A2 Vektorfüggvények minimumkérdések szóbelire 2015

Hasonló dokumentumok
Matematika szigorlat (A1-A2-A3)

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

Matematika A2 tételek

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

A1 Analízis minimumkérdések szóbelire 2014

Kalkulus gyakorlat - Megoldásvázlatok

1. Sajátérték és sajátvektor

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

Analízis I. gyakorlat

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

V. Deriválható függvények

VII. A határozatlan esetek kiküszöbölése

2. gyakorlat - Hatványsorok és Taylor-sorok

1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

SOROK Feladatok és megoldások 1. Numerikus sorok

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Diszkrét matematika II., 3. előadás. Komplex számok

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli tételek. Készítette: Szántó Ádám Tavaszi félév

Kétváltozós függvények

Debreceni Egyetem. Kalkulus példatár. Gselmann Eszter

(d) x 6 3x 2 2 = 0, (e) x + x 2 = 1 x, (f) 2x x 1 = 8, 2(x 1) a 1

Andai Attila: november 13.

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Draft version. Use at your own risk!

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

Matematika I. 9. előadás

Kalkulus II., második házi feladat

ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2

Integrálás sokaságokon

Matematika elméleti összefoglaló

Lajkó Károly Kalkulus I. példatár mobidiák könyvtár

Lineáris algebra. =0 iє{1,,n}

2. fejezet. Számsorozatok, számsorok

Innen. 2. Az. s n = 1 + q + q q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Gyakorló feladatok II.

Függvényhatárérték-számítás

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Hanka László. Fejezetek a matematikából

Valasek Gábor

1. Gyökvonás komplex számból

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

10.M ALGEBRA < <

Nevezetes sorozat-határértékek

A. függelék Laplace-transzformáció és alkalmazásai

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

4. Test feletti egyhatározatlanú polinomok. Klasszikus algebra előadás NE KEVERJÜK A POLINOMOT A POLINOMFÜGGVÉNNYEL!!!

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Lineáris Algebra. Tartalomjegyzék. Pejó Balázs. 1. Peano-axiomák

I. rész. Valós számok

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Kétváltozós függvények

Metrikus terek. továbbra is.

Mátrixok 2017 Mátrixok

Matematika A2a - Vektorfüggvények elméleti kérdései

A primitív függvény létezése. Kitűzött feladatok. határérték, és F az f egy olyan primitívje, amelyre F(0) = 0. Bizonyítsd be,

I. FEJEZET: ANALÍZIS... 3

forgási hiperboloid (két köpenyű) Határérték: Definíció (1): Az f ( x, y) függvénynek az ( x, y ) pontban a határértéke, ha minden

KÖZGAZDÁSZ SZAK. Módszertani szigorlat követelménye, tavaszi félév

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

Kalkulus I. Első zárthelyi dolgozat szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l n 6n + 8

Vektorok, mátrixok, lineáris egyenletrendszerek

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

BSc Analízis I. előadásjegyzet

17. Lineáris algebra

Összeállította: dr. Leitold Adrien egyetemi docens

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Határértékszámítás. 1 Határátmenet Tétel. (Nevezetes sorozatok) (a) n, n 2,... n α (α > 0), 1 n 0, 1. 0 (α > 0), (b) n 2 0,... 1.

Összeállította: dr. Leitold Adrien egyetemi docens

Egy lehetséges tételsor megoldásokkal

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Sorok és hatványsorok vizsgálata Abel nyomán

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

min{k R K fels korlátja H-nak} a A : a ξ : ξ fels korlát A legkisebb fels korlát is:

1. Gyökvonás komplex számból

Függvények határértéke 69. III. Függvények határértéke

Kitűzött feladatok Injektivitás és egyéb tulajdonságok 69 KITŰZÖTT FELADATOK

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3.

i=1 λ iv i = 0 előállítása, melynél valamelyik λ i

194 Műveletek II. MŰVELETEK A művelet fogalma

18. Differenciálszámítás

Matematika (mesterképzés)

IV. OPERTOROK HILBERT-TEREKBEN

A fontosabb definíciók

(f) f(x) = x2 x Mutassa meg, hogy ha f(x) dx = F (x) + C, akkor F (ax + b) a 3. Számolja ki az alábbi határozatlan integrálokat: 1.

