hozzásegít a forgalom nagyságának, a zajnak és a levegőszennyezésnek a

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "hozzásegít a forgalom nagyságának, a zajnak és a levegőszennyezésnek a"

Átírás

1 hozzásegít a forgalo nagyságának, a zajnak és a levegőszennyezésnek a csökkentéséhez. Célszerű a axiális környezeti hasznot elérni a forgalocsillapítás segítségével, viszont több cél is egjelölhető. A forgalo csökkentése történhet az elsősorban az élethez elengedhetetlenül szükséges levegő tisztaság és alacsony zajszint elérése érdekében, vagy a forgalo elterelése, a balesetek száának csökkentése iatt. zükséges egfontolni elyik célkitűzés a jelentősebb, fontosabb és ezek figyelebe vételével elkészíteni a terveket. Gazdasági előnyök A forgalocsillapítás szászerűsíthető és ne szászerűsíthető előnyöket eredényez, elyek a következők: növekednek az épületek árai, kereskedeli előny jelentkezik a helyi üzletekben, ha a rövid utak vonzóbbá válnak, alacsonyabb egészségügyi kiadást eredényez a balesetek csökkenése, a légszennyezés csökkentésének köszönhetően alacsonyabbak a járulékos költségek, a város, a városközpont és a kereskedele vonzóbbá válik ott, ahol az eberek elkülönültsége csökken és a városi környezet fejlődik, a közösségi szelle növekedéséből és a környezettől való szeparáció csökkenéséből potenciális haszon következik (pl. bűncselekények száának csökkenése, a helyi üzletek gyakoribb használata) 4... Mozgási folyaatok leírása az út-járűrendszer kapcsolat alapján, áralati állapotok Az egyes közlekedő eleek száos sztochasztikus jel hordozói. Ezek a közúti forgaloban érhetők, vagy egkérdezés útján állapíthatók eg. A legfontosabbak a következők: sebesség, követési távolság, követési időköz, gyorsulás, járűfajta, járű típus, járű töeg, találkozások, előzések, vonalvezetés, balesetek, utazási ok, utazás kiindulása és célja, útirány. A forgali áralat alapvető jellező ennyiségének tekintendő az áralatnagyság, az áralatsűrűség és az áralási sebesség. Az áralatnagyság: az időegység alatt egy keresztetszeten áthaladó járűvek száa. Jele: N, n. Mértékegysége: járű/óra, járű/nap, járű/időegység. Az áralat járűfajták szerinti inhoogenitása ind a sebesség, ind a gyorsító-lassító képesség, ind a éretek, a befogadóképesség szepontjából jelentős. Ezért általában a teljesítény vezértípussal való érési ódját alkalazzák. Vezértípus a közúti közlekedésben a szeélygépkocsi egység [E]. A szeélygépkocsi egyenérték az a szá, aely egondja, hogy valaely járű vagy járű típus átbocsátóképesség szepontjából hány 130

2 szeélygépkocsinak felel eg. Forgalotechnikai száításokban az alábbi táblázat tartalazza azokat a száokat, aelyekkel az azonos fajtájú járűvek darabszáát egszorozva a forgalonagyság egységjárűben kifejezve adható eg (3. táblázat): A járűosztály egnevezése Külterület Belterület zeélygépkocsi és kis-tehergépkocsi 1,0 1,0 Autóbusz (szóló),5 1,8 Autóbusz (csuklós),5,5 Közepesen nehéz kéttengelyes tehergépkocsi,5 1,4 Nehéz tehergépkocsi,5 1,8 Pótkocsis tehergépkocsi,5,5 Nyerges szerelvény,5,5 peciális nehéz járű,5,5 Motorkerékpár + segédotoros kerékpár 0,8 0,7 Kerékpár 0,3 0,3 Lassú járű,5,5 3. táblázat Egységjárű szorzók (Forrás: ÚT -109 űszaki előírás) Az áralatsűrűség: az útszakaszon adott időpontban levő járűvek száa és az ugyanezen szakaszon levő nyook összhosszának hányadosa. Jele:, s, értékegysége: járű/k, járű/hosszegység. Az áralatsűrűség az áralatnagyságnál jobban jellezi az áralási viszonyokat, különösen oszlopban való haladás esetén. A közlekedés eghatározó jellezője a sebesség, aely ind a teljesíténynek, ind a inőségnek fontos alakító tényezője. Ezért a sebességet a közlekedési folyaat jellezésekor jelentős tényezőként szükséges figyelebe venni. A közlekedéssel szeben táasztott követelény és a folyaat sok tényezőtől függő volta egyaránt odavezet, hogy többféle sebességfogalat kell használni. Üzetani szepontból elsősorban egyedi és áralási sebességet különböztethető eg. Mindkét fajta sebesség vonatkozhat valaely időpontra vagy eghatározott időtartara. Térbelileg, pedig indkét sebességfogalo vonatkoztatható bizonyos keresztetszetre (pályapontra) vagy útszakaszra (rész vagy egész hálózatra). Jele: V, v, értékegysége a közlekedésben: k/ó, hosszegység/időegység. Az egyedi sebesség konkrét időpontra és pályakeresztetszetre vonatkozó értéke a dl v = dt képlettel határozható eg, ahol a jobb oldalon az út idő függvényének az idő szerint vett differenciálhányadosa áll. 131

3 Valaely pályakeresztetszeten bizonyos idő alatt, avagy valaely pályaszakaszon adott pillanatban haladó különböző járűvek sebessége lehet eltérő és lehet többé-kevésbé egyfora is. Az áralás sebességét a vizsgált egységek sebességeinek átlagaként száítják. A vizsgált közlekedő kollektíva jellező ennyiségeinek felvételére a következő alapvető lehetőségek állnak rendelkezésre: Időbeli (helyhez kötött) A jelek felvétele eghatározott keresztetszetben történik egy előre eghatározott hosszabb időszak alatt. Térbeli (pillanatnyi) A jelek felvétele eghatározott időpontban történik egy előre eghatározott hosszabb útszakaszon. Térbeli-időbeli A jelek felvétele egy előre eghatározott hosszabb útszakaszon és hosszabb időszak alatt történik. A közúti forgali folyaat jellező inforációk felvételi és érési ódszerét a tér-idő koordinátarendszerben lehet szeléltetni. Az alkalazott felvételi ódszernek egfelelően egkaphatók a forgali folya időbeli, térbeli és térbeli-időbeli jellezői: Időbeli szeléleti rendszer alapján: forgalonagyság keresztetszeti sebességeloszlás keresztetszeti követési időköz eloszlás keresztetszeti gyorsuláseloszlás keresztetszeti járű összetétel keresztetszeti járű töeg eloszlás keresztetszeti járű egoszlás nyoonként; Térbeli szeléleti rendszer alapján: forgalosűrűség pillanatnyi sebességeloszlás pillanatnyi követési távolság eloszlás pillanatnyi gyorsuláseloszlás pillanatnyi járű összetétel pillanatnyi járű töeg eloszlás pillanatnyi keresztetszeti járű egoszlás; Térbeli-időbeli szeléleti rendszer alapján: a/ forgali teljesítény 13

4 térbeli-időbeli forgali sűrűség térbeli-időbeli forgalonagyság térbeli-időbeli forgali sebesség térbeli-időbeli forgali követési távolság térbeli-időbeli forgali követési időköz térbeli-időbeli forgali gyorsulás térbeli-időbeli járűösszetétel b/ sebesség alakulás követési távolság alakulása követési időközök alakulása gyorsulás alakulása vonalvezetés alakulása c/ találkozási folyaatok előzési folyaatok d/ utazási ok az utazás forrása és célja a közlekedési igény alakulása közlekedési igény eszközök közti egoszlása d/ forgalo útvonala a forgalo biztonsága. A helyi isertetőjeleket eghatározott időre (pl. 0, 40, 1 óra stb.) a pillanatnyi isertetőjeleket a vizsgált útszakasz hosszára (pl. 50, 1 k stb.) vonatkoztatva statisztikai ódszerekkel értékelik, középértéket, szórást, ferdeséget száítanak, valaint eloszlásvizsgálatot végeznek. A térbeli-időbeli isertetőjelek a forgali folya viselkedését indkét dienzióban átfogóan leírják, a statisztikus átlagok a tér-időnek egfelelően képezhetők. Ne egengedett a térbeli adatok átszáítása időbelivé, illetve az időbeli adatok átszáítása térbeli adatokká. A térbeli-időbeli isertetőjelek kizárólag térbeli-időbeli felvétel alapján határozhatók eg, s egengedett valaennyi isertetőjel száítása a térbeli-időbeli felvétel útján nyert adatokból. Alaptételként rögzíthető, hogy csupán a térbeli-időbeli szeléleti rendszer teszi lehetővé a koplex közúti forgali áralat leírását. A ozgási folyaat térbeli-időbeli eltérése alapján éppoly kevéssé lehet a helyi jellezőket a pillanatnyi jellezőkkel összevonni, int fordítva. A közúti forgalo lefolyásában igen nagy szerepe van a véletlennek. Ez ne azt jelenti, hogy a forgalo lefolyását objektív törvényszerűségek ne befolyásolják és az teljesen ok nélkül alakul, hane éppen a nagyon sok és változatos befolyásoló tényező hatására forálódik a forgali folya ilyen ódon. Nagyon 133

5 sok esetben akkor jelentkezik akadályozás, ha a közúti forgalo véletlenszerűsége egszűnik. Ha a forgali áralat, aely jellezőin keresztül vizsgálható, véletlen töegjelenség, akkor annak jellezői is igen erősen véletlenszerűek. Ezért nyilvánvaló, hogy az áralati viszonyokat átlagos értékek egyagukban ne jelleezhetik. Meg kell adni a forgali áralatot jellező ennyiségek statisztikai értékeit és eloszlási függvényét is. Az áralatnagyság igen szoros összefüggésben van a járűvek ozgását jellező követési időközzel. Értéke függ az áralási viszonyoktól, a gépjárűvezetőktől, az út űszaki jellezőitől, a gépjárű szerkezeti, dinaikai adottságaitól és az időjárástól. A követési időköz, int valószínűségi változó zavartalan áralatok esetén a járűérkezést leíró Poisson-féle eloszlásból vezethető le. A véletlenszerűség azt jelenti, hogy inden eseény (egy járű érkezési időpontja egy adott keresztetszetben) teljesen független bárely ás eseénytől és az egyfora időközök egyfora száú eseényt tartalaznak azonos valószínűséggel. A Poisson eloszlás egfelelő függvénye: k P(k) = e k! valaely rövid időköz alatti járűérkezés (k = 0, 1,,...) valószínűsége. Ha p annak valószínűsége, hogy egy járű valaely rövid t időköz alatt áthalad a keresztetszeten, N pedig az egész vizsgált T időköz alatt áthaladó járűvek száa, a t időköz alatt belépő járűvek átlagos száa, akkor = N t T p = = N Annak valószínűsége, hogy egy keresztetszetben, egy t szekundual egyenlő vagy nagyobb időköz fellép, egegyezik annak valószínűségével, hogy egy t sec időtartaú intervalluban ne érkezik járű. Így a P( P(k) k! t T k = e képletből 0! 0 N t T + t) = P(k = 0) = e = e = e, vagyis negatív exponenciális eloszlású a követési időköz. 134

6 Ha a forgali áralatban zavar lép fel, akkor a követési időközök ár ne a Poisson eloszlást követik. Az áralatsűrűség a követési távolsággal ad egyértelű összefüggést. A követési távolság, int valószínűségi változó eloszlását is Poisson eloszlásnak tekintik. Kérdés, eddig csökkenhet a követési távolság, eddig zárkózhatnak fel egyás után a járűvek. Mekkora az adott haladási, áralási sebességhez tartozó iniális követési távolság. E probléa a egállási távolság fogala körül forog. A egállási (teljes fékút) távolságot legáltalánosabban a következő képlettel adják eg: Az egyes paraéterek jellezői: l 0 v + t' v + c e% µ ± 100 l F = l 0, a biztonsági távolság (pl. közúti gépjárűvek esetén 0,5 éterben veszik fel) és a járűhossz (szeélygépkocsinál 6, tehergépkocsinál 9-14 ) összege; t a cselekvési, készenléti idő, aelyet közúton a Wehner által kapott viszonylag kicsiny, 0,5 1,5 sec átlagaként 1 sec-ban szokás elfogadni azzal, hogy a közlekedésben a váratlan eseények iatt állandóan felkészültnek kell lenni. A ai pálya, forgali és sebességi viszonyok közt ezen értéket előbb-utóbb differenciálni kell: a reakció idő, ha egy ingerre egy válasz szükséges: két válasz esetén: háro válasz esetén: 0,18 0,5 sec, 0,40 0,45 sec, 1,00 1,0 sec. A cselekvési időhöz tartozó távolság a következő részekből tevődik össze: a fékezést igénylő akadály, veszély felfogási idejéhez, a veszély felfogásától a cselekvés kezdetéig tartó tulajdonképpeni reflex, reakció időhöz, a sebességváltáshoz, az energia adagolás egszüntetési idejéhez, a fék-kezelés kezdetétől a fék űködésének egkezdéséig eltelő időhöz tartozó út. A leírásból kivehetően az első háro ele a vezetőtől, az ebertől, a negyedik a járűtől, a technikától (fékrendszer és állapota, pálya, gui stb.); az egyes értékek alakulása azonban száos környezeti tényezőtől (pálya, táj, időjárás stb.) is függ. 135

7 v a sebesség csökkentés okának jelentkezése pillanatában eglevő járűsebesség. A tulajdonképpeni fékút (l f ) a képlet haradik tagja, aelyen a járű sebessége folyaatosan csökken. c külön eghatározandó együttható, aelynek az eelkedő, a gördülő és a légellenállás elhanyagolásával száítható közelítő értéke: 1/ g, ahol g a nehézségi gyorsulás. e a pálya eelkedését, illetve lejtését fejezi ki. µ a pálya és a járű közti tapadási együttható, aely ugyancsak száos tényező függvénye. A tapadási tényező annak a axiális vonó-, vagy fékezőerőnek és a kerékterhelésnek a hányadosa, aely értékeknél a gördülés éppen tiszta csúszásba egy át (33. táblázat). Útfelület Tapadási tényező (N/N) záraz Nedves Érdesített aszfalt-beton 0,95 0,9 Beton 0,5 0,8 0,35 0,45 Aszfalt 0,5 0,8 0,35 0,45 zennyezett aszfalt - 0, 0,3 Hook 0,5 0,8 0,5 0,65 Kötött talaj 0,4 0,6 - Letaposott hó - 0,15 0,5 ia jég 0,1 0, táblázat A tapadási tényező átlagos értékei A vázolt eggondolások alapján adódó teljes fékút (egállási, féktávolsági) azonos fajta, sőt ugyanazon járű esetében is száottevően eltérhet. Értékét a pálya, a sebesség (ez inden egyéb tényező változatlansága ellett is a súrlódási tényező függvénye) és az időjárási viszonyok ellett, a gépjárű guiabroncsának és fékberendezésének állapota, főleg pedig a vezető egyénisége és pillanatnyi állapota is nagyértékben eghatározza. Különböző járűveken ég nagyobbak lehetnek az eltérések. Feltéve, hogy adott esetben a l f értékek két egyást követő járűre isertek, a felzárkózás, a követési távolság iniua tekintetében két szélsőséges álláspont lehetséges. A követő járűvek az előttük haladó járűvet a egállási távolságnak egfelelő követési távig közelíthetik eg. Ezt az elvet fogadják el a is a kötöttpályás vasúti közlekedésben. Nyilvánvaló, hogy a vázolt elv a közúti gépjárű közlekedésben túlságosan ritka áralatokat okozna, ai a teljesítényt nagyban csökkentené. Ezen elv alkalazására azonban általában nincs is szükség. 136

8 A következő közúti járű ne akkor kezd fékezni, aikor az előtte haladó ár egállt, hane, ha az előző járű fékezésének okát a követő is észleli, ugyanakkor kezd fékezni, aikor az elől haladó járű; vagy ennél csupán valaivel (a reakció idővel) később, aikor az elől haladó járűről (főleg, ha erre alkalas jelzőberendezéssel is el van látva) leolvasható, hogy fékezni kezdett. Ha ilyen körülények között a felzárkózott járűoszlop inden járűve az előtte haladóhoz való hozzáütközés nélkül tud egállni, illetve lassítani, vagyis a helyzethez alkalazkodni, a rendszer (oszlop) állapotát stabilnak nevezik. A vázolt gondolatenet alapján a közúti közlekedésben az átlagos követési távolságot a hirtelen (vész) és norális fékezés közti fékút különbségeként (biztonsági okokból feltételezve, hogy az elől haladó járű jobb fékezési lehetőségű) veszik száításba. Legáltalánosabb esetben tehát: in c + v c1 v e% µ ± l k = l 0 + t v, ahol l k a követési távolság, v és v 1 a követő, illetve elől haladó járű sebessége, c és c 1 a hozzájuk tartozó, az előbbiekben értelezett együtthatók. Ne helyes azonban a követési távolságnak csupán a fékút különbségek alapján való egállapítása se. A nagy szóródás arra figyeleztet, hogy a követési távolság ezen az alapon való egállapításakor óvatosnak kell lenni. A egfigyelések szerint ég a legkisebb értékek alá is gyakran leennek a járűvezetők. Figyelebe kell venni azt is, hogy az elől haladó járű necsak fékhatásra, hane pl. ütközés következtében is egállhat. Ekkor, ha túlságosan rövid a követési távolság (a járűoszlop, int rendszer labilis állapotban van) a járűvek egyásra torlódhatnak, sorban egyáshoz ütközhetnek. A egfigyelések szerint a járűveknek integy egyharada ilyen esetekben ne tudná elkerülni a balesetet. Ilyen egfontolások alapján a KREZ azt írja elő, hogy: 7. (1) Járűvel ásik járűvet csak olyan távolságban szabad követni, aely elegendő ahhoz, hogy az elől haladó járű ögött ennek hirtelen fékezése esetében is eg lehessen állni. Ez a szabály tehát a követési távolság optiális nagyságának egállapítását adott esetben a járűvezetőre bízza. A forgali áralat jellezői közül a sebesség, int valószínűségi változó a norális eloszlást követi. 1 v V σ 1 f (v) = e, σ π ahol V az átlagos áralási sebesség, 137

9 σ a sebességek szórása, f(v) a v sebességhez tartozó valószínűségsűrűség. A enetviselkedés a közlekedési folya alapelee, int szabályozókör fogandó fel. A szabályozó a közlekedő ele, a szabályozási ennyiség a térbeliidőbeli forgali sebesség. Egy ás járű haladása által ne befolyásolt közlekedő ele sebességét a pályafeltételeknek az időbeli, térbeli és egyéni adottságoknak egfelelően választja eg. A közlekedő ele (a járűvezető és a járű együttese) ideális esetben egkísérli a szabályozási ennyiséget (forgali sebesség) konstans értéken tartani, ez esetben egy tartós stabil rendszerrel van dolgunk. A szabályozó tökéletlensége következtében a sebesség ne konstans, hane többé-kevésbé a kívánt érték körül ingadozik. Így indenkor száolni kell egy gyorsulási folyaattal. Ha egy csoport egyást kölcsönösen befolyásoló forgali résztvevő enetviselkedése a vizsgálat tárgya, akkor döntő paraétereknek a forgalosűrűséget és a sebességet kell tekinteni. A járűvezetők egkísérlik járűvük sebességét az előttük haladó járű sebességéhez igazítani. Ez rendszerint csak bizonyos értékig sikerül. A sebesség folyaatos szabályozása a csoport inden járűvére vonatkoztatva egy saját gyorsulást jelent, aely azonban szuperponálódik az elől haladó járűvek által közvetített gyorsulással. A rendszer addig stabil, aeddig a járűről járűre átvitt gyorsulás csökken. Ellenkező esetben instabillá válik. Ez utóbbi állapot indenekelőtt nagy közlekedési sűrűségeknél lép fel. Az egyéni szabályozók tökéletlensége okozza, hogy a szabályozási ennyiséget (sebesség) csak egy eghatározott időre vonatkozóan tartják be. A vezérlési ennyiség szerepét a térbeli-időbeli forgalosűrűség állandóan ingadozik, ég az esetben is, ha a külső befolyásoló körülények állandósulnak. A szabályozási ennyiség értékének változása során változik a vezérlési ennyiség, aely visszahat a szabályozási ennyiség értékére. A sűrűség növekedés sebesség csökkenéssel, a sűrűség csökkenés, pedig sebesség növekedéssel jár. Tehát fokozatos szabályozású rendszerről van szó. Korábban feltételezték a követési időköz sebesség szoros korrelációját, aelynek létezésénél a tér és időbeli integráció egy forgalonagyság sebesség szabályozókört ad. Ezzel szeben a térbeli-időbeli érések igazolták, hogy ne a forgalonagyság, hane kizárólag a forgalosűrűség képes a vezérlési ennyiség szerepének betöltésére. Elisert tény, hogy a járűvezető szabályozóként csupán a sebességet és a követési távolságot (azaz a forgalosűrűséget) képes egítélni, viszont a követési időközt (azaz a forgalonagyságot) ne. Csökkenő sebesség ellett a járűvezetők csökkentik követési távolságukat, ekkor a követési időköz is csökken, de egy iniális érték elérése után eelkedni kezd a végtelen felé konvergálva. Növekvő sűrűség esetén onoton csökkenő tendenciát felutató sebességnél a forgalonagyság előbb eelkedő, ajd zérus felé csökkenő tendenciát utat. 138

10 Összefoglalva tehát a szabályozórendszerből a forgali áralat jellezője határozható eg: elei összefüggés áll fenn a térbeli-időbeli forgalosűrűség (s) és az áralási sebesség (v) között, a térbeli-időbeli forgalosűrűség jelentkezik vezérlési jellezőként. A térbeli-időbeli isertetőjelek beutatnak inden a folyaban bekövetkező változást az adott tér-idő intervallura nézve. A tér fogala a forgali folya iránykötött értelében a hosszúság dienzióval azonosítható, a tér ásodik, illetőleg haradik dienziója a vonalvezetésen keresztül, int külső befolyásoló tényező jelentkezik. A szabályozó rendszer vizsgálata korlátozódhat az egyást kölcsönösen befolyásoló forgali eleek vizsgálatára. Ez esetben inden olyan követési távolság, aely az elől haladó járű hatását a követő járűre vonatkozóan kizárja, egszakítja a szabályozást, és ez által lehatárolja a vizsgált csoportot. Ilyenkor ikroszkopikus szeléletódról van szó, aikoris inden kétséget kizáróan fennáll a térbeli-időbeli forgalosebesség forgalosűrűség összefüggés. Ha a vizsgálat kiterjed a forgali folya valaennyi eleére egy a forgali szituációtól függetlenül rögzített térintervalluon belül egy adott időtartara vonatkoztatva, úgy akroszkopikus szeléletű elezés történik. Ilyenkor az egyást kölcsönösen befolyásoló járűvek ellett a vizsgálati tartoányba tartoznak a nagy követési távolságú agányos járűvek is. Epirikus úton bizonyított, hogy ez esetben a térbeli-időbeli forgalosűrűség változása határozza eg a sebesség változását. Mind a ikroszkopikus, ind a akroszkopikus térbeli-időbeli sűrűségértékek a doináns jellegűek, aelyek függvényeként tekintendők a sebességi, terhelési és teljesítényi értékek. Így azon isertetőjelek, aelyek közvetlenül a sebességtől, terheléstől és a teljesíténytől függenek, közvetve a térbeli-időbeli sűrűség függvényeként foghatók fel. Ez az előnyös helyzet predesztinálja a térbeli-időbeli forgalosűrűséget a forgali folya különböző belső inőségi állapotának osztályozására. Négy áralati állapotot különböztethető eg az egyes sűrűségi határokon belül: ikroszkopikus szeléletódnál alacsony sűrűségű közepes sűrűségű nagy sűrűségű csoportok, igen nagy sűrűségű 139

11 akroszkopikus szeléletódnál szabad forgalú részben kötött forgalú kötött forgalú folya. telített forgalú Az epíria lehetővé teszi az egyes osztályhatárok szászerű egadását. Mindkét szeléletódú vizsgálatnál egfigyelhető a közlekedő eleek csoportképzési tendenciája. A csoportképződés eghatározott törvényszerűség szerint egy végbe, pl. a csoportnagyság a forgalosűrűséggel nő. A jelenség ateatikai leírásánál azon elképzelésből kellene kiindulni, hogy a járűveket a növekvő utolérési lehetőség várakozó sorok forájában csoportos haladásra kényszeríti. Azonban a csoportképzési tendencia önagában a növekvő utolérési lehetőséggel ég ne agyarázható eg. Megfigyelhető alacsony forgalosűrűségnél is a jelenség. A kollektív enettulajdonságokkal agyarázható elsősorban a csoportképződés, aely leondás egy egfelelő sebességű csoport belsejében. Ez a pszichológiailag egalapozott agatartásód érésekkel szignifikáns ódon bizonyított. Ne kötött forgalo esetén a kis csoportok jelentkezése a jellező, a csoportok átlagos járűszáa növekvő sűrűség ellett növekszik a nagyobb sebességű csoportok időleges akadályoztatásával párhuzaosan. A részben kötött forgaloban való átenet további sűrűség növekedéssel jár, a kényszerítettek részaránya növekszik. A ne kötött és a részben kötött forgaloban levő csoportok nagy része stacioner állapotra törekszik (a sűrűség sebesség szabályozókör kialakulása után). A stacionaritás fizikából kölcsönzött eghatározása: elei vagy összekapcsolt képződények egyáshoz való relatív viszonya véges időtartaot tekintve ne változik. Noha a szabályozó ár elített tökéletlensége iatt a követési távolságok és a sebességek tökéletes változatlansága a csoportok belsejében ne áll fenn, lényegében stacioner áraló csoportokról lehet beszélni indazon esetben, aikor epirikusan eghatározott tisztán szabályozásfüggő sebességtűrés túllépése ne következik be. tacioner ozgási állapotnál a ozgó rendszer részecskéinek sebessége az időtől független, s csupán a hely koordinátától függ; változatlan pálya és forgali feltételek esetén, pedig ez utóbbitól is független. Ilyen tulajdonságú csoportok esetében egjelenik egy eghatározott elei összefüggés a térbeli-időbeli sűrűség és a térbeli-időbeli sebesség között, aely összefüggést a járűvezetők visszaható viselkedése közvetlenül a környezeti feltételekre építi ki. A leírt jelenség annak feltételezésére adhat alkalat, hogy a csoportok állandó növekedése növekvő sűrűség ellett egy a kötött forgalo és a telítődés tartoányára eső egyetlen stacioner áraló oszlop képzésébe torkollik. Ez az elképzelés egy később isertetendő odell kialakulásához vezetett. A ikroszkopikus vizsgálatok derítették ki, hogy a közepes sűrűségű csoportok 140

12 igen gyorsan képesek a forgalotól függő (előzések, ellenirányú forgalo) sebesség és sűrűség változások leépítésére, iközben a nagy és igen nagy sűrűségű csoportban a kicsiny ingadozások is jelentősen erősödnek a szabályozó rendszer instabilitása iatt. Instabil csoportok előfordulnak időlegesen ár a részben kötött forgali tartoányban is, azonban az instabilitás az erősen nagy kiterjedésű sűrűség sebesség ingadozások a kötött forgaloban tipikus. Többnyire feliserhető zavaró ok nélkül létrejövő állapot a torlasz a seiből. Telített forgali állapotnál az instabilitás a járűvek tartós enet--állás állapotához vezet. Összefoglalva egállapítható, hogy a ikroszkopikus szeléletű csoportegfigyelések a különböző külső befolyásoló tényezők hatását a járűvezetők pszichológiai viselkedésével összefüggésben tisztázzák. A vizsgálati eredények közvetlenül gyakorlatban alkalazhatók a forgali folya biztonságára aktív befolyást gyakorló intézkedéseken keresztül. Az alkalazásra kerülő irányítás a ikroszkopikus szeléletű törvényszerűségek iseretén nyugszik. Igaz az is, hogy a forgali folya akroszkopikus szeléletű törvényei csak akkor tekinthetők reálisnak, ha a ikroszkopikus szeléletű törvényeken alapulnak. A stacioner áraló csoportok ikroszkopikus forgali viselkedése szoros analógiát utat a akroszkopikus forgali viselkedéssel, noha a stacioner állapot csupán alkalanként, relatíve rövid időtartaokban és távolságokon lép fel. Mégis az egész forgali áralatra vonatkozó alapszabályok olvashatók ki belőle, s ezen állapot vizsgálata jelenti a kiinduló pontot a ne stacioner, instabil csoportok elezéséhez. A akroszkopikus szeléleten nyugvó törvényszerűségek a ikroszkopikusban gyökereznek, de a forgali folya időben erősen változó terészete iatt, a nagyobb tér és idő intervallu iatt az eredények ne használhatók fel közvetlenül. A akroszkopikus szeléletű vizsgálatok képezik az alapot az utak tervezéséhez és éretezéséhez szükséges értékek eghatározásához. A ikroszkopikus és a akroszkopikus ozgási folyaat alaptörvényei a közúti forgaloban a forgali áralat jellegének egfelelően háro térbeli-időbeli változóval (sűrűség, sebesség, terhelés) írhatók le. Ezek ábrázolása a tér-idő koordináta rendszer zárt felületén történik, a forgali folya egy tér-idő részének egfelelően. A sűrűség hosszegységre eső járű ennyiség, int térbeli-időbeli isertetőjel az időn keresztül kerül a térbeli-időbeli rendszerben ábrázolásra. A differenciálisan kis időközökhöz rendelt térbeli (pillanatnyi) sűrűséget időre vonatkoztatva átlagoljuk, így ez a térbeli viszonyok időbeli változását tükrözi. A sebesség az időegység alatt egtett úthossz térbeli-időbeli átlagértékének képzésére a tér-idő síkon háro lehetőség kínálkozik átlagsebességek átlagolása, 141

13 helyi sebességátlagok téren át történő átlagolása, pillanatnyi sebességátlagok időn át történő átlagolása. Az isertetett szabályozó rendszernek a haradik sebességátlag felel eg. Ez a térbeli-időbeli sebességérték direkt összefüggésben áll a vezérlési ennyiségként jelentkező térbeli-időbeli sűrűségértékkel. A forgalonagyság (terhelés) az időegység alatt a keresztetszeten áthaladó járűennyiség helyi isertetőjel, s a tér-idő rendszerbe a téren (hosszúságon) keresztül vonható be. E célból a helyi terhelés értéke, int az időbeli forgali helyzet, tér szerint kerül átlagolásra. Így egy olyan térbeli-időbeli isertetőjel lesz az eredény, aelyben az időbeli viszonyok térbeli változása tükröződik. Összefoglalva az ily ódon eghatározott térbeli-időbeli isertető jeleket: forgalosűrűség: idő szerint átlagolt pillanatnyi sűrűség, forgalosebesség: idő szerint átlagolt pillanatnyi sebességátlag, forgalonagyság: tér szerint átlagolt helyi terhelés. A helyesen használt értékekre ateatikailag egzakt és epirikus úton egyaránt igazolható ódon érvényes a kontinuitási törvény, tetszés szerinti véges nagy (akroszkopikus szelélet) vagy kicsiny (ikroszkopikus szelélet) zárt tér-idő részre. Tekintsünk egy h hosszúságú körpályát, aelyen k db járű halad azonos irányba különböző, de állandó sebességgel. Minden kívánt előzés egvalósul. A forgalo stacioner és hoogén, tehát a statisztikai paraéterek ind az időtől, ind az úttól függetlenek. Felírható a forgalosűrűség: s = k h járű k Bárely időpontban a vizsgált pályán a járűvek sebességeloszlása állandó g(v) eloszlásfüggvénnyel leírható. Egy v sebességű járűnek a h hosszúságú pálya egyszeri befutásához h t = [ óra] v időre van szüksége. Ezen idő alatt inden azonos v sebességű járűvet éppen egyszer figyelnek eg, ez k g(v)dv járűvet jelent. Időegységenként egfigyelhető tehát: dn ( v) ( v) k g dv v = = k g( v) dv = v s g( v) dv = v ds( v) járű. t h 14

14 Ebből következik n-re n = s v g(v)dv = s E(v) ahol E(v) a v valószínűségi változó várható értéke. 0 járű/időegység, A felsorolt háro ennyiség közül eléleti axiua csak s-nek van. A forgalosűrűség ne lehet nagyobb, int a vizsgált pályahossz és a járűhossz hányadosa. Ilyenkor a járűvek egyást érintő lökhárítókkal helyezkednek el egyás ögött. Az n és v esetében eléleti axiuot ne tételeznek fel, terészetesen gyakorlati felső határok indkettőre vonatkozóan egadhatóak. A folytonossági törvényt az ún. bázisdiagra, vagy s-n diagra írja le, aelynek isérvei a következők: v n 0 < v < ; v(s ax ) = 0; = 0 ; n(0) = 0; n(s ax ) = 0; = 0 s s s= 0 Forgalotechnikai szepontból az n = n(s) függvénykapcsolat eghatározása volna a cél. Ezt tűzik ki feladatul a különböző deterinisztikus és sztochasztikus odellek. A 34. táblázat tartalaz példaként néhány függvénykapcsolatot, s annak tényét, hogy a fenti isérveket ezek ennyiben elégítik ki. s= s opt Egyenlet s ax n = vopt s ln Járűkövetési s elélet, folyadék analógia topt s n = vszabad s e Járűkövetési t opt = optiális elélet követésiidő s ax vszabad s ln Valószínűségi n = s elélet s ax ln 1 s s = Epirikus n s vszabad 1 s ax n(s) érték helyes-e, ha v(s) érték helyes-e, ha A levezetés ódszere s = 0 s = s ax s = 0 s = s ax Igen Igen Ne Igen Igen Ne Igen Ne Igen Igen Igen Igen Igen Igen Igen Igen 34. táblázat Függvény kapcsolatok a sűrűség és a sebesség között A forgali folya isertetőjeleként tekinthető a forgali teljesítény is, aelyet a közlekedő töeg eleei által, az időegység alatt egtett útszakaszok 143

15 ennyiségeként határozható eg. A teljesítény hasonlóan a terheléshez és a forgali sebességhez a forgalosűrűségtől függ. Összefoglalva a forgali folya fő isertetőjeleként a következő térbeli (pillanatnyi vagy oentán) és időbeli (helyi vagy lokális) jellezők állíthatók egyás ellé: Mikroszkopikus jellezők: Térbeli (oentán) Időbeli (lokális) Térbeli-időbeli Forgalosűrűség s () s ebesség v () v (l) v Forgalonagyság n (l) n Teljesítény q Makroszkopikus jellezők: Térbeli (oentán) Időbeli (lokális) Térbeli-időbeli Forgalosűrűség () ebesség V () V (l) V Forgalonagyság N (l) N Teljesítény Q A felsorolt jellezők dienziói:, s járű ; hosszegység N, V, n v járű ; időegység hosszegysé g ; időegység Q, q járű hosszegység. időegység záos európai kutatóintézet kísérelte eg az első háro jellező paraéter közötti összefüggést egzakt képletbe foglalni, elyek közül néhányat beutat a 35. táblázat. 144

16 A ozgási folyaat az alábbi legfontosabb akro- és ikroszeléletódú jellezőkkel írható le: Mikroszkopikus szeléletű Makroszkopikus szeléletű Összefüggés a jellezők között Követési időköz t [sec] Forgalonagyság N [járű/óra] 3600 N = t ebesség v [/sec] ebesség V [k/óra] V = v 3,6 Követési távolság l [] Forgalosűrűség [járű/k] 1000 = l Annak érdekében, hogy a két szeléletód közötti átenet biztosítva legyen, stacioner forgali áralati állapotot kell feltételezni. A forgali áralat teljesítőképességének és biztonságos lebonyolításának érdekében a követési idők és távolságok vonatkozásában teljesítőképesség szeléletnél bruttó, forgalobiztonsági szeléletnél nettó értékeket célszerű figyelebe venni. A ikroszkopikus jellezők közötti kapcsolat az alábbi: t = t l + l v = t j b n + n + ahol t bruttó követési időköz (a járű elejétől a járű elejéig) t n nettó követési időköz (a járű végétől a járű elejéig) l j járű hossz (elől haladó járű) l b biztonsági távolság (járűvek között, aikor v = 0) Telített forgali állapotnál, aikor a pillanatnyi forgalonagyság eghaladja a teljesítőképességet a következő ikro-akro összefüggés írható fel: 1 1 v n = = = [járű/sec] t t L t n v + L n + v L v, 145

17 Név sebesség-sűrűség forgalonagyság-sűrűség forgalonagyság-sebesség Greenshields V V *(1 ) (lineáris) = sz N = Vsz **(1 ) V N = ax * V *(1 ) ax ax Vsz 1 1 Kladek 1 1 γ = ax V Vsz * 1 e = γ V N V ax sz ** 1 e N = 1 V γ *ln 1 ax Vsz Greenberg ax V ax ( ) (logaritikus) V = V *ln( ) N ax N = V ** ln( ) V N Nax ax N = ax * V *e Pipes and n 1 n V V *(1 ), n 1 Munjal = sz > N = Vsz **(1 ), n > 1 V n N = ax * V *[ 1 ( ) ],n > 1 ax ax Vsz n+ 1 n+ 1 V Drew V = Vsz * [ 1 ( ) ], n > 1 N = Vsz **[ 1 ( ) ],n > 1 n+ 1 N = ax * V *[ 1 ( ) ],n > 1 V Underwood Drake; Zachor Edie ax j ax V ax V = Vsz * e N = Vsz ** e N = ax *V *[ ln( )] Vsz n n V 1 V = Vsz *(1 ), n > 1 N = Vsz ** (1 ), n > 1 N = ax *V *[ *ln( )] ax ax Vsz kis sűrűség: nagy sebesség = kis sűrűség: nagy sebesség = kis sűrűség: V ax = Vsz * e ax V N = Vsz ** e N = ax *V *[ ln( )] Vsz nagy sűrűség: alacsony sebesség = nagy sűrűség: alacsony sebesség = nagy sűrűség: ax ax V V = V *ln( ) N ax N = V ** ln( ) ( ) N ax V Nax N = * V *e 35. táblázat A forgalosűrűség, a forgalonagyság és a sebesség közötti összefüggések ax j ax sz 146

18 A kontinuitási törvény érvényessége szerint felírható N [járű/óra] = V [k/óra] [járű/k] n [járű/sec] = v [/sec] s [járű/] és n = t n s n s n + L 1 s L n = vagy t n N = t n 1000 L A biztonságos forgalolebonyolódáshoz figyelebe veendő követési időköz a fékezési folyaatból száított követési távolsággal (l F ), illetve az egyást követő járűvek fékezéséből eghatározott (in l k ) követési távolsággal határozható eg A forgalolebonyolódás törvényszerűségei; csoópontok inősítése Jelzőtáblával irányított csoópontok forgalolebonyolódása A csoópontok teszik lehetővé az áralatok irányváltoztatását. A jogszabállyal irányított, illetve csupán jelzőtáblával ellátott csoópontokban fölérendelt (elsőbbséggel rendelkező) és alárendelt (elsőbbséget adó) áralatok találkoznak. Az alárendelt áralatból egy eghatározott forgali űvelet csak akkor végezhető el, ha a főáralatban rendelkezésre áll a űvelet elvégzéséhez szükséges időköz. A űvelet elvégzéséhez szükséges nora szerinti időérték a határidőköz (t g ), aely függ a csoópont geoetriájától, az alárendelés ódjától, az elvégzendő űvelettől és a sebességi viszonyoktól. Az alárendelés jogszabály szerint többszörös is lehet, így csak az egyidejűleg rendelkezésre álló időhézagok biztosítják a űvelet lebonyolíthatóságát, valaint a forgalolebonyolódás inőségét. Tekintettel arra, hogy forgalolebonyolódás időközök kapcsolatára vezethető vissza ikroszkopikus szeléletódról van szó. Erősen leegyszerűsített esetben a főáralat követési időközei negatív exponenciális eloszlással írhatók le, azaz annak valószínűsége, hogy egy iniu t nagyságú követési időköz egjelenik P t t t ( T t) e n = = e, ahol t az átlagos követési időköz 1 t =. n 147

A forgalomsűrűség és a követési távolság kapcsolata

A forgalomsűrűség és a követési távolság kapcsolata 1 A forgalomsűrűség és a követési távolság kapcsolata 6 Az áramlatsűrűség (forgalomsűrűség) a követési távolsággal ad egyértelmű összefüggést: a sűrűség reciprok értéke a(z) (átlagos) követési távolság.

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

AZ IPARI BETONPADLÓK MÉRETEZÉSE MEGBÍZHATÓSÁGI ELJÁRÁS ALAPJÁN

AZ IPARI BETONPADLÓK MÉRETEZÉSE MEGBÍZHATÓSÁGI ELJÁRÁS ALAPJÁN AZ IPARI BETONPADLÓK MÉRETEZÉSE MEGBÍZHATÓSÁGI ELJÁRÁS ALAPJÁN Huszár Zsolt - Szalai Kálán RÖVID KIVONAT A ipari betonpadlókat jelenleg az évszázados últtal rendelkező, egengedett feszültségek alapján

Részletesebben

KÖZBESZERZÉSI ADATBÁZIS

KÖZBESZERZÉSI ADATBÁZIS 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI DTBÁZIS Összegezés az ajánlatok elbírálásáról I. szakasz: kérő I.1) Név és cíek 1 (jelölje eg az eljárásért felelős összes ajánlatkérőt) Hivatalos

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útutató Az önindukciós és kölcsönös indukciós tényező eghatározása Az Elektrotechnika

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 1. BEVEZETÉS

ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 1. BEVEZETÉS okorádi László ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 Technikai eszközök üzeeltetési rendszerei, folyaatai ateatikai szepontból irányított gráfokkal írhatóak le. A űszaki tudoányokban a hálózatokat, gráfokat

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint,

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

IV.1.1) A Kbt. mely része, illetve fejezete szerinti eljárás került alkalmazásra: A Kbt. III. rész, XVII. fejezet

IV.1.1) A Kbt. mely része, illetve fejezete szerinti eljárás került alkalmazásra: A Kbt. III. rész, XVII. fejezet 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS Összegezés az ajánlatok elbírálásáról I. szakasz: Ajánlatkérő I.1) Név és cíek 1 (jelölje eg az eljárásért felelős összes ajánlatkérőt)

Részletesebben

A mágneses kölcsönhatás

A mágneses kölcsönhatás TÓTH A.: Mágneses erőtér/1 (kibővített óravázlat) 1 A ágneses kölcsönhatás Azt a kölcsönhatást, aelyet később ágnesesnek neveztek el, először bizonyos ásványok darabjai között fellépő a gravitációs és

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 74 ÉESÉGI VIZSGA 07. ájus. FIZIKA EMEL SZINŰ ÍÁSBELI VIZSGA JAVÍÁSI-ÉÉKELÉSI ÚMUAÓ EMBEI EŐFOÁSOK MINISZÉIUMA A dolgozatokat az útutató utasításai szerint, jól követhetően kell javítani

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 0803 ÉRETTSÉGI VIZSGA 008. noveber 3. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája Első rész

Ujfalussy Balázs Idegsejtek biofizikája Első rész Ujfalussy Balázs Idegsejtek biofizikája Első rész MI A TITA? Ez a négyrészes sorozat azt a célt szolgálja, hogy az idegsejtek űködéséről ateatikai, fizikai odellekkel alkossunk képet középiskolás iseretekre

Részletesebben

1. A hőszigetelés elmélete

1. A hőszigetelés elmélete . A hőszigetelés elélete.. A hővezetés... A hővezetés alapjai A hővezetési száítások előtt bizonyos előfeltételeket el kell fogadnunk. Feltételezzük, hogy a hőt vezető test két oldalán fellépő hőfokkülönbség

Részletesebben

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése

Közlekedési áramlatok MSc. Csomóponti-, útvonali eljutási lehetőségek minősítése Közlekedési áramlatok MSc Csomóponti-, útvonali eljutási lehetőségek minősítése minősítése jogszabályi esetben Az alárendelt áramlatból egy meghatározott forgalmi művelet csak akkor végezhető el, ha a

Részletesebben

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR

MAGYAR KERESKEDELMI ÉS IPARKAMARA. Szakma Kiváló Tanulója Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR MAGYAR KERESKEDELMI ÉS IPARKAMARA Szaka Kiváló Tanulója Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száa: Koplex írásbeli: Épületgépészeti rendszeriseret; Víz- és csatornarendszer-szerelő

Részletesebben

Összegezés az ajánlatok elbírálásáról

Összegezés az ajánlatok elbírálásáról 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez Összegezés az ajánlatok elbírálásáról KÖZBESZERZÉSI ADATBÁZIS I. szakasz: Ajánlatkérő I.1) Név és cíek 1 (jelölje eg az eljárásért felelős összes ajánlatkérőt)

Részletesebben

Vályogos homoktalaj terepprofil mérése

Vályogos homoktalaj terepprofil mérése Vályogos hooktalaj terepprofl érése Pllnger György Szent István Egyete, Gépészérnök Kar Folyaatérnök Intézet, Járűtechnka Tanszék PhD hallgató, pllnger.gyorgy@gek.sze.hu Összefoglalás A terepen haladó

Részletesebben

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet)

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet) 3. oán-magyar Előolipiai Fizika Verseny Pécs Kísérleti forduló 2. ájus 2. péntek MÉÉ NAPELEMMEL (zász János, PE K Fizikai ntézet) Ha egy félvezető határrétegében nok nyelődnek el, akkor a keletkező elektron-lyuk

Részletesebben

Összegezés az ajánlatok elbírálásáról

Összegezés az ajánlatok elbírálásáról 14. ellékletei 44/201 n, (XL 2 J MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS Összegezés az ajánlatok elbírálásáról I. szakasz: Ajánlatkérő I.l) Név és cíek 1(jelölje eg az eljárásért felelős összes ajánlatkérőt)

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 81 ÉRETTSÉGI VIZSGA 9. ájus 1. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai szerint,

Részletesebben

HAJDÚNÁNÁS VÁROSI ÖNKORMÁNYZAT

HAJDÚNÁNÁS VÁROSI ÖNKORMÁNYZAT Dátu: 2009. június 15. Tisztelt Ajánlattevő! Mellékelten küldö a HAJDÚNÁNÁS VÁROSI ÖNKORMÁNYZAT, int Ajánlatkérő által a KÉ 8969/2009 száon a közbeszerzési értesítőben 2009. ájus 20-án közzétett Egyösszegű,

Részletesebben

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara:

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara: 8 évi Mikola forduló egoldásai: 9 gináziu ) Megoldás Mivel azonos és állandó nagyságú sebességgel történik a ozgás a egtett utak egyenlők: sa sb vat vbt 4 π s 4π 57 s Ha a B testnek ne nulla a gyorsulása

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 171 ÉRETTSÉGI VIZSGA 017. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint, jól

Részletesebben

Technológiai tervezés Oktatási segédlet

Technológiai tervezés Oktatási segédlet Miskolci Egyete Gépészérnöki és Inforatikai Kar Gépgyártástechnológiai Tanszék Technológiai tervezés Oktatási segédlet Műveleti éretek és ráhagyások eghatározása. Miskolc, 009 Összeállította: Dr. Maros

Részletesebben

14. melléklet a 44/2015. (XI. 2.) MvM rendelethez

14. melléklet a 44/2015. (XI. 2.) MvM rendelethez 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS I. szakasz: Ajánlatkérő I.1) Név és cíek1 (jelölje eg az eljárásért felelős összes ajánlatkérőt) Hivatalos név:nezeti Útdíjfizetési

Részletesebben

Összegezés az ajánlatok elbírálásáról. 1. Az ajánlatkérő neve és címe: Budapest Főváros Vagyonkezelő Központ Zrt. (1013 Budapest, Attila út 13/A.

Összegezés az ajánlatok elbírálásáról. 1. Az ajánlatkérő neve és címe: Budapest Főváros Vagyonkezelő Központ Zrt. (1013 Budapest, Attila út 13/A. Összegezés az ajánlatok elbírálásáról 1. Az ajánlatkérő és cíe: Budapest Főváros Vagyonkezelő Központ Zrt. (1013 Budapest, Attila út 13/A.) 2. A közbeszerzés tárgya és ennyisége: Vagyongazdálkodási szakértői

Részletesebben

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása? EGYENÁRAM 1. Mit utat eg az áraerısség? 2. Mitıl függ egy vezeték ellenállása? Ω 2 3. Mit jelent az, hogy a vas fajlagos ellenállása 0,04? 4. Írd le Oh törvényét! 5. Milyen félvezetı eszközöket isersz?

Részletesebben

Használati-melegvíz készítő napkollektoros rendszer méretezése

Használati-melegvíz készítő napkollektoros rendszer méretezése Használati-elegvíz készítő nakollektoros rendszer éretezése Kiindulási adatok: A éretezendő létesítény jellege: Családi ház Melegvíz felhasználók száa: n 6 fő Szeélyenkénti elegvíz fogyasztás: 1 50 liter/fő.na

Részletesebben

41/1997. (III. 5.) Korm. rendelet. a betéti kamat, az értékpapírok hozama és a teljes hiteldíj mutató számításáról és közzétételérôl

41/1997. (III. 5.) Korm. rendelet. a betéti kamat, az értékpapírok hozama és a teljes hiteldíj mutató számításáról és közzétételérôl 4/997. (III. 5.) Kor. rendelet a betéti kaat, az értékpapírok hozaa és a teljes hiteldíj utató száításáról és közzétételérôl A Korány a hitelintézetekrôl és a pénzügyi vállalkozásokról szóló 996. évi CXII.

Részletesebben

Szemcsés szilárd anyag porozitásának mérése. A sűrűség ismert definíciója szerint meghatározásához az anyag tömegét és térfogatát kell ismernünk:

Szemcsés szilárd anyag porozitásának mérése. A sűrűség ismert definíciója szerint meghatározásához az anyag tömegét és térfogatát kell ismernünk: Szecsés szilárd anyag porozitásának érése. Eléleti háttér A vegyipar alapanyagainak és terékeinek több int fele szilárd szecsés, ún. ölesztett anyag. Alapanyag pl. a szén, szilikonok, szees terények stb.,

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapiseretek középszint 081 ÉRETTSÉGI VIZSGA 011. október 17. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos

Részletesebben

Összegezés az ajánlatok elbírálásáról

Összegezés az ajánlatok elbírálásáról 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS I. szakasz: Ajánlatkérő Összegezés az ajánlatok elbírálásáról I.1) Név és cíek 1 (jelölje eg az eljárásért felelős összes ajánlatkérőt)

Részletesebben

A magnetosztatika törvényei anyag jelenlétében

A magnetosztatika törvényei anyag jelenlétében TÓT A.: Mágnesség anyagban (kibővített óravázlat) 1 A agnetosztatika törvényei anyag jelenlétében Eddig: a ágneses jelenségeket levegőben vizsgáltuk. Kiutatható, hogy vákuuban gyakorlatilag ugyanolyanok

Részletesebben

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója Oktatási Hivatal A 007/008. tanévi Országos özépiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója FIZIÁBÓ I. kategóriában A 007/008. tanévi Országos özépiskolai Tanulányi

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N Dinaika feladatok Dinaika alapegyenlete 1. Mekkora eredő erő hat a 2,5 kg töegű testre, ha az indulástól száított 1,5 úton 3 /s sebességet ér el? 2. Mekkora állandó erő hat a 2 kg töegű testre, ha 5 s

Részletesebben

Az enzimkinetika alapjai

Az enzimkinetika alapjai 217. 2. 27. Dr. olev rasziir Az enziinetia alapjai 217. árcius 6/9. Mit ell tudni az előadás után: 1. 2. 3. 4. 5. Miért van szüség inetiai odellere? A Michaelis-Menten odell feltételrendszere A inetiai

Részletesebben

KÖZBESZERZÉSI ADATBÁZIS

KÖZBESZERZÉSI ADATBÁZIS 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS Összegezés az ajánlatok elbírálásáról I. szakasz: Ajánlatkérő I.1) Név és cíek 1 (jelölje eg az eljárásért felelős összes ajánlatkérőt)

Részletesebben

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam 6 Mikola verseny fordulójának egoldásai I kategória Gináziu 9 évfolya ) Adatok: = 45 L = 5 r = M = 00 kg a) Vizsgáljuk a axiális fordulatszáú esetet! r F L f g R Az egyenletes körozgás dinaikai alapegyenletét

Részletesebben

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2.

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2. XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 01. ELSŐ FORDULÓ M E G O L D Á S A I A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I. H H I H. H I H 4. I H H 5. H I I 6. H I H 7. I I I I 8. I I I 9.

Részletesebben

II. MELLÉKLET AJÁNLATI/RÉSZVÉTELI FELHÍVÁS I. SZAKASZ: AJÁNLATKÉRŐ I.1) NÉV, CÍM ÉS KAPCSOLATTARTÁSI PONT(OK)

II. MELLÉKLET AJÁNLATI/RÉSZVÉTELI FELHÍVÁS I. SZAKASZ: AJÁNLATKÉRŐ I.1) NÉV, CÍM ÉS KAPCSOLATTARTÁSI PONT(OK) II. MELLÉKLET EURÓPAI UNIÓ Az Európai Unió Hivatalos Lapjának Kiegészítő Kiadványa 2, rue Mercier, L-2985 Luxebourg Fax: (352) 29 29 42 670 E-ail: p-ojs@opoce.cec.eu.int Inforáció és on-line foranyotatványok:

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD

Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások

Részletesebben

Kazánlefúvatás: lehetőségek az elvesző energia visszanyerésére

Kazánlefúvatás: lehetőségek az elvesző energia visszanyerésére RACIONÁLIS ENERGIAFELHASZNÁLÁS, ENERGIATAKARÉKOSSÁG 3.1 3.3 Kazánlefúvatás: lehetőségek az elvesző energia visszanyerésére Tárgyszavak: energiavisszanyerés; kazántápvíz; vízkezelés; kéiai összetevők; hulladékhő-visszanyerés;

Részletesebben

A multikollinearitás vizsgálata lineáris regressziós modellekben A PETRES-féle Red-mutató vizsgálata

A multikollinearitás vizsgálata lineáris regressziós modellekben A PETRES-féle Red-mutató vizsgálata Szegedi Tudoányegyete Gazdaságtudoányi Kar Közgazdaságtudoányi Doktori Iskola A ultikollinearitás vizsgálata lineáris regressziós odellekben A PETRES-féle Red-utató vizsgálata Doktori értekezés tézisei

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Magyar DEMOLITION. Bontás Avant módra

Magyar DEMOLITION. Bontás Avant módra Magyar DEMOLITION Bontás Avant ódra ROBOT 185 Kieelkedő tulajdonságok A teleszkópos gé 46 c extra gékinyúlást és ezzel további felhasználhatóságot nyújt a bontási feladatok során A unkahengereket speciális

Részletesebben

KÖZBESZERZÉSI ADATBÁZIS

KÖZBESZERZÉSI ADATBÁZIS 14. elléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS I. szakasz: Ajánlatkérő I.1) Név és cíek 1 (jelölje eg az eljárásért felelős összes ajánlatkérőt) Hivatalos név: Vinegrower Kft.

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

8. Termikus reaktorok

8. Termikus reaktorok 54 8. Terikus reaktorok Az előző fejezetekben tárgyaltakat ebben a fejezetben a reaktorok egy fontos fajtájára, a terikus reaktorokra alkalazzuk. Ezen belül is elsősorban a vízzel oderált és hűtött reaktorokkal

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

MUNKAANYAG. Faicsiné Adorján Edit. Munkafolyamatok kapcsolási módjai. A követelménymodul megnevezése: Építőipari kivitelezés tervezése

MUNKAANYAG. Faicsiné Adorján Edit. Munkafolyamatok kapcsolási módjai. A követelménymodul megnevezése: Építőipari kivitelezés tervezése Faicsiné Adorján Edit Munkafolyaatok kapcsolási ódjai A követelényodul egnevezése: Építőipari kivitelezés tervezése A követelényodul száa: 06-06 A tartaloele azonosító száa és célcsoportja: SzT-017-50

Részletesebben

A hajlított fagerenda törőnyomatékának számításáról II. rész

A hajlított fagerenda törőnyomatékának számításáról II. rész A ajlított fagerenda törőoatékának száításáról II. rész Bevezetés Az I. részben egbeszéltük a úzásra ideálisan rugalas, oásra ideálisan rugalas - tökéletesen képléke aag - odell alapján álló törőoaték

Részletesebben

TARTALOMJEGYZÉK JÓVÁHAGYOTT MUNKARÉSZEK TELEPÜLÉSSZERKEZETI TERV ÉS LEÍRÁSA

TARTALOMJEGYZÉK JÓVÁHAGYOTT MUNKARÉSZEK TELEPÜLÉSSZERKEZETI TERV ÉS LEÍRÁSA TARTALOMJEGYZÉK JÓVÁHAGYOTT MUNKARÉSZEK TELEPÜLÉSSZERKEZETI TERV ÉS LEÍRÁSA ÉS SZABÁLYOZÁSI TERV I. ÁLTALÁNOS ELŐÍRÁSOK 1 A rendelet hatálya 1 Szabályozási eleek 1 Sajátos jogintézények 2 Fogalo eghatározás

Részletesebben

1. Kinematika feladatok

1. Kinematika feladatok 1. Kineatika feladatok 1.1. Egyenes vonalú, egyenletes ozgások 1. A kézilabdacsapat átlövője 60 k/h sebességgel lövi kapura a labdát a hatéteresvonal előtt állva. Mennyi ideje van a kapusnak a labda elkapására?

Részletesebben

TARTÓSZERKEZETEK I gyakorlat

TARTÓSZERKEZETEK I gyakorlat Nyírási vasalás tervezése NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (felhajlított hosszvasak) NYOMOTT RÁCSRUDAK (beton) HÚZOTT ÖV (hosszvasak) NYOMOTT ÖV (beton) HÚZOTT RÁCSRUDAK (kengyelek) NYOMOTT RÁCSRUDAK

Részletesebben

A REPÜLŐGÉP SZIMULÁTOR ÉS TRENÁZS BERENDEZÉS VIZUÁLIS HELYZET-MODELLEZÉS ELMÉLETÉNEK ÁLTALÁNOS KÉRDÉSEI

A REPÜLŐGÉP SZIMULÁTOR ÉS TRENÁZS BERENDEZÉS VIZUÁLIS HELYZET-MODELLEZÉS ELMÉLETÉNEK ÁLTALÁNOS KÉRDÉSEI A REPÜLŐGÉP SZIMULÁTOR ÉS TRENÁZS BERENDEZÉS VIZUÁLIS HELYZET-MODELLEZÉS ELMÉLETÉNEK ÁLTALÁNOS KÉRDÉSEI Békési László k. ezredes egyetei adjunktus Dr. Szabó László k. alezredes Egyetei adjunktus Zrínyi

Részletesebben

2.9. Az egyszerű, tiszta anyagok fázisátalakulásai

2.9. Az egyszerű, tiszta anyagok fázisátalakulásai Kéiai potenciál Fejezetek a fizikai kéiából 2.9. Az egyszerű, tiszta anyagok fázisátalakulásai A indennapi életben találkozunk olyan kifejezésekkel, int fagyás, forrás, párolgás, stb. Mint a kifejezésekből

Részletesebben

TÁMOP F-14/1/KONV Élelmiszeripari műveletek gyakorlati alkalmazásai

TÁMOP F-14/1/KONV Élelmiszeripari műveletek gyakorlati alkalmazásai TÁMOP-4.1.1.F-14/1/KONV-015-0006 Éleliszeripari űveletek gyakorlati alkalazásai ÉLELMISZERIPARI MŰVELETEK Éleliszeripari technológiákat felépítő, különböző közegek között létrejövő transzportfolyaatok,

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája

Ujfalussy Balázs Idegsejtek biofizikája M A TTA? Ujfalussy Balázs degsejtek biofizikája Második rész A nyugali potenciál A sorozat előző cikkében nekiláttunk egfejteni az idegrendszer alapjelenségeit. Az otivált bennünket, hogy a száítógépeink

Részletesebben

Légfékrendszer szimulációja fix lépésközzel

Légfékrendszer szimulációja fix lépésközzel Járűipari innováció Légfékrendszer sziulációja fix lépésközzel Baldauf András gyakornok Knorr-Brese Fékrendszerek Kft. Hankovszki Zoltán PhD-hallgató BME, Gépjárűvek Tanszék Kovács Roland fejlesztési csoportvezető

Részletesebben

Többváltozós empirikus elemzéseknél az egyik leggyakrabban alkalmazott modell az

Többváltozós empirikus elemzéseknél az egyik leggyakrabban alkalmazott modell az ADATÁLLOMÁNYOK REDUNDANCIÁJÁNAK MÉRÉSE KOVÁCS PÉTER PETRES TIBOR TÓTH LÁSZLÓ Nagy ennyiségű adatokat tartalazó álloányok gyakran kevés inforációt hordoznak. Ennek oka az adatálloány adatait tartalazó változók

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint Jaítási-értékelési útutató 0623 ÉRETTSÉGI VIZSGA 2007. ájus 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Jaítási-értékelési

Részletesebben

PUSZTASZENTLÁSZLÓ KÖZSÉG ÉPÍTÉSI SZABÁLYZATÁRÓL ÉS SZABÁLYOZÁSI TERVÉRŐL

PUSZTASZENTLÁSZLÓ KÖZSÉG ÉPÍTÉSI SZABÁLYZATÁRÓL ÉS SZABÁLYOZÁSI TERVÉRŐL Pusztaszentlászló Község Önkorányzata Képviselőtestületének 5/2009.(V.04.). önkorányzati rendelete PUSZTASZENTLÁSZLÓ KÖZSÉG ÉPÍTÉSI SZABÁLYZATÁRÓL ÉS SZABÁLYOZÁSI TERVÉRŐL 1 Pusztaszentlászló Község Önkorányzat

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Enzimaktivitás szabályozása

Enzimaktivitás szabályozása 2017. 03. 12. Dr. Tretter László, Dr. olev rasziir Enziaktivitás szabályozása 2017. árcius 13/16. Mit kell tudni az előadás után: 1. Reverzibilis inhibitorok kinetikai jellezői és funkcionális orvosbiológiai

Részletesebben

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék

2. (b) Hővezetési problémák. Utolsó módosítás: február25. Dr. Márkus Ferenc BME Fizika Tanszék 2. (b) Hővezetési problémák Utolsó módosítás: 2013. február25. A változók szétválasztásának módszere (5) 1 Az Y(t)-re vonakozó megoldás: Így: A probléma megoldása n-re összegzés után: A peremfeltételeknek

Részletesebben

7. számú melléklet az 5/2009. (III.31.) IRM rendelethez

7. számú melléklet az 5/2009. (III.31.) IRM rendelethez 7. sú elléklet az 5/2009. (III.31.) IRM rendelethez Összegezés az ajánlatok elbírálásáról 1. Az ajánlatkérő neve és cíe: Budapesti Távhőszolgáltató Zártkörűen Működő Részvénytársaság (FŐTÁV Zrt.) 1116

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 8. évfolya Versenyző neve:... Figyelj arra, hogy ezen kívül ég a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

Vagyonkezelési irányelvek (Befektetési politika tartalmi kivonata) Allianz Hungária Önkéntes Nyugdíjpénztár 2015. február 1.

Vagyonkezelési irányelvek (Befektetési politika tartalmi kivonata) Allianz Hungária Önkéntes Nyugdíjpénztár 2015. február 1. Vagyonkezelési irányelvek (Befektetési politika tartali kivonata) Allianz Hungária Önkéntes Nyugdíjpénztár 2015. február 1. napjától Az Allianz Hungária Nyugdíjpénztár a befektetések során az egyes portfoliók

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Balatonfenyves Község Önkormányzata Képviselő-testületének 21/2006 (IX.15) számú rendelete (egységes szerkezetben a módosításokkal)

Balatonfenyves Község Önkormányzata Képviselő-testületének 21/2006 (IX.15) számú rendelete (egységes szerkezetben a módosításokkal) Balatonfenyves Község Önkorányzata Képviselő-testületének 21/2006 (IX.15) száú rendelete (egységes szerkezetben a ódosításokkal) BALATOFENYVES KÖZSÉG HELYI ÉPÍTÉSI SZABÁLYZATÁRÓL. Balatonfenyves Község

Részletesebben

A testek mozgása. Név:... osztály:...

A testek mozgása. Név:... osztály:... A testek ozgása A) változat Név:... osztály:... 1. Milyen ozgást végez a test akkor, ha a) egyenlő időközök alatt egyenlő utakat tesz eg?... b) egyenlő időközök alatt egyre nagyobb utakat tesz eg?... F

Részletesebben

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31.

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31. 2010/2011. tanév Szakác enő Megyei Fizika Vereny II. forduló 2011. január 31. Minden verenyzőnek a záára kijelölt négy feladatot kell egoldania. A zakközépikoláoknak az A vagy a B feladatort kell egoldani

Részletesebben

3. mérés. Villamos alapmennyiségek mérése

3. mérés. Villamos alapmennyiségek mérése Budapesti Műszaki és Gazdaságtudoányi Egyete Autoatizálási és Alkalazott Inforatikai Tanszék Elektrotechnika Alapjai Mérési Útutató 3. érés Villaos alapennyiségek érése Dr. Nagy István előadásai alapján

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Gimnázium 9. évfolyam

Gimnázium 9. évfolyam 4 MIKOLA SÁNDOR FIZIKAVERSENY ásodik fordulójának egoldása 5 árcius 7 Gináziu 9 éfolya ) Egy test ízszintes talajon csúszik A test és a talaj közötti csúszási súrlódási együttható µ Egy ásik test α o -os

Részletesebben

A szénhidrogén-szállítás alapjai 1. MFKGT600753

A szénhidrogén-szállítás alapjai 1. MFKGT600753 A szénhidrogén-szállítás alapjai 1. MFKGT600753 Műszaki földtudoányi alapszak Olaj- és gáz specializáció nappali unkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ

Részletesebben