EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei



Hasonló dokumentumok
y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja: z x iy,

y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja:, z x iy x

2. Koordináta-transzformációk

Tuzson Zoltán A Sturm-módszer és alkalmazása

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg.

Megjegyzés: Amint már előbb is említettük, a komplex számok

Projektív ábrázoló geometria, centrálaxonometria

Máté: Számítógépes grafika alapjai

2.4. Vektor és mátrixnormák

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

NÉMETH LÁSZLÓ VÁROSI MATEMATIKA VERSENY 2013 HÓDMEZŐVÁSÁRHELY OSZTÁLY ÁPRILIS 8.

1. Sajátérték és sajátvektor

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

III. FEJEZET FÜGGVÉNYEK ÉS TULAJDONSÁGAIK

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (

15. Többváltozós függvények differenciálszámítása

Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ

F.I.1. Vektorok és vektorműveletek

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1. Lineáris leképezések

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

Valasek Gábor

GEOMETRIAI OPTIKA - ÓRAI JEGYZET

Többváltozós függvények Riemann integrálja

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

SZÁMELMÉLET. Szigeti Jenő

Példa: 5 = = negatív egész kitevő esete: x =, ha x 0

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN

26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007

Hvezetés (írta:dr Ortutay Miklós)

Relációk. Vázlat. Példák direkt szorzatra

σ = = (y', z' ) = EI (z') y'

Vázlat. Relációk. Példák direkt szorzatra

Lineáris egyenlet. Lineáris egyenletrendszer. algebrai egyenlet konstansok és első fokú ismeretlenek pl.: egyenes egyenlete

I. Vektorok. Adott A (2; 5) és B ( - 3; 4) pontok. (ld. ábra) A két pont által meghatározott vektor:

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

Példatár megoldások. æ + ö ç è. ö ç è. ö ç è. æ ø. = ø

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

Másodfokú függvények

) ( s 2 2. ^t = (n x 1)s n (s x+s y ) x +(n y 1)s y n x+n y. +n y 2 n x. n y df = n x + n y 2. n x. s x. + s 2. df = d kritikus.

10.3. A MÁSODFOKÚ EGYENLET

823. A helyesen kitöltött keresztrejtvény: 823. ábra A prímek összege: = 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

Függvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim

2. Koordináta-transzformációk

GYÖRKÖNY TELEPÜLÉSRENDEZÉSI TERVE 1

2, 1. annyi, hogy merőleges legyen a másik két vektorra, például választható egész koordinátájú vektor is:

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

D G 0 ;8 ; 0 0 " & *!"!#$%&'" )! "#$%&' (! )* +,-. /0 )* **! / 0 1 ) " 8 9 : 7 ; 9 < = > A! B C D E +,-./0! 1#! 2 3!./0

5. SZABAD PONTRENDSZEREK MECHANIKAI ALAPELVEI, N-TESTPROBLÉMA, GALILEI-

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Regresszió és korreláció

EGY FÁZISÚ TÖBBKOMPONENS RENDSZEREK: AZ ELEGYEK KÉPZDÉSE

Tömegpont-rendszer mozgása

Egzakt következtetés (poli-)fa Bayes-hálókban

Y 10. S x. 1. ábra. A rúd keresztmetszete.

A szilárdságtan 2D feladatainak az feladatok értelmezése

Algebrai egész kifejezések (polinomok)

MECHANIKA I. - STATIKA. BSc-s hallgatók számára

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6

1. Komplex szám rendje

Kétváltozós függvények

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői

Regresszió és korreláció

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.












3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

Inverz függvények Inverz függvények / 26

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Matematika szintfelmérő szeptember




3D Számítógépes Geometria II.

Tárgyév adata december 31. Tárgyév adata december 31. A tétel megnevezése

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Kényszereknek alávetett rendszerek

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

Lineáris algebra Gyakorló feladatok

A hatványozás első inverz művelete, az n-edik gyökvonás.

STATISZTIKA 1. KÉPLETGYŰJTEMÉNY. alapfogalmak egy ismérv szerinti elemzés két ismérv szerinti elemzés standardizálás indexszámítás

1. Operáció kutatás matematikát matematikai statisztika és számítástechnika. legjobb megoldás optimum operációkutatás definíciója :

5. modul: Szilárdságtani Állapotok lecke: A feszültségi állapot

1. MÁSODRENDŰ NYOMATÉK

Átírás:

Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők teljesülek:./ m, 0, akkor és csak akkor, ha po. deft./ m, m, smmetra 3./ H eseté m, m, m, háromsög egelőtleség A metrka a 3 dmeós geometra tér távolságáak általáosítása. Példa: dskrét metrka: m,:, ha és külöböők, és lege m,:0, ha. Bércesé Novák Áges