2. függelék. Mátrixszámítási praktikum-ii. Lineáris algebrai eljárások

Integrálszámítás (Gyakorló feladatok)

1. Bázistranszformáció

Diszkrét matematika II., 8. előadás. Vektorterek

Átírás:

A2 Vektorfüggvéyek miimumkérdések szóbelire 215 Lieáris algebra I. 1. Csoport, gyűrű, test félcsoport: olya halmaz, melybe a kétváltozós műveletek asszociatívak (pl. természetes számok eseté az összeadás) csoport: olya halmaz, melybe a kétváltozós műveletek asszociatívak, és létezik zérus (vagy egység-) elem, ill. iverz elem (összeadásak a kivoás, szorzásak az osztás az ivertálása) (pl. egész számok halmaza eseté az összeadás) Abel-csoport: olya halmaz, melybe a kétváltozós műveletek asszociatívak, és kommutatívak is, ill. létezik a zérus elem és az iverz elem gyűrű: olya Abel-csoport, amelybe a kétváltozós műveletek már disztributívak is egymásra ézve (pl. az egész számok eseté az összeadásra ézve a szorzás) A gyűrűbe már két műveletet defiiáluk! Az új, második művelet is asszociatív (azaz tetszőlegese zárójelezhető). test: olya Abel-csoport, amelybe a kétváltozós műveletek disztributívak egymásra ézve (pl. racioális számokál az összeadásra ézve a szorzás disztributív) A testbe szité két műveletet defiiáluk! Az új, második művelet itt is asszociatív. Továbbá, létezik a második műveletre is az egység (e) és az iverz (a*) elem. 2. Euklideszi tér Valós euklideszi térbe értelmezhetőek: skaláris szorzat: < x, y >: = x 1 y 1 + x 2 y 2 + + x y Tulajdoságai: szimmetrikus, homogé, additív, emegatív (vektorterek axiómái) vektor hossza: x < x, x > vektorok közbezárt szöge: cos (x, y) <x,y> x y Def.: Az olya lieáris teret (vektorteret), amelybe skaláris szorzat va értelmezve, euklideszi térek evezzük. Pl. a geometriai vektortér euklideszi tér. Cauchy-Buyakovszkij-Schwarz-egyelőtleség : < x, y > 2 < x, x > < y, y > Ahol < x, x > = x 2 2 illetve < y, y > = y (ld. vektor hossza) Következméye: valós euklideszi terekbe igaz a háromszög-egyelőtleség: x + y x + y Tétel: mide dimeziós euklideszi térbe létezik ortoormált (egységyi hosszúak az ortogoális, azaz egymásra merőleges bázisvektorok) bázis. 1

3. Vektortér Def.: Az elemek egy V halmazát a γ számtest (valós, egész, komplex számok stb.) felett vektortérek evezzük, ha értelmezve va 2 művelet: egy összeadás (+) a vektortér elemei között és egy szorzás ( ) a számtest és a vektortér elemei között, és érvéyesek az alábbiak: 1) ha a, b V, akkor a + b V 2) a + b = b + a a, b V kommutativitás (+) 3) a + (b + c) = (a + b) + c a, b, c V asszociativitás (+) 4) létezik zéruselem, ahol a + = + a = a a V 5) létezik az iverz elem, amelyre a + ( a) = 6) ha a V, α γ, akkor α a V 7) α(a + b) = αa + αb disztributivitás (+) a ( )-ra 8) (α + β)a = αa + βa a V 9) α(βa) = (αβ)a asszociativitás ( ) a ( )-ra Általáosa: a, b V és α, β γ 1)-5) állítások az összeadásra, 6)-9) állítások a szorzásra voatkozak 4. Vektorok lieáris függősége és függetlesége Az {a 1, a 2,, a } vektorok lieárisa függetleek, ha csak a triviális, α i = megoldása va az α 1 a 1 + α 2 a 2 + + α a = egyeletek. Ellekező esetbe bármely α em ulla lieárisa összefüggőek (azaz em függetleek) ezek a vektorok. Az α 1 a 1 + α 2 a 2 + + α a vektor az a 1, a 2,, a vektorok lieáris kombiációja. 5. Lieáris egyeletredszer Def.: A véges sok elsőfokú egyeletet és véges sok ismeretlet tartalmazó egyeletredszert lieáris egyeletredszerek evezzük. Az egyeletredszer felírható az A x = b ú. mátrix alakba, ahol A az együttható mátrix, x az ismeretleek vektora és b az eredméyvektor. - homogé: ha az eredméyvektor ullvektor - ihomogé: ha az eredméyvektorba va akár csak egy darab -tól külöböző szám 6. Lieáris egyeletredszer megoldhatóságáak szükséges és elégséges feltétele A lieáris egyeletredszer akkor, és csak akkor oldható meg, ha együttható mátrixáak ragja megegyezik (az eredméyvektorral) bővített mátrixáak ragjával. Másképpe: az együttható mátrix ragja em ő, ha hozzávesszük a b-t. Tehát: rg (A) = rg(a b) - ics megoldás, ha rg (A) rg (A b) - 1 db megoldás va, ha rg (A) = rg (A b) = - végtele sok megoldás va, ha rg (A) = rg (A b) < ( az ismeretleek száma) Megoldási módszerek: A iverzével, Cramer-szabállyal, Gauss(-Jorda) elimiációval. 2

7. Mátrix determiás Az R tér a 1,, a vektoraihoz (vagyis az dimeziós tér db vektorához) hozzáredelük egy valós számot, amit determiásak evezük és det(a 1, a 2, a )-el jelölük. Axiomatikus felépítés a hozzáredeléshez szükséges axiómák: 1) Additív tulajdoság: ha az i-edik oszlopba vagy sorba csupa kéttagú összeg szerepel, akkor a determiás előállítható két olya determiás összegekét, melyekek az i-edik sorába vagy oszlopába csak a kéttagú összegek első, ill. második tagja szerepel. 2) Homogé tulajdoság: determiást számmal úgy szorzuk, hogy csupá egyik soráak vagy oszlopáak elemeit szorozzuk a számmal. Hasolóa, csak a determiás egyetle oszlopából vagy sorából kell kiemeli a λ számot a determiás elé, hogy e változzo az értéke. 3) Ha a determiás 2 oszlopát felcseréljük, akkor értéke ( 1)-szeresére változik. 4) Az egységmátrix determiása 1. Fotos, hogy csak kvadratikus, azaz égyzetes mátrixokak va determiása. 8. Mátrix iverz A égyzetes A mátrix iverzé olya A 1 -gyel jelölt x-es mátrixot értük, melyre A A 1 = A 1 A = E Csak akkor létezik, ha az A mátrix determiása em ulla, vagyis az A mátrix reguláris. (Vagyis em sziguláris.) Kiszámítási módszerek: adjugálttal vagy Gauss-elimiációval. 9. Mátrix rag Def.: A mátrix ragja egyelő a mátrix lieárisa függetle sorvektoraiak vagy oszlopvektoraiak számával. Másképpe: megegyezik a maximális, el em tűő aldetermiásáak redjével. (aldetermiás redje v. redszáma: háyszor háyas) Avagy: lieárisa függetle oszlopvektorok maximális száma = rag Egy mátrix ragja em változik meg, ha - tetszőleges sorát vagy oszlopát egy -tól külöböző számmal szorozzuk - tetszőleges sorát vagy oszlopát felcseréljük - tetszőleges sorához vagy oszlopához egy másik tetszőleges sorát vagy oszlopát adjuk Lieáris algebra II. 1. Lieáris leképezés fogalma Legye V 1 és V 2 ugyaazo test (R,C) feletti vektortér. A φ: V 1 V 2 lieáris leképezés, ha teljesül, hogy φ(λu 1 + v 1 ) = λφ(u 1 ) + φ(v 1 ) A liearitás tehát azt jeleti, hogy a leképezés az összegre tagokét hat, a skalár kiemelhető. Úgy is modhatjuk, hogy ez a lieáris leképezések additív és homogé tulajdosága. Megjegyzés: φ() = Fogalmak: lieáris traszformáció: ha V 1 = V 2 (pl. R 3 R 3 ) ijektív traszformáció: ha φ(u 1 ) = φ(v 1 ), akkor u 1 = v 1 Tehát két külöböző elemhez em redelhetjük ugyaazt, az ősképekek meg kell egyeziük! (kölcsööse egyértelmű, de V 2 em mide eleme képelem) szürjektív traszformáció: v 2 V 2 eseté v 1, hogy φ(v 1 ) = v 2 (V 2 mide eleme képelem, de em kölcsööse egyértelmű!) bijektív (kölcsööse egyértelmű) traszformáció: ha ijektív és szürjektív is 3

2. Ragullitás tétele Más éve: dimeziótétel dim Kerφ + dimimφ = dim V 1 azaz def φ + rgφ = dimv 1 ahol Kerφ a leképezés magtere, Imφ a képtere (V 2 részhalmaza), V 1 pedig a tárgytér. 3. Magtér, képtér - magtér: Kerφ = {v 1 V 1 φ(v 1 ) = } Megjegyzés: Kerφ altér V 1 -be. A magtér dimeziója a leképezés ú. defektusa. - képtér: Imφ = {v 2 V 2 v 1 V 1, φ(v 1 ) = v 2 } Megjegyzés: Imφ dimeziója a leképezés ragjával egyelő. 4. Sajátvektor, sajátérték Számos műszaki-gazdasági probléma az A x = λx alakú egyeletredszer megoldását igéyli, ahol λ valós vagy komplex paraméter. Akkor va az (A λe) x = homogé egyeletredszerek triviálistól külöböző megoldása (x ), ha a det (A λe) = ú. karakterisztikus egyelet ulla. Ha létezik zérustól külöböző megoldásvektora az első kettő egyeletek, akkor a λ számokat az A mátrix sajátértékeiek, a sajátértékekhez tartozó x megoldásvektorokat pedig sajátvektorokak evezzük. Def.: Legye v. Ekkor v-t a φ: V V lieáris leképezés sajátvektoráak hívjuk, ha φ(v) = λv. λ T, tehát azo T testbeli elem, amely felett V vektortér. λ-t a v sajátvektorhoz tartozó sajátértékek modjuk. Megjegyzések: - valós, szimmetrikus mátrix mide sajátértéke és sajátvektora valós és a sajátvektorok ortogoálisak (egymásra párokét merőlegesek) - külöböző sajátértékekhez tartozó sajátvektorok lieárisa függetleek - az A mátrixra alkalmazott tetszőleges S 1 A S hasolósági traszformáció változatlaul hagyja az A mátrix sajátértékeit. - mide valós szimmetrikus mátrixhoz megadható egy olya ortogoális S mátrix (azaz olya, amiek a traszpoáltja megegyezik az iverzével), amelyre S 1 A S = A d Ekkor az A d diagoális mátrix főátlójába az A mátrix sajátértékei vaak. A diagoizálás is bázis traszformáció, azo alapul! - az A mátrix k-adik hatváyáak sajátértékei egyelők az A sajátértékeiek k-adik hatváyával - ha v sajátvektora φ-ek, akkor μv is sajátvektor, hisze a sajátvektor sosem egyértelmű; végtele sajátvektora va egy vektorak, miket csak az iráya érdekel, így a hossza em is számít (általába ezért adjuk meg egységhosszúra). 5. Bázis traszformáció Egy dimeziós vektorokból álló dimeziós lieáris térek végtele sok bázisa va. Az egyik bázisból át lehet téri a másikba. Amikor a bázisak csak az egyik vektorát cseréljük ki, akkor elemi bázistraszformációt hajtuk végre. Egy adott bázisból egy másik bázisba való áttérést bázistraszformációak evezzük. Az új bázist a bázistraszformáció mátrixáak iverzével kaphatjuk meg: A = S 1 A S 4

ahol A az új bázis, A az eredeti bázis, S pedig a bázis traszformáció mátrixa. Legye {b 1,, b } és {b 1,, b } bázisok V-be, ekkor az egyikről a másikra való áttérés S mátrixa: b 1 = s i1 b i ; b j = s ij b i ; b = s i b i i=1 i=1 i=1 6. Hasoló mátrixok Az A = S 1 A S s 11 s 1 S = [ ] s 1 s hasolósági traszformáció. - Az A és A mátrixokat hasoló mátrixokak evezzük, ha létezik olya S reguláris mátrix, amely kielégíti a feti egyeletet - Hasoló mátrixok determiása és ragja is megegyezik (az első állítás a determiások szorzattétele alapjá köye belátható.) 7. Ortogoális mátrix Egy mátrix ortogoális, ameyibe iverze megegyezik a traszpoáltjával, azaz A 1 = A T Ez azért előyös, mert ekkor A T A = A 1 A = E Megjegyzés: ortoormált egy bázis, ha az ortogoális bázis vektorai egységyi hosszúak. Függvéysorozatok, függvéysorok 1. Függvéysorozat A számsorozathoz úgy jutottuk, hogy a természetes számokhoz számokat redeltük. Redeljük most ezekhez függvéyeket. Def.: Ha a természetes számok midegyikéhez egy-egy függvéyt redelük, akkor függvéysorozatot kapuk. Legyeek e függvéysorozat elemei az f 1, f 2,, f, függvéyek, amelyek az I itervallumo értelmezettek. Rögzítsük egy x I helyet. Ekkor az f 1 (x), f 2 (x),, f (x), számsorozat lehet koverges vagy lehet diverges. Ha koverges, akkor létezik a lim f (x) = f(x) határérték. Ez azt jeleti, hogy akármilye kicsi ε > -hoz va olya ε tól és x-től függő N természetes szám, hogy > N eseté f (x) f(x) < ε. Az N szám a küszöbszám. - f az (f ) függvéysorozat határfüggvéye. - azok az x számok, melyekél a sorozat koverges: a függvéysorozat kovergeciatartomáyát alkotják. - Az így értelmezett kovergeciát potokéti kovergeciáak evezzük. Def.: Az f I R R, N sorozatot függvéysorozatak evezzük. 5

2. Függvéysor Def.: Legye f I R R függvéysorozat. Képezzük a következő részletösszegfüggvéyeket: s 1 (x) f 1 (x) s 2 (x) f 1 (x) + f 2 (x) Cauchy-féle kovergeciakritérium s (x) f i (x) i=1 Az így előálló (s ) függvéysorozatot az (f ) függvéysorozatból képzett függvéysorak evezzük és f -el jelöljük. - Az olya végtele sort, amelyek tagjai függvéyek, függvéysorak evezzük. - Itt em határfüggvéy va, haem összegfüggvéy: s(x) lim s (x) 3. Függvéysorozat, függvéysor kovergeciája, egyeletes kovergeciája - A függvéysorozat kovergeciáját a határfüggvéytől függetleül is értelmezhetjük: a) Az (f ) függvéysorozat akkor, és csak akkor koverges egy x H potba, ha mide ε > eseté N(ε) olya csak ε-tól függő N természetes szám, hogy, m > N(ε) eseté f (x ) f m (x ) < ε b) Az (f ) függvéysorozat akkor, és csak akkor koverges potokét a H I halmazo, ha mide ε > eseté N(ε, x) olya ε-tól és x-től függő N természetes szám, hogy, m > N(ε, x) eseté x H-ra f (x) f m (x) < ε c) Az (f ) függvéysorozat akkor, és csak akkor koverges egyeletese az E H halmazo, ha mide ε > eseté N(ε) olya csak ε-tól függő N természetes szám, hogy, m > N(ε) eseté x E-re f (x) f m (x) < ε Eze esetek közül a legléyegesebb az az eset, amikor N függetleíthető x-től, vagyis N mide x I eseté küszöbszám. Ilyekor a függvéysorozat egyeletese koverges, más szóval egyeletese tart a határfüggvéyéhez. Ez azért fotos, mert az egyeletese koverges függvéysorozatokál az elemek éháy jeletős tulajdosága öröklődik a határfüggvéyre (pl. differeciálhatóság, itegrálhatóság). - Függvéysorok kovergeciája: a) A f függvéysor koverges az x potba, ha az (s ) függvéysorozat koverges x -ba. b) A f függvéysor koverges a H I halmazo, ha az (s ) függvéysorozat koverges H -. c) A f függvéysor egyeletese koverges E H halmazo, ha az (s ) függvéysorozat egyeletese koverges E H halmazo. A f függvéysor egyeletese koverges az E H halmazo akkor, és csak akkor, ha bármely ε > hoz létezik csak ε-tól függő N szám, hogy s (x) s m (x) < ε, ha, m > N(ε), x E-re. 6

4. Weierstrass-tétel Az előbb leírt Cauchy-féle kovergecia kritériummal elég ehézkes vizsgáli az egyeletes kovergeciát, de erre való a Weierstrass-tétel is, ami a függvéysorok egyeletes kovergeciájáak elégséges feltétele: Legye f I R R a függvéysorozat és f a belőle képzett függvéysor; a pedig egy koverges umerikus sor. Ha bármely x J eseté teljesül, hogy f (x) a mide N-re, akkor a f függvéysor egyeletese koverges J-. Értelmezés: ha felülről tudjuk becsüli (majoráli) a függvéysorozatukat egy koverges umerikus sorozattal, akkor a függvéysorozatból képzett függvéysor is koverges, mégpedig egyeletese koverges lesz. (majorás kritérium). Megjegyzés: a Weierstrass-tételbeli kovergecia abszolút kovergecia is, azaz a f függvéysor is koverges. A függvéysorokál is az egyeletese kovergesek a külöleges jeletőségűek, mert például a sor tagjaiak folytoossága, differeciálhatósága, itegrálhatósága öröklődik az összegfüggvéyre. 5. Cauchy-Hadamard-tétel Legye r a a x hatváysor (ld. következő pot) kovergeciasugara a) ha r =, akkor a hatváysor csak az x = potba koverges (legrosszabb eset) b) ha r =, akkor a hatváysor bármely x R eseté koverges c) ha < r <, akkor a hatváysor i. abszolút koverges, ha x < r, vagyis r < x < r ii. diverges, ha x > r, vagyis x > r vagy x < r - r -be és r -be külö-külö ki kell értékeli, hogy koverges-e A c) eset a legfotosabb, eek a bizoyítása a következő: i. x < r feltétel eseté a gyöktesztet alkalmazva ii. limsup a x a gyökvoás azoossága miatt x limsup a = x 1 r ami a feltétel miatt kisebb, mit 1. Tehát létezik olya q < 1, hogy a x a gyökteszt miatt koverges (x tetszőleges volt, bármely x-re igaz ez, ha x < r). Ugyacsak a gyökteszt miatt, ha x > r, akkor a x hatváysor diverges, hisze q = x r > 1 ekkor. Megjegyzés: azt, hogy a függvéysor hol állítja elő az összegfüggvéyét, csak a hatváysorokál ilye egyszerű meghatározi: 1 r = limsup a = lim a (egyelők, ha a határérték létezik és felveszi függvéyértékkét). 7

6. Hatváysor Az alkalmazásokba legtöbbször a függvéysorok speciális osztályával, a hatváysorokkal találkozuk. Előyük, hogy e sorok tagjai egyszerű függvéyek, köye lehet őket deriváli, illetve itegráli. Def.: f (x) a (x a) kitütetett, speciális függvéysorozatból képezzük a hatváysort: a (x a) = a : a hatváysor. együtthatója a: a sorfejtés cetruma Defiíció szerit a hatváysor kovergeciasugaráak reciproka: 1 r = limsup a, r R b Tétel. Ha a a x (a = a cetrum és -tól összegzük) hatváysor koverges az x potba, akkor az x < x helyeke abszolút és egyeletese is koverges. 7. Taylor-poliom, Taylor-sor Def.: Ha az egyváltozós valós f függvéy az értelmezési tartomáyáak egy belső x potjába legalább -szer differeciálható, akkor a T f, (x) f(k) (x ) k (x x k! ) poliomot a függvéy x helyhez tartozó -edfokú Taylor-poliomjáak, az R (x) f(x) T (x) külöbséget pedig Lagrage-féle maradéktagak evezzük, ami k= R (x) = f(+1) (ξ) ( + 1)! x+1 Valamely akárháyszor differeciálható f függvéyek a Taylor-poliommal való közelítése akkor haszos, ha (a szumma felső határa) övelésével a közelítés hibája tetszőlegese kicsivé tehető, azaz a maradéktag a végtelebe -hoz tart. Tehát ha, akkor a Taylorpoliomból egy végtele sor, a Taylor-sor lesz: f(x) = f(k) (x ) k (x x k! ) k= Def.: Ha f akárháyszor differeciálható az x D f helye, akkor a feti végtele sort az f függvéy x helyhez tartozó Taylor-soráak, a sor előállítását pedig a függvéy sorbafejtéséek evezzük. Feltétel, hogy a maradéktag -hoz tartso, csak akkor állítja elő a függvéyt a Taylor-sor! Az x = helyhez tartozó Taylor-sort Maclauri-sorak evezzük. Ekkor f(x) = f() + f () 1! x + f () 2! x 2 + = f(k) () k! k= x k, x < r Megjegyzés: Hasolóképpe, az x = esetre felírt Taylor-formulát Maclauri-formuláak is evezzük. a = f() (), ha a hatváysor a! x alakú. (Vagyis a = a cetrum). 8

8. Kovergeciasugár, kovergeciatartomáy Mivel mid a Taylor-sor, mid a Maclauri-sor hatváysor, ezért e sorok kovergeciatartomáyát a kovergeciasugár kiszámításával határozzuk meg, a szokásos módo, legikább háyadosteszttel vagy gyökteszttel: 1 r = lim a k+1 k a k 9. Fourier-sor Trigoometrikus poliomak evezzük a következő alakú függvéyt: t k (x) a + a 1 cosx + b 1 six + a 2 cos2x + b 2 si2x + + a k coskx + b k sikx A Fourier-sor léyegébe a trigoometrikus poliomból képzett trigoometrikus sor. Így a Fourier-sor általáos képlete: f(x) = a + (a k coskx + b k sikx) k=1 A Fourier-sorfejtés csak (általába 2π szerit) periodikus függvéyekre alkalmazható. Ehhez az f függvéyek, amiek a Fourier-sorát akarjuk megállapítai, korlátosak és Riema szerit itegrálhatóak is kell leie. A feti képletbeli ú. Fourier-együtthatók a következők: Egyszerűsítések: 2π a = 1 2π f(x)dx ; b = 2π a k = 1 f(x) coskxdx π 2π b k = 1 f(x) sikxdx π - Ha a periodikus, korlátos, Riema-itegrálható függvéyük páratla, akkor csak sziuszos tagok szerepelek a Fourier-sorába, így a = a k = - Ha a periodikus, korlátos, Riema-itegrálható függvéyük páros, akkor csak kosziuszos tagok szerepelek a Fourier-sorába, így b k = Általáosa, 2l szerit periodikus függvéyek Fourier-sora: 2l a = 1 2l f(x)dx 2l a k = 1 kπx f(x) cos dx l l 2l b k = 1 kπx f(x) si dx l l 9

Többváltozós függvéyek 1. Primitív függvéy Def.: Legye D R yílt halmaz, f: D R. Ekkor az F: R R függvéyt az f függvéy primitív függvéyéek evezzük, