összefüggést adott az abszolútértékű tagok álltal alkotott sor konvergenciája és az eredeti sor konvergenciája között. Konvergencia vizsgálati eredménye - képpen megfogalmazott több konvergencia kritérimot is. Ezek közül a leghíresebb a Róla elnevezett Cauchy-féle konvergencia kritérium. Bevezette a komplex változójú hatványsoroknál a konvergencia kör fogalmát, amely kiszámítható az r = lim sup n a n Ez az úgy nevezetett Cauchy-Hadamard formula. A függvény hatványsorának konvergenciája nem feltétlenül jelenti azt, hogy a sor az alapfüggvényhez tart. Észrevette, hogy ha két sor abszolút konvergens, akkor direkt szorzatuk is konvergens. És a határértéke az alapsor határértékeinek szorzata. Ezután Peter Gustav Lejenue Dirichlet, német matematikus, akinek a nevéhez fűződik az előírt peremértékű harmonikus függvények problémája. Ő fedezte fel, hogy az 8

9 a, a + b, a + 2b, a + 3b... a + nb számtani sorozatban végtelen sok prímszám van, ha a, b-nek nincs közös osztója, kivéve az egyet. A tudomány további fejlődését olyan kiemelkedő matematikusok segítették, mint Georg Friedrich Bernhard Riemann, Simeon Devis Poisson, Moritz Cantor, Georg Gaberiel Stokes, Karl Teodor Wilhelm Weierstrass, Karl Fridrich Gauss, Jean Baptiste Joseph Fouier, Henry Louis Lebesgue, Haar Alfréd, Fehér Lipót, Riesz Frigyes, Ernst Fischer. Természetesen napjainkban is vannak akik e tudományág elkötelezett hívei. 9

10 2. fejezet Alapok 2.. Alapfeltételek és deffiníciók Ebben a fejezetben bevezetem a végtelen sor fogalmát, a konvergenciáját, és a sorokkal való néhány műveletet Definíció. []A a n végtelen sor részletösszegein az s n = n a i, n Z + számokat értjük. Ha a részletösszegekből képzett (s n ) sorozat konvegens és határértéke A, akkor azt mondjuk, hogy a a n végtelen sor konvergens és az összege A. Ennek jelölése a n = A. Tehát s 0 = 0 a k = a 0 k=0 s = a k = a 0 + a k=0 s n = n a k = a 0 + a +...a n k=0 Amennyiben az (s n ) sorozat divergens akkor azt mondjuk, hogy a a n végtelen sor divergens. Ha lim n s n = (vagy ) akkor azt mondjuk, hogy a n végtelen sor összege (vagy ). Ennek jelölése a n = (illetve ) Példa. [] sor n-dik részletösszege s n = n igaz, hogy lim n s n = 2 ezért a sor konvergens és összege 2. i= i=0 2 i = 2 2 n. Mivel 0

11 2..3. Tétel. []Ha (a n ) sor konvergens, akkor lim n a n = 0. Bizonyítás. A sor összege legyen A. Mivel a n = (a a n ) (a a n ) és (a a n ) = s n (a a n ) = s n igaz, ezért a n = s n s n Tehát a n A A = 0. Ám ez a tételben szereplő feltétel a konvergenciához szükséges, de nem elégséges feltétele. Erre jó példa a következő: Példa. []Vegyük a úgynevezett végtelen harmonikus sort. n Bizonyítás. Nézzük a sor s n, n-ik részletösszegét, amely ( n ) és s 2n-t. s 2n s n = ( n ) ( n ) = ( n+ + n n ) 2n n = 2 n-re. Tegyük fel, hogy a harmonikus sor konvergál A-hoz. Ekkor, ha n akkor s 2n s n A A = 0, ami nem lehet. Tehát a sor divergens Tétel. []. Egy nem negatív tagú sor akkor és csak akkor konvergens ha részletösszegeinek sorozata korlátos felölről. 2. Ha egy nem negatív tagú sor divergens akkor az összege végtelen. Bizonyítás. A sor tagjai nem negatívak, akkor a sor részletösszegeinek sorozata monoton nő. Ha ezen sorozat korlátos felülről, akkor konvergens, ha viszont nem korlátos akkor a végtelenhez tart. Tehát a végtelen sor vagy konvergens, vagy divergens és az összege végtelen. Így a végtelen harmonikus sor is divergens és az összege Tétel. []Cauchy - kritérium A a n végtelen sor akkor és csak akkor konvergens, ha ɛ > 0 - hoz N index, hogy n N és bármely m n -re a n+ + a n a m < ɛ.

12 2.2. Végtelen sorok és műveletek Tétel. []Ha a n sor konvergens és összege A, valamint n=0 és összege B akkor (a n ± b n ) sor is konvergens és összege A ± B. n=0 b n sor is konvergens Tétel. []Adott a a n sor, mely konvergens és összege A, valamint a c R szám. n=0 Akkor a c a n sor is konvergens és összege c A. n= Tétel. []Konvergens sorba tetszőleges számú zárójelet beiktatva, nem változik a konvergencia ténye és a sor összege Tétel. []Bármely a n végtelen sornak elhagyva valahány véges számú tagját, n=0 sor konvergenciája illetve divergenciájának ténye nem változik Tétel. []Bármely a n végtelen sorhoz hozzáadva valahány véges számú tagot, a n=0 sor konvergenciájának illetve divergenciájának a ténye nem változik Definíció. []A a n konvergens sor első n (n Z + ) tagjának elhagyásával nyert h n = n =n+ n=0 a n konverges sor összegét az eredeti sor maradékösszegének hívjuk Tétel. [] a n konvergens sor maradékösszegeinek h n (n Z + ) végtelen sorozata nullsorozat. n= Definíció. []A a n végtelen sort abszolút konvergensnek nevezzük, ha a a n sor konvergens. n=0 n=0 n= Tétel. []. Minden abszolút konvergens sor konvergens. 2. Egy abszolút konvergens sor bármely átrendezettje is abszolút konvergens, és összege megegyezik az eredeti sor összegével. n= Definíció. []A a n végtelen sort feltételesen konvergensnek mondjuk, ha konvergens, de nem abszolút konvergens. 2

13 2.2.. Definíció. []Az (a n ) számsorozatot akkor nevezzük korlátos változásúnak, ha (an+ a n ) sor abszolút konvergens Tétel. []Riemann átrendezési tétele Ha (a n ) sor feltételesen konvergens akkor az átrendezettjei között van olyan amelyiknek az összege, van amelyiknek, minden A R számra van olyan amelyik konvergens és az összege A, és olyan is van amelyik divergens és nincs összege. 3

14 3. fejezet A legismertebb kritériumok 3.. Cauchy - kritérium 3... Tétel. []A a n végtelen sor akkor és csak akkor konvergens, ha ɛ > 0 - hoz N index, hogy n N és bármely m n -re a n+ + a n a m < ɛ Minoráns kritérium Tétel. []Ha 0 a n,b n és N, hogy az a n b n n > N-re valamint a n divergens, akkor a b n is divergens Példa. [] Tudjuk, hogy n kérdéses sort. Tehát a konvergens - e vagy divergens? 2n+ divergens és 3n < 2n+. Tehát a sor divergens. 2n+ = 3n 3 n sor minorálja a 3.3. Majoráns kritérium Tétel. []Ha 0 a n,b n és N, hogy az a n b n n > N-re valamint b n konveges, akkor a a n is konvergens Példa. []Konvergens - e vagy divergens az alábbi sor? 4

15 . létezik egy n 4 +5n 25 n úgy, hogy n < n. Például konvergens sor majorálja az eredeti sort. Tehát sor konvergens. n 4 +5n 25 n=n 2 n Leibniz - kritérium Tétel. []Ha az (a n ) sorozat monoton csökkenő és nullához tart, akkor ( ) n a n sor konvergens. Bizonyítás. A sor n-ik részletösszege legyen s n. A feltételből következik, hogy s 2 s 4... s 2n s 2n s 2n 3... s 3 s n-re. Így (s 2n ) sorozat monoton csökkenő és alulról korlátos, míg az s 2n sorozat monoton növő és felülről korlátos. Ebből következően mind kettő konvergens. Mivel igaz, hogy s 2n s 2n = a 2n 0 lim n s 2n = lim n s 2n Amiből következik, hogy az (s n ) sorozat konvergens Példa. []Döntsük el a következő sorról, hogy konvergens - e vagy divergens? ( ) n n+. Az n+ sorozatról tudjuk, hogy monoton fogyó nullsorozat, ezért n (n+2) n (n+2) a sor a Leibniz - kritérium szerint konvergens. Az n+ n (n+2) = n+2 n (n+2) = n+2 n (n+2) n (n+2) = n n (n+2) n Cauchy-féle Gyökkritérium Tétel. []. Ha olyan q < szám, hogy n a n < q teljesül elég nagy n esetén, akkor a n sor abszolút konvergens. 2. Ha lim n n a n <, akkor a n sor abszolút konvergens. 3. Ha végtelen sok n index esetén n a n akkor a a n sor divergens. n=0 5

16 Bizonyítás.. feltétel szernt a n < q n minden elég nagy n esetén. A q n geometriai sorról tudjuk (q R). Ha q, akkor [2.3 Tétel] szerint a sor divergens mivel a konvergenciához szükséges feltétel nem teljesül: lim q k 0. Ugyanis ha q < akkor ugyanis lim n q n+ = 0. s n = q k = qn+ q és q k = lim s n = q Példa. []Konvergens vagy divergens a ( ) n5 sor? n 4 A fenti tételt alkalamazva: Tudjuk, hogy lim n ( n n ) nn e Megjegyzés n ( ) n 4 n5 = ( ) n4. n 4 <. Tehát az eredeti sor konvergens.. A gyökritérium feltételei, nem szükségesek ahhoz, hogy egy sor konvergens legyen. n Például: konvergens, pedig lim n 2 n = n lim n n (a n ) = feltételből sem a sor konvergenciájára, sem pedig a divergenciájára vonatkozólag semmit sem következtethetünk. Például: sor konvergens, míg divergens, n 2 n n n pedig lim n = lim n 2 n = n a n sor konvergenciájához nem elég, hogy elég nagy n-re n a n <. Mert ebből csak az következik, hogy a n < elég nagy n-re, és nem az, hogy a n 0 ami a konvergenciához lenne szükséges feltétel. 6

17 3.6. d Alambert féle hányadoskritérium Tétel. []Legyen a n, a n > 0 n Z + sor konvergens, ha q R, melyre fennáll: n=0 A sor divergens ha a n+ a n. Bizonyítás. qk+ q k q k, k=0 a n+ a n q < n Z +. 0 < q < konvergens sor két egymást követő tagjának hányadosa = q. Tudjuk, hogy igaz, ha a a k, a k > 0 konvergens (ahol a k melynek tagjai véges sok tag kivételével a k sor tagjait minorálják) és a k, igaz, hogy a k+ a k a k+ a k tagjának hányadosa, így ha a k, hogy a k+ a k a k+ a k Megjegyzés: k=0 a k is konvergens. k=0 a k divergens. k=0 a k > 0 tagjaira divergens sor két egymást követő k=0 a k > 0 divergens és a k, k=0 a k > 0 tagjaira igaz,. A hányadoskritérium feltételei nem szükségesek, hogy egy sor konvergens legyen. n Például sor konvergens, annak ellenére, hogy lim 2 n 2 n =. (n+) 2 Tehát nem létezik olyan q <, hogy igaz lenne n 2 (n+) 2 n Z +. < q minden elég nagy 2. Ha lim n a n+ a n = feltételből sem a konvergenciára sem a divergenciára nem lehet következtetni, például divergens, konvergens, n n 2 pedig lim n n n+ = lim n n2 (n+) 2 = Következmény. []Ha a n > 0 akkor a n konvergens. n=0 lim n a n+ a n < és 0 lim k a k+ a k < Példa. []Konvergens - e az a n = 2n n! n n végtelen sor? a n+ 2 n+ (n+)! (n+) n+ 2 = n n! n n a n = Mivel tudjuk, hogy 2 n 2 (n+)! (n+) n (n+) 2 n n! = 2 n n n = n+ n+ n = + n n+ 2n (n+)! n 2 n n! (n+) n. Ezért a fenti egyenlet tovább egyenlő: n n = 2 n n 7

18 Tehát a n konvergens. 2 2 <. (+ n )n e Állítás. []Ha (a n ) sorozat tagjai különböznek 0-tól, akkor lim sup a n+ a n < akkor lim sup n a n < Következmény. []Ha (a n ) sorozat tagjai nullától különböznek és a n sorról a hányadoskritériummal eldönthető, hogy konvergens-e, akkor a gyökritériummal is. De fordítva sajnos ez nem igaz Példa. [] n x n sor abszolút konvergenciája x < esetén a hányados kritériummal: n=0 (n+) x n+ = x n+ n x n n x <, ha n. Gyökkritériummal: n n x n = n n x n = n n x x 3 n ha n páros Példa. []Adott (a n ) = n=0 5 n ha n páratlan Gyökitériummal: Hányadoskritériummal: aa n+ a n = Tehát: lim sup a n+ a n lim n 2n a 2n = 3 lim n 2n+ a 2n+ = 5 sup n a n = 3 konvergens. ( )n ha n páros ( )n ha n páratlan = gyökkritériummal könnyedén míg hányadoskritériummal nem dönthető el ez esetben a konvergencia. 8

19 4. fejezet Kevésbé ismert kritériumok 4.. Hányados-minoráns kritérium Ha (z n ) pozitív tagú sor divegens, N Z + pedig olyan, hogy ettől kezdve k egészre a k > 0 és a k+ a k z k+ z k akkor (a k ) sor is divergens. Bizonyítás. A fenti feltételben szereplő egyenlőtlenséget N < n mellett k = N-re, k = N + -re...,k = n indexre felírva majd összeszorozva őket kapjuk, hogy N < n a n a N zn z N 4.2. Hányados-majoráns kritérium Ha (z n ) pozitív tagú konvergens sor, N Z + pedig olyan, hogy ettől kezdve k Z a k+ a k z k+ z k akkor (a n ) abszolút konvergens sor. Bizonyítás. A fenti feltételben szereplő egyenlőtlenséget N > n melett k = N-re, k = N + -re...,k = n indexre felírva majd összeszorozva őket kapjuk, hogy N < n a n a N zn z N 9

20 4.3. Raabe kritérium Tegyük fel, hogy pozitív egész n-re az a n > 0 sorozat, és legyen R n = n ( an a n+ ). Ha lim inf R n > (a n ) sor konvergens. 2. Ha R n egy indextől kezdve (a n ) sor divergens. Bizonyítás.. A feltétel szerint olyan pozitív r és olyan pozitív egész N index melytől teljesül a következő egyenlőtelenség: n ( an a n+ ) > + r Ha ezt a kövezkező módon átrendezzük: n a n (n + ) a n+ > r a n+, n N majd N, N +,..., n indexekre alkalmazzuk: N a N (N + ) a N+ > r a N+ (N + ) a N+ (N + 2) a N+2 > r a N+2. n a n (n + ) a n+ > r a n+ majd az egyenlőtlenségeket összeadva, a bal oldalt felülről becsülve: adódik. Ezt átalakítva N a N > N a N (n + ) a n+ > r N a N r > n+ e=n+ a e. n+ a e e=n+ 20

21 Majd mindkét oldalhoz hozzáadjuk a N a e -t. e= N a N r + N e= a e > n+ e= a e. A bal oldalon álló szám a jobb oldali részletösszegek felső korlátja, így ebből következik, hogy a e konvergens. 2. Az előzőekhez hasonlóan adódik, csak itt n ( an a n+ ), n N összefüggést alakítjuk át és írjuk fel N, N +,...,n indexekre. Majd az így nyert egyenlőtlenségeket összeadva, (n + )-el elosztva N a N n+ a n+ kapjuk. Itt már minoráns kritériumot alkalmazva kiderül, hogy a e divergens sor Példa. []Döntsük el a következő sorról, hogy konvergens - e vagy sem! n ( α n) = an sorozatból képzett végtelen sor. Ha α 0 akkor a n pozitív tagú sorozat. Alkalmazzuk a Raabe - kritériumot: R n = n (( Kis trükkel átalakítjuk: α! n! (α n)! α! (n+)! (α (n+)!) ) ) = n ( n+ α n ). R n = n ( n α+α+ ) = n ( + α+ n ) = (α + ) α +. n α n α n α 2

22 4.4. Kummer kritérium Tegyük fel, hogy pozitív egész n-re a n melyre igaz, hogy =. Ekkor c n. Ha lim inf(c n a n a n+ c n+ ) > 0 (a n ) konvergens. > 0, és c n pozitív tagú segédsorozat, 2. Ha egy indextől nézve c n a n a n+ c n+ 0 a n divergens. Bizonyítás.. lim inf(c n a n a n+ c n+ ) > 0 feltételből következik, hogy létezik olyan ɛ R +, hogy egy N indextől kezdve Ebből következik, hogy c n a n a n+ c n+ ɛ. c n a n c n+ a n+ ɛ a n+. Tehát (c n a n ) egy indextől monoton csökkenő pozitív tagú sorozat így konvergens. cn a n c n+ a n+ konvergens sor, mert n esetén s n = n c k a k c k+ a k+ = c a c n a n c a lim n c n a n. k= Alkalmazzuk a majoránskritériumot így ɛ a n konvergens. Tehát a n is konvergens. 2. A feltétel szerint létezik olyan N index, amelytől kezdve Tehát akkor az Mivel c n hogy a n divergens. c n a n a n+ c n+ 0 a n a n+ c n c n+ = cn c n+. = ezért a hányados - minoráns kritériumot alkalmazva kapjuk, 22

23 4.5. Bertrand - kritérium Tegyük fel, hogy pozitív egész n-re a n > 0 sorozat és B n = (n ( an a n+ ) ) ln n, n Z +.. Ha lim inf B n > konvergens a a n sor 2. Ha egy indextől kezdve B n a n divergens. Bizonyítás.. A Kummer kritériumot alkalmazzuk c n = n ln n, n Z +, n 2 segédsorozattal. lim inf(n ln n a n a n+ (n + ) ln(n + )) > 0 átalakítjuk: lim inf(ln n (n ( an a n+ ) ) + (n + ) ln n n+ ) > 0 majd a következő összefüggés: (n + ) ln n n+ = (n + ) ln( + n ) = ln( + n )(n+) segítségével kapjuk: lim inf ln n(n ( an a n+ ) ) <, ami a kritérium feltétele a konvergenciához. 2. Itt ugyanúgy a Kummer kritériumot alkalmazzuk a c n = n ln n, n 2 segédsorozattal. Azaz, ha: (n ln n a n a n+ (n ) ln(n + )) 0 Akkor átrendezve: ln n (n ( an a n+ ) ) + (n + ) ln n n+ ) 0 23

24 kapjuk. Az (n + ) ln n vizsgálva kapjuk, hogy egyenlő n+ ln( + n )(n+) - hez. Tehát (n + ) ln n n+ <. így kapjuk, hogy: ln n (n ( an a n+ ) ). Tehát a végtelen sor divergens Példa. [] n 2 ln n n 2 konvergens Példa. []További pédák divergens sorokra: vagy a n 2 ln n n n 2 n ln n 4.6. Gauss - kritérium Tegyük fel, hogy pozitív egész n-re a n > 0 sorozat, és olyan α, β R +, γ R és (b m ) korlátos sorozat, hogy an a n+ = α + γ n + bn n +β, n Z + akkor, ha. α > esetén konvergens, α < esetén pedig divergens a (a n ) végtelen sor. 2. Ha α = és γ > akkor konvergens. Ha pedig α = és γ akkor (a n ) végtelen sor divergens. Bizonyítás. 2. α = esetén a Raabe - kritériumot alkalmazva lim n n ( an a n+ ) = lim n γ + bn n β = γ. Ekkor γ > esetben (a n ) konvergens, γ < esetén deivergens. Amennyiben γ = Bertrand - kritériummal belátható, hogy divergens. Ugyanis lim n n ( an a n+ ) ln n = lim bn ln n n β = 0, ami kisebb mint. 24

25 . Ha α >, akkor hányadoskritériummal lim n a n+ a n = lim n α+ γ n + bn n +β = α ami kisebb, mint, tehát a (a n ) sor konvergens. Ha az α < akkor értelemszerűen adódik, hogy α > tehát a sor divergens Integrálkritérium Tétel. []Legyen a Z és f : [a, ] R félegyenesen monoton csökkenő és nem negatív függvény. f(n) végtelen sor akkor és csak akkor konvergens (illetve divergens), ha a Példa. [] n=0 n=a f(x)dx improprius integrál konvergens (divergens). n konvergens -e? n 2 +2 x dx = lim y x 2 +2 n x dx = x 2 +2 lim y [ 2 ln(x2 + 2)] y = lim y ( 2 ) ln(y2 + 2) 2 ) ln(2 + 2) = Tehát a sor divergens. lim y ( 2 ) ln(y2 + 2) 2 ) ln(3) = lim y 2 ln( y ) Példa. [] n α α > hiperharmonikus sor konvergens -e? y dn = lim n α y n α dn = lim n [ n α+ α+ ]y = lim n ( y α ). α α Tehát az intergrál konvergens, ebből következően a hiperharmonikus sor is könvergens. 25

26 4.8. Kondenzációs kritérium Tétel. []Legyen (a n ) sorozat monoton csökkenő és nem negatív, akkor (a n ) és (2n a 2 n) végtelen sorok egyszerre konvergensek, vagy egyszerre divergensek. Bizonyítás. A fenti két sor mindeggyike nem negatív tagú, tehát a konvergencia attól függ, hogy a részletösszeg - sorozat korlátos - e felülről. Ehhez kellenek s n = n a k illetve S n = n 2 k a 2 k k= k= sorok részletösszegei. Illetve s 0 = 0 és S 0 = 0. Mivel ezen felül a 2n a i i > 2 n így S n S n = 2 n a 2 n s 2 n+ s 2 n S n = n (S k S k ) n (s 2 k+ s 2 k) = s 2 n+ s 2. k= k= Tehát ha (S n ) felülről korlátos, akkor (s 2 n+) is. monoton növő, korlátos felülről, ugyanis a 2 n a i amiből adódik (a n ) sor (s n ) részletösszeg - sorozat i 2 n így S n S n = 2 n a 2 n 2 (s 2 n s 2 n ) S n = (S k S k ) 2 (s 2 n s ). Tehát, ha (s n ) felülről korlátos akkor (S n ) is az Példa. []Konvergens vagy divergens a A kondenzációs kritérium alapján Mivel tudjuk, hogy e 2n 2n x 2 n = n e n 2 n 2 n e 2n = végtelen sor?. e 2n konvergens, ezért az erederi sor is konvergens Definíció. []Az (a n ) számsorozatot, akkor nevezzük korlátos változásúnak, ha n (a n+ a n ) sorozatból képzett végtelen sor abszolút konvergens. Egy számsorozat pontosan akkor korlátos változású, ha előállítható két konvergens monoton növő sorozat különbslge ként. 26

27 4.9. Dirichlet I. kritériuma Tétel. []Ha (b n ) sorozat (s n ) részéletössezeg - sorozata korlátos, és (a n ) korlátos változású nullsorozat, akkor a sn (a n a n+ ) és a (a n b n ) sor is konvergens, összegeik pedig egyenlőek. Bizonyítás. s n (a n a n+ ) sor abszolút konvergens, ugyanis ha a tagok abszolútértékét nézzük, akkor a belőlük képzett sor a részletösszegeinek alapján korlátos. n s k (a k a k+ ) = n n s k a k a k+ sup{ s k } a k a k+ k= k= k= ahol k, n Z +. A s n (a n a n+ ) abszolút konvergens sor, így konvergens is. Vezessük be az s 0 = 0 jelöléssel k Z + -ra y k = s k s k -et, így: n a k y k = n a k (s k s k ) = n a k s k n a k s k = k= k= k= k= n a k s k n a k+ s k = a n s n + n s k (a k a k+ ). k= k= k= Mivel (s n ) korlátos sorozat, (a n ) pedig nullsorozat, ezért (a n s n ) nullsorozat. Ha nézzük a két sor határértékét, akkor n a k y k = lim n a n s n + (a k a k+ ) s k = s k (a k a k+ )-et k= k= k= kapjuk, amit bizonyítani is szerettünk volna Dirichlet II. kritériuma Tétel. []Tegyük fel, hogy (b n ) sorozat részletösszegeinek sorozata korlátos, és az (a n ) monoton csökkenő és nullához tart. Ekkor a n b n végtelen sor konvergens. Bizonyítás. Kell, hogy ha (a n ) monoton csökennő nullsorozat, akkor korlátos változású. (an a n+ ) állandó előjelű, nem negatív előjelű tagú sorra: n a k a k+ = n (a k a k+ ) = a n a n+ a k= ha n. Majd Dirichlet I. tétele alapján (a n b n ) konvergens. k= 27

28 Megjegyzés. Dirichlet I. kritériumának következménye Dirichlet II. kritériuma. 2. Dirichlet II. kritérium speciális esete a Leibnzt - kritériummal egyezik meg. Méghozzá (b n ) = ( ) n illetve (b n ) = ( ) n esetekben Példa. []Nézzük a cos n. A (b n n) = (cos n) sorozat részletösszegei korlátosak az (a n ) = pedig monoton csökkenő nullsorozat. Belátni az s n n = sorról kell azt, hogy valóban korlátos. Ötlet: szorozzunk sin 2. s n sin = n cos k sin = cos sin cos(n ) sin + cos n sin = k= ( sin( ) + sin( + )... sin((n ) ) + sin((n ) + ) sin(n 2 ) + sin(n + 2 )) = 2 (sin(n + 2 ) sin 2 ). így s n = sin(n+ 2 ) sin 2 2 sin, tehát tényleg korlátos az s n. Ebből következően 2 cos n n konvergens. 4.. Abel - kritérium 4... Tétel. []Ha b n sor konvergens, az (a n ) pedig korlátos változású sorozat, akkor a n b n sor konvergens. Bizonyítás. Mivel (a n ) korlátos változású, ezért konvergens. részletösszegeinek sorozata korlátos. k= b n sor konvergens, akkor lim n a n s n = lim n a n lim n s n = lim n a n így a n b n konvergens, és a n b n = lim n a n b n + s n (a n a n ). (Dirichlet I. konvergenciájának bizonyítása alapján) b n 28

29 4..2. Példa. []Döntsük el, hogy konvergens - e a 9 2 n n! = n n! sorozat? n! ( 2 )n sor konvergens az Abel - kritérium szerint, ugyanis a n = n! monoton csökkenő nullasorozat, és ( 2 )n konvergens mértani sor. 29

30 5. fejezet További néhány kritérium 5.. Jermakov - kritérium 5... Tétel. []Tegyük fel, hogy f : [0, ] R + monoton csökkenő függvény, és lim n e n f(e n ) f(n) λ > akkor f(n) sor divergens Példa. []Döntsük el, hogy a = λ. Amennyiben λ < akkor f(n) sor konvergens, ha pedig n=2 (n 2) konvergens-e vagy sem! n ln n A jermakov kritériumot alkalmazva f(x) =, x [2, ] függvényre: x ln x f(e x ) e x f(x) = e x x ex x ln x Tehát a feltételek alapján a sor divergens. = ln x 5.2. Jame - kritérium Tétel. []Adott (a n ) nem negatív tagú sor és J n = ( n a n ) n lnn.. Amennyiben lim inf J n > akkor (a n ) végtelen sor konvergens. 2. Ha egy indextől kezdve a J n, akkor (a n ) divergens. 30

31 5.3. Logaritmikus kritérium Tétel. []Adott (a n ) pozitív tagú sor és L n = ln an ln n, (n 2, n Z+ ).. Ha lim inf L n > akkor a n konvergens 2. Ha egy indextől kezdve L n akkor (a n ) divergens Példa. []Döntsük el, hogy a n=3 (ln ln n) ln n A logaritmikus kritérium alapján a ( ) ln (ln ln n) L n = lnn ln n = ln(ln ln n)ln n ln n Tehát a feltétel szerint a sor konvergens. = konvergens-e vagy sem! ln n ln ln ln n lnn = ln ln ln n. 3

32 6. fejezet Végtelen sorok a középiskolában 6.. Számsorozatok A középiskolában a diákok először a számsorozat fogalmával és tulajdonságaival ismerkednek meg. A függvényekre vonatkozó ismereteikből kiindulva a valós értékű függvények értelmezési tartományának vizsgálatával jutnak el a valós számsorozat fogalmához Példa. [Számsorozatra], 5, 7, 9, 3... Ez f(x) függvény szerint: f() a = f(2) 5 a 2 = 5 f(3) 7 a 3 = 7. Az a i a sorozat i. eleme, az a n pedig az n. tag (álltalános tag). Ezek után a hozzárendelési módból kiindulva tárgyaljuk a sorozat megadási lehetőségeit. Ez történhet a tagok felsorolásával, vagy szövegesen, képlettel esetleg rekurzívan - megtudjuk az első néhány elemet, majd képletet adunk a további elemek kiszámítására. 32

33 6..2. Példa. [Szöveges megadás] A 2 számjegyeinek sorozata Példa. [Felsorolással való megadás] Ez a prímszámok sorozata Példa. [Képlettel való megadás] Példa. [Rekurzív megadás] a = a 2 = 4 a 3 = a 4 = 4 a 5 = {a n } = 2 n+ 3 a = a 2 = a 3 = 2... a n = a n 2 + a n Fibonacci-sorozat. A könnyebb átláthatóság és szemléltetés érdekében megmutatunk kétféle ábrázolási módot. Az egyik, mely szerint koordináta-rendszerben bejelöljük a sorozat néhány elemét, majd levonjuk a következtetést, hogy a grafikon diszkrét pontokból áll. A másik ábrázolási mód pedig, hogy számegyenesen szemléltetjük a sorozat tagjait. A következőkben a függvénytani tulajdonságok állnak az óra középpontjában. Tanult függvénytulajdonságok alapján értelmezzük a korlátosság, monotonitás, határérték fogalmait Példa. [] sorozatot tekintve {a n } = n 2 n+2 < n 2 n+2 = n+2 4 n+2 = 4 n+2 < Ezen a pélán keresztül a diákok maguk tapasztalhatják és fogalmazhatják meg, hogy a sorozat korlátos és monoton növő. Rájönnek, hogy a korlátosság vizsgálata az értékkészletre vonatkozik, a monotonitásnál pedig az értelmezési tartományon vizsgáljuk az értékkészlet elemeit.több példán keresztül szemléltetés és ábrázolás útján a konvergencia és a határérték fogalmát is megtaníthatjuk. Ezután pontos definíciót is adhatunk ezekre a fogalmakra. 33

34 6..7. Definíció. []Egy sorozat konvergens és határértéke az A valós szám, ha bármely ɛ > 0 számhoz N pozitív egész küszöbindex, hogy bármely n N + esetén igaz, hogy a n A < ɛ. Azt is mondhatnánk, hogy a sorozatnak csak véges sok tagja van a határérték tettszőlegesen kis környezetén kívül. Ez a fogalom a diákok számára nehéznek és emészthetetlennek bizonyul. Ezért rengeteg példa gyakorlásával érhetünk el sikert. Ezen példák megoldása közben jön elő a divergens sorozat elnevezés is. Ezzel párhuzamosan fedezik fel, hogy:. Konvergens sorozatnak csak egy határértéke van. 2. Minden konvergens sorozat korlátos. 3. Minden monoton korlátos sorozat konvergens. 4. Vannak olyan sorozatok, amelyek nem konvergensek, de van konvergens részsorozatuk. Minezdek áttekintése után a sorozatokkal végzett műveletek tárgyalásába kezdünk.a függvények kapcsán már tanulták a műveleteket ezért egy művelet megadása után mintaszerűen végezhetik a többit. Az összeg -, különbség -, szorzat - és a hányados sorozat határértékére vonatkozó szabályokat illetve a rendőr szabályt mondjuk ki és bizonyítjuk. Legvégül a majdani könnyebb számítások érdekében tárgyaljuk néhány nevezetes sorozat hatáértékét. Ilyan sorok például az. a n = sorozat, melynek konvergenciáját az arkhimédészi - axióma alapján vezetjük n le. 2. A mértani sorozat melyet megvizsgálunk a kvóciens nagyságának szempontjából. 3. a n = n a 4. a n = n n 5. a n = an n! 6. a n = ( + n ) n 7. Számtani sorozatok Végül rengeteg gyakorló feladattal sajátítjuk el a határértékek kiszámítását. 34

35 6.2. Végtelen sorok A végtelen sorokat Zenon paradoxonjai alapján játékosan vezetjük be és vetjük fel az összegzés problémáját. A konklúzió levonása után pontos definíciót adunk a végtelen sorokra, melyet a számsorozatból vezetünk le. Mindezek után a mértani sor részletösszegsorozatát a sor összegét és a konvergencia fogalmát tisztázzuk. Tárgyaljuk a nevezetes végtelen sorok határértékét. Levezetjük az összehasonlító (hányados, majoráns), hatvány illetve gyökkritériumot. Gyakorlásra kíválóak az alábbi példák: Döntsük el, hogy az alábbi sorok konvergensek - e vagy divergensek? ( n+ ) 3n ( n(n+2) ) ( x n n! n=0 ) 0 n , 5 + 5, Egy 24 cm oldalú négyzet alakú papírlapot négy kisebb négyzetre vágunk, melyek oldala 2 cm. Három négyzetet oldalaikkal egymás melléhelyezünk. A negyediket négy kisebb négyzetre vágjuk, melyek oldalai 6 cm-esek. Ezek közül hármat a nagyobb négyzetek mellé teszünk. A negyedik négyzetet ismét négy kisebb négyzetre vágjuk, és az eljárást a végtelenségig folytatjuk. Határozza meg az egymás melletti négyzetek oldalainak együttes hosszát! 35

36 Köszönetnyilvánítás Ezúton szeretnék köszönetet mondani témavezetőmnek, Szentmiklóssy Zoltánnak, aki türelmével, tudásával, szakmai tapasztalatával segítette munkámat. Hálával tartozom még évfolyamtársamnak, Szabó Dávidnak, aki bevezetett a L A TEX rejtelmeibe. Végül de nem utolsó sorban szüleimnek, akik mindvégig mellettem álltak, támogattak, és akik nélkül mindez sosem sikerült volna. 36

37 Irodalomjegyzék [] CSÁSZÁR ÁKOS, Végtelen sorok. Tankönyvkiadó, Budapest, 979. [2] DR. SZARKA ZOLTÁN, Végtelen sorozatok és sorok I. és II. kötet. Magas szinten könnyedén sorozat. LSI Alkalmazástechnikai Tanácsadó Szolgálat, Budapest, 988. [3] FARKAS MIKLÓS - HOFFMAN TIBORNÉ, Matematika IV. kötet - Végtelen sorok. Műegyetemi Kidaó, 994. [4] LACZKOVICH MIKLÓS - T. SÓS VERA, Analízis II. Nemzeti Tankönyvkiadó, Budapest, [5] URBÁN JÁNOS, Határérték - számítás. Műszaki kiadó, Budapest, [6] SZILÁGYI TIVADAR, Végtelen sorok, hatványsorok. sztiv/5vs.pdf [7] SZILÁGYI TIVADAR, Végtelen sorok, hatványsorok. sztiv/5vs.pdf [8] [9] SDT.SULINET.HU 37

Végtelen sorok konvergencia kritériumai

Végtelen sorok konvergencia kritériumai Eötvös Loránd Tudományegyetem Természettudományi kar Végtelen sorok konvergencia kritériumai BSc szakdolgozat Készítette: Témavezeto : Bogye Tamara Bátkai András Matematika BSc egyetemi docens Matematika

Részletesebben

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján Számsorozatok, vektorsorozatok konvergenciája Def.: Számsorozatok értelmezése:

Részletesebben

Analízis I. beugró vizsgakérdések

Analízis I. beugró vizsgakérdések Analízis I. beugró vizsgakérdések Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v1.7 Forrás: Dr. Weisz Ferenc: Prog. Mat. 2006-2007 definíciók

Részletesebben

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim

4. SOROK. a n. a k (n N) a n = s, azaz. a n := lim Példák.. Geometriai sor. A aq n = a + aq + aq 2 +... 4. SOROK 4. Definíció, konvergencia, divergencia, összeg Definíció. Egy ( ) (szám)sorozat elemeit az összeadás jelével összekapcsolva kapott a + a 2

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

Analízis I. Vizsgatételsor

Analízis I. Vizsgatételsor Analízis I. Vizsgatételsor Programtervező Informatikus szak 2008-2009. 2. félév Készítette: Szabó Zoltán SZZNACI.ELTE zotyo@bolyaimk.hu v.0.6 RC 004 Forrás: Oláh Gábor: ANALÍZIS I.-II. VIZSGATÉTELSOR 2006-2007-/2

Részletesebben

2010. október 12. Dr. Vincze Szilvia

2010. október 12. Dr. Vincze Szilvia 2010. október 12. Dr. Vincze Szilvia Tartalomjegyzék 1.) Sorozat definíciója 2.) Sorozat megadása 3.) Sorozatok szemléltetése 4.) Műveletek sorozatokkal 5.) A sorozatok tulajdonságai 6.) A sorozatok határértékének

Részletesebben

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2

Sorozatok. 5. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Sorozatok p. 1/2 Sorozatok 5. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Sorozatok p. 1/2 A sorozat definíciója Definíció. A természetes számok halmazán értelmezett valós értékű a: N R függvényt

Részletesebben

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. 1. Archimedesz tétele. Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx. Legyen y > 0, nx > y akkor és csak akkor ha n > b/a. Ekkor elég megmutatni, hogy létezik minden

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

A fontosabb definíciók

A fontosabb definíciók A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,

Részletesebben

Sorozatok, sorozatok konvergenciája

Sorozatok, sorozatok konvergenciája Sorozatok, sorozatok konvergenciája Elméleti áttekintés Minden konvergens sorozat korlátos Minden monoton és korlátos sorozat konvergens Legyen a n ) n egy sorozat és ϕ : N N egy szigorúan növekvő függvény

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

A Matematika I. előadás részletes tematikája

A Matematika I. előadás részletes tematikája A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok

Részletesebben

Analízis ZH konzultáció

Analízis ZH konzultáció Analízis ZH konzultáció 1. Teljes indukció Elméleti segítség: n=1-re bebizonyítani (vagy arra az n-re, ahonnan az állítást igazolni szeretnénk) feltesszük, hogy n-re igaz az állítás -> n+1-re is igaz lesz?

Részletesebben

Gyakorló feladatok az II. konzultáció anyagához

Gyakorló feladatok az II. konzultáció anyagához Gyakorló feladatok az II. konzultáció anyagához 003/004 tanév, I. félév 1. Vizsgáljuk meg a következő sorozatokat korlátosság és monotonitás szempontjából! a n = 5n+1, b n = n + n! 3n 8, c n = 1 ( 1)n

Részletesebben

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK

Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének. Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

A végtelen a matematikában Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet.

A végtelen a matematikában Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet. A végtelen a matematikában Radnóti Gimnázium 203. 04. 23. Dr. Németh József egyetemi docens SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj 2 Pólya György: Ha a tudomány

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

SZTE TTIK Bolyai Intézet

SZTE TTIK Bolyai Intézet Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged,

Részletesebben

2012. október 2 és 4. Dr. Vincze Szilvia

2012. október 2 és 4. Dr. Vincze Szilvia 2012. október 2 és 4. Dr. Vincze Szilvia Tartalomjegyzék 1.) Az egyváltozós valós függvény fogalma, műveletek 2.) Zérushely, polinomok zérushelye 3.) Korlátosság 4.) Monotonitás 5.) Szélsőérték 6.) Konvex

Részletesebben

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )

n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 ) Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Programtervező informatikus I. évfolyam Analízis 1

Programtervező informatikus I. évfolyam Analízis 1 Programtervező informatikus I. évfolyam Analízis 1 2012-2013. tanév, 2. félév Tételek, definíciók (az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál) 1. Mit jelent az asszociativitás

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2

Tartalomjegyzék. Tartalomjegyzék Valós változós valós értékű függvények... 2 Tartalomjegyzék Tartalomjegyzék... Valós változós valós értékű függvények... Hatványfüggvények:... Páratlan gyökfüggvények:... Páros gyökfüggvények... Törtkitevős függvények (gyökfüggvények hatványai)...

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév

Analízis II. Analízis II. Beugrók. Készítette: Szánthó József. kiezafiu kukac gmail.com. 2009/ félév Analízis II. Analízis II. Beugrók Készítette: Szánthó József kiezafiu kukac gmail.com 2009/20 10 1.félév Analízis II. Beugrók Függvények folytonossága: 1. Mikor nevez egy függvényt egyenletesen folytonosnak?

Részletesebben

Alkalmazott matematika és módszerei I Tantárgy kódja

Alkalmazott matematika és módszerei I Tantárgy kódja Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve

Részletesebben

Debreceni Egyetem. Kalkulus I. Gselmann Eszter

Debreceni Egyetem. Kalkulus I. Gselmann Eszter Debreceni Egyetem Természettudományi és Technológiai Kar Kalkulus I. Gselmann Eszter Debrecen, 2011 A matematikában a gondolat, ami számít. (Szofja Vasziljevna Kovalevszkaja) Tartalomjegyzék 1. Halmazok,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány

SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, SZAKDOLGOZAT ELLENPÉLDÁK. TÉMAVEZETŐ: Gémes Margit. Matematika Bsc, tanári szakirány SZÉLSŐÉRTÉKKEL KAPCSOLATOS TÉTELEK, PÉLDÁK, ELLENPÉLDÁK SZAKDOLGOZAT KÉSZÍTETTE: Kovács Dorottya Matematika Bsc, tanári szakirány TÉMAVEZETŐ: Gémes Margit Műszaki gazdasági tanár Analízis tanszék Eötvös

Részletesebben

Függvény határérték összefoglalás

Függvény határérték összefoglalás Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 4 IV HATVÁNYSOROk 1 ELmÉLETI ALAPÖSSZEFÜGGÉSEk Az olyan végtelen sort, amelynek tagjai függvények, függvénysornak nevezzük Ha a tagok hatványfüggvények, akkor a sor neve hatványsor

Részletesebben

Hatványsorok, Fourier sorok

Hatványsorok, Fourier sorok a Matematika mérnököknek II. című tárgyhoz Hatványsorok, Fourier sorok Hatványsorok, Taylor sorok Közismert, hogy ha 1 < x < 1 akkor 1 + x + x 2 + x 3 + = n=0 x n = 1 1 x. Az egyenlet baloldalán álló kifejezés

Részletesebben

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport Analízis I. zárthelyi dolgozat javítókulcs, Informatika I. 2012. okt. 19. Elméleti kérdések A csoport 1. Hogyan számíthatjuk ki két trigonometrikus alakban megadott komplex szám szorzatát más alakba való

Részletesebben

f(x) a (x x 0 )-t használjuk.

f(x) a (x x 0 )-t használjuk. 5. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 5.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Matematika I. NÉV:... FELADATOK:

Matematika I. NÉV:... FELADATOK: 24.2.9. Matematika I. NÉV:... FELADATOK:. A tanult módon vizsgáljuk az a = 3, a n = 3a n 2 (n > ) rekurzív sorozatot. pt 2n 2 + e 2. Definíció szerint és formálisan is igazoljuk, hogy lim =. pt n 3 + n

Részletesebben

Komplex számok. A komplex számok algebrai alakja

Komplex számok. A komplex számok algebrai alakja Komple számok A komple számok algebrai alakja 1. Ábrázolja a következő komple számokat a Gauss-féle számsíkon! Adja meg a számok valós részét, képzetes részét és számítsa ki az abszolút értéküket! a) 3+5j

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar. Érdekes összegek. Szakdolgozat. Matematika BSc Tanár

Eötvös Loránd Tudományegyetem Természettudományi Kar. Érdekes összegek. Szakdolgozat. Matematika BSc Tanár Eötvös Loránd Tudományegyetem Természettudományi Kar Érdekes összegek Szakdolgozat Készítette: Pressing Dániel Matematika BSc Tanár Témavezető: dr Besenyei Ádám Adjunktus Budapest, 4 Tartalomjegyzék Bevezetés

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 A derivált alkalmazásai H607, EIC 2019-04-03 Wettl

Részletesebben

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka

Alapfogalmak, valós számok Sorozatok, határérték Függvények határértéke, folytonosság A differenciálszámítás Függvénydiszkusszió Otthoni munka Pintér Miklós miklos.pinter@uni-corvinus.hu Ősz Alapfogalmak Halmazok Definíció Legyen A egy tetszőleges halmaz, ekkor x A (x / A) jelentése: x (nem) eleme A-nak. A B (A B) jelentése: A (valódi) részhalmaza

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Matematika I. NÉV:... FELADATOK: 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon. 215.12.8. Matematika I. NÉV:... 1. Lineáris transzformációk segítségével ábrázoljuk az f(x) = ln(2 3x) függvényt. 7pt 2. Határozzuk meg az f(x) = 2x 3 + 2x 2 2x + 1 függvény szélsőértékeit a [ 2, 2] halmazon.

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Differenciál és integrálszámítás diszkréten

Differenciál és integrálszámítás diszkréten Differenciál és integrálszámítás diszkréten Páles Zsolt Debreceni Egyetem, Matematikai Intézet MAFIÓK, Békéscsaba, 010. augusztus 4-6. Páles Zsolt (Debreceni Egyetem) Diff. és int.-számítás diszkréten

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

A derivált alkalmazásai

A derivált alkalmazásai A derivált alkalmazásai Összeállította: Wettl Ferenc 2014. november 17. Wettl Ferenc A derivált alkalmazásai 2014. november 17. 1 / 57 Tartalom 1 Függvény széls értékei Abszolút széls értékek Lokális széls

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

2014. november 5-7. Dr. Vincze Szilvia

2014. november 5-7. Dr. Vincze Szilvia 24. november 5-7. Dr. Vincze Szilvia A differenciálszámítás az emberiség egyik legnagyobb találmánya és ez az állítás nem egy matek-szakbarbár fellengzős kijelentése. A differenciálszámítás segítségével

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

NUMERIKUS SOROK I. A feladat ekvivalens átfogalmazása a következő végtelen sok tagú összegnek a meghatározása ) 1 21

NUMERIKUS SOROK I. A feladat ekvivalens átfogalmazása a következő végtelen sok tagú összegnek a meghatározása ) 1 21 NUMERIKUS SOROK I. Ha az {a n } (n N) sorozat elemeiből egy új {s n } (n N) sorozatot képezünk olyan módon, hogy s = a, s 2 = a + a 2,, s n = a + a 2 + + a n,, akkor ezt numerikus sornak (vagy csak simán

Részletesebben

MATEMATIKA 1. GYAKORLATOK

MATEMATIKA 1. GYAKORLATOK Fritz Józsefné, Kónya Ilona, Pataki Gergely és Tasnádi Tamás MATEMATIKA. GYAKORLATOK 0. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright ii A Matematika.

Részletesebben

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás,

8n 5 n, Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, 3... Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Definíció szerint és formálisan is határozzuk meg az f() = 4 deriváltját az = helyen.pt. Határozzuk meg a következő határértékeket: pt lim n 8n 5

Részletesebben

Függvények határértéke és folytonosság

Függvények határértéke és folytonosság Függvények határértéke és folytonosság ) Bizonyítsa be a határérték definíciója alapján, hogy teljesül! + 5 + = Megoldás Heine definíciója alapján): Igazolandó, hogy a függvény értelmezve van a egy környezetében,

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?

12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében? Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!

Részletesebben

Kalkulus I. gyakorlat Fizika BSc I/1.

Kalkulus I. gyakorlat Fizika BSc I/1. . Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C,

Értelmezési tartomány, tengelymetszetek, paritás. (ii) Határérték. (iii) Első derivált, monotonitás, x x 2 dx = arctg x + C = arcctgx + C, 25.2.8. Kalkulus I. NÉV:... A csoport EHA:... FELADATOK:. Lineáris transzformációk segítségével ábrázoljuk az f() = ln(2 3) függvényt. 7pt 2. Határozzuk meg az f() = 2 3 + 2 2 2 + függvény szélsőértékeit

Részletesebben

Matematikai alapok 1 Tantárgyi útmutató

Matematikai alapok 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:

Részletesebben

SHk rövidítéssel fogunk hivatkozni.

SHk rövidítéssel fogunk hivatkozni. Nevezetes függvény-határértékek Az alábbiakban a k sorszámú függvény-határértékek)re az FHk rövidítéssel, a kompozíció határértékéről szóló első, illetve második tételre a KL1, illetve a KL rövidítéssel,

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Sorozatok határértéke VÉGTELEN SOROK

Sorozatok határértéke VÉGTELEN SOROK Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11.

ARANYMETSZÉS. - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka június 11. ARANYMETSZÉS - érettségi dolgozat védése analízis és algebrából - Készítette: Szénási Eszter Mentor: Dr. Péics Hajnalka 2014. június 11. Zenta TARTALMI ÁTTEKINTÉS Az aranymetszés fogalma eredete és előfordulása

Részletesebben

Matematika I. Vektorok, egyenesek, síkok

Matematika I. Vektorok, egyenesek, síkok Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika I Vektorok, egyenesek, síkok a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b 2, b 3 ) vektorok szögét? a) Hogyan számítjuk

Részletesebben

8. feladatsor: Többváltozós függvények határértéke (megoldás)

8. feladatsor: Többváltozós függvények határértéke (megoldás) Matematika Ac gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 07/8 ősz 8. feladatsor: Többváltozós függvények határértéke (megoldás). Számoljuk ki a következő határértékeket: y + 3 a) y

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Gazdasági matematika 1 Tantárgyi útmutató

Gazdasági matematika 1 Tantárgyi útmutató Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése

Részletesebben

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?

2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva? = komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Eger, augusztus 31. Liptai Kálmán Eszterházy Károly Főiskola Matematikai és Informatikai Intézet

Eger, augusztus 31. Liptai Kálmán Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tartalomjegyzék Előszó................................. 5. Függvénytani alapismeretek..................... 7. Valós számsorozatok......................... 9 3. Valós számsorok............................

Részletesebben

Szakdolgozat. Hatványsorok és alkalmazásaik

Szakdolgozat. Hatványsorok és alkalmazásaik Szakdolgozat Hatványsorok és alkalmazásaik Heimbuch Zita Matematikai elemz szakirány Témavezet : Bátkai András, adjunktus Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd Tudományegyetem,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

Valós függvények tulajdonságai és határérték-számítása

Valós függvények tulajdonságai és határérték-számítása EL 1 Valós függvények tulajdonságai és határérték-számítása Az ebben a részben szereplő függvények értelmezési tartománya legyen R egy részhalmaza. EL 2 Definíció: zérushely Az f:d R függvénynek zérushelye

Részletesebben

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS

A valós számok halmaza 5. I. rész MATEMATIKAI ANALÍZIS A valós számok halmaza 5 I rész MATEMATIKAI ANALÍZIS 6 A valós számok halmaza A valós számok halmaza 7 I A valós számok halmaza A valós számokra vonatkozó axiómák A matematika lépten-nyomon felhasználja

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

VIK A3 Matematika, Gyakorlati anyag 2.

VIK A3 Matematika, Gyakorlati anyag 2. VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató

TANTÁRGYI PROGRAM Matematikai alapok I. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok

Részletesebben

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék

Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és

Részletesebben

Gauss-Seidel iteráció

Gauss-Seidel iteráció Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek (mindhárom félévre): 1. Scharnitzky

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i

I. feladatsor i i i i 5i i i 0 6 6i. 3 5i i I. feladatsor () Töltse ki az alábbi táblázatot: Komplex szám Valós rész Képzetes rész Konjugált Abszolútérték + i i 0 + i i 5 5i 5 5i 6 6i 0 6 6i 6 5i 5 + 5i + i i 7i 0 7 7i 7 () Adottak az alábbi komplex

Részletesebben