Normált tér Defícó: A H halmat ormált ak eveük, ha va ola : H R {0} függvé, a ú. orma, amelre a követkeők teljesülek:. 0 akkor és csak akkor, ha 0. α α 3. vektorok össeadása, sámok össeadása A orma függvét sokás a absolút értékhe hasoló. jellel s jelöl.. 0, akkor és csak akkor, ha 0. α α 3.. háromsög egelőtleség A orma a absolút érték függvé ullától való távolság, vektor hossa általáosítása. Tehát a vektor hossa s tekthető ormáak, és a sokásos absolút érték s mel halmaba? Tétel: Mde ormált tér metrkus tér B.: Kostruktív, megaduk eg metrkát: m,: - Erről kell boíta, hog redelkek a metrka tulajdoságaval, hf előadáso leírtuk. Bércesé Novák Áges

Bércesé Novák Áges 3 Defícó: A s: V V R függvét skalárs soratakskalársoratak eveük, ha a követkeő tulajdoságokkal redelkek:. V eseté s, 0, és s, 0 a. cs. a., ha 0 potív deft., V eseté s, s, smmetrkus 3., V és λ R eseté sλ, λs, homogé 4.,, V eseté s, s, s, leárs vektorok össeadása, sámok össeadása Példa: Lege,,, K T R és,,, K T R. Ekkor a két vektor eg lehetséges skalárs sorata: s, K Defícó: A skalársoratos tereket eukldes terekek eveük. Tétel: Mde, véges dmeós vektortér Eukldes tér. B.: Kostruktív, megaduk eg skalársoratot. A előő példába sereplő skalársorat megfelel: s, K V eseté s, 0, és s, 0 a. cs. a., ha 0 potív deft 0 K., V eseté s, s, smmetrkus s, K s,, V és λ R eseté sλ, λs, homogé sλ, λ λ λ λ λ K λs,,, V eseté s, s, s, leárs s,,, s s K

Megjegés: Sokás a skalársoratot a követkeőképpe s jelöl:. s,<,> vag:. s,. Tétel: Mde skalársoratos tér ormált tér. B.: kostruktív: megadjuk a ormát :s, / A orma első és másodk tulajdosága a skalársorat első és másodk tulajdoságából teljesül hf., előadáso leírtuk. A háromsög-egelőtleséghe aoba be kell boíta a alább tételt: Tétel : Cauch-Buakovskj-Schwart egelőtleség: <a,b> <a,a>.<b,b> Boítás: Tektsük a <aλb, aλb skalársoratot. 0 <aλb, aλb > a potív deft tulajdoság matt 0 <aλb, aλb ><a,a><a, λb> <λb, a> <λb, λb <a,a><a, λb> <λb, λb> λ <b, b> <a,b>λ<a,a>. E λ-ra éve eg egsmeretlees másodfokú egelőtleség: λ s<b, b> <a,b>λ<a,a>aλ BλC Mvel e függvéek legfeljebb eg göke lehet, a dskrmás em potív, aa B -4AC 0 4<a,b> -4<b,b><a,a> 0, amből: <a,b> <a,a><b,b> Amből a s követkek, hog <a,b> a. b Tétel: Mde skalársoratos tér ormált tér. B.: kostruktív: megadjuk a ormát. Lege :<,> / A orma 3. tulajdoságáak, a háromsög-egelőtleségek a boítása: <, > / <,> / <,> / Bércesé Novák Áges 4

<,><,><,><,> <,><,><,> / <,> /., eért valóba: Tétel: Mde Eukldes tér metrkus tér. B.: Kostruktív, megaduk eg metrkát: m,: <-, -> / E függvére a metrka előírt tulajdosága teljesülek. B.: hf. előadáso serepelt Defícó: Eukldes térbe két vektor, a és b által beárt α söget a követkeőképpe lehet értelme. Lege <.,.> eg skalársorat V-be, és valamel vektor ormája : <,> /. Ekkor: < a, b > cosα a b Megjegés: A defícó heles, hse a CBS: <a,b> <a,a> <b,b> <a,b> <a,a> / <b,b> / < a, b > - a b A cos függvé va össhagba a R 3 -ra voatkoó smeretekkel, emmatt em a s függvé-t válastjuk Defícó: At modjuk, hog a a vektor ortogoáls merőleges a b vektorra, ha <a,b>0 Tétel: Ortogoáls em ulla vektorok függetleek. B: α α... α k k 0, at kell b., hog mdegk α 0. Vegük redre a,, k vektorokkal való skalársoratot, kapjuk, hog α <, >0, mvel <, > em ulla, eért mdegk α 0. Tétel: Mde eukldes térbe va ortogoáls bás Tétel: Mde altérbe va ortogoáls bás. A boítást em kell tud Bércesé Novák Áges 5

B.: Kostruktív. Potosa at boítjuk, hog bármel függetle redserből kdulva, íg básból s, tuduk ugaola elemsámú ortogoáls redsert kostruál. A eljárás eve: GRAM-SCHMIDT ortogoalácó. Lege b, b, b k a függetle redser. Ebből a c, c,, c k ortogoáls redser a követkeőképpe kapható: c :b c :b α c, ebből α <-b,c >/<c,c >, íg c :b -<b,c >/<c,c >c. c k :b k- α k c α k c. α k,k- c k-, eek a defáló egeletek redre véve a skalársoratát a c, c,. c k- vektorokkal, a egütthatókra követkeőt kapjuk: α kj <-b k-,c j >/<c j,c j > A kostrukcó matt a kapott redser ortogoáls. Defícó: Ortoormált a vektorredser, ha párokét ortogoáls, és mde eleméek ormája. Követkemé: Mde eukldes térek va ortoormált bása. B.: lege a orma a skalársoratból sármatatott: c < c, c > Tetsőleges básból kdulva, a Gram-Schmdt eljárással kapott ee skalársoratot hasálva! ortogoáls bás mde elemét sorouk ee orma recprokával: c * c / c, ekkor valóba c * < c / c, c / c >/ c < c, c >/ c. c Tétel: A eukldes tér valamel bása akkor és csak akkor ortoormált, ha eg vektor koordátáját a követkeőképpe kapjuk meg: a α e, αk < a, e k > B.: hf. Bércesé Novák Áges 6

A követkeőkbe rögített básra voatkotatva tektsük koordáta mátrát: mde vektorak a,, K, és,, K, T A mátrok sorásáak sabálat sem előtt tartva, mvel mde vektor specáls mátr, a skalársoratot defálhatjuk mátrok sorásakét s. Eért a első vektor sor, a másodkat oslopvektorak fogható fel. Tehát a tér vektorat oslopmátr-sal repreetáljuk, és íg skalársoratuk két mátr sorata, eg k típusú, és eg k típusú. Emmatt egk traspoáltját kell ve. A komple tereket s fgelembe véve, a és vektorok skalársoratát a követkeő mátr- sorással sokás értelme: <,>: T. A követkeőkbe skalársorat alatt e mátr soratot érjük. Volt: Defícó : A A mátr traspoáltja, A T k A k Defícó: smmetrkus mátr: AA T Defícó: Eg trasformácót smmetrkusak eveük, ha va ola bás, amelre éve a trasf. mátra smmetrkus. Lemma: Ha a leképeés A mátra smmetrkus, és <,>: T, akkor <,A><A,> B.: <, A>A T. T.A T T.A <A,> A smmetrkus, AA T Tétel: Smmetrkus mátr külöböő sajátértékehe tartoó sajátvektorok ortogoálsak merőlegesek. B.: A λ / vel balról skalársorat A λ / gel jobbról skalársorat <, A > <, λ > λ <, > <A, > <λ, > λ <, > Mvel <, A ><A, >, a egeleteket kvova egmásból: 0 λ - λ <, >, mvel λ λ, eért <, > 0, vags a két sajátvektor valóba ortogoáls/merőleges Defícó: A G mátr ortogoáls, ha G.G T E, ahol E a megfelelő típusú egségmátr. Példa: elforgatás mátra R -be Bércesé Novák Áges 7

A eleveés oka, hog a mátr sor és oslopvektora ortogoálsak ld. a mátrokról sóló fle-t A def. követkemée: G.G T E / G - G T G - Lemma: A G mátr akkor és csak akkor ortogoáls, ha G T G - B.: hf. A ortogoáls mátr tehát defálható eképpe: Defícó: A G mátr ortogoáls, ha G T G - Tétel: A ortogoáls trasformácó megőr a <,>: T skalársoratot lege a képe : A a lege b képe : A b <, > A b T A a b T A T A a b T E.a b T E.a <a, b> Követkemé: Ortogoáls trasformácó távolságtartó, ormatartó, sögtartó B.: skalársorat orma távolság sög Tétel: determások sorás tétele: det A.BdetA.detB, amebe a A.B sorás elvégehető em b. Tétel: Ortogoáls mátr determásáak absolút értéke. B.: detedeta.a - deta deta - deta. deta deta Tétel: Ortogoáls trasformácó sajátértékeek absolút értéke. Boítás: A λ A T λ T A két egeletet össesorova: A T A λ T λ T A T Aλ T λ T A - Aλ T T Eλ T, valóba, λ Bércesé Novák Áges 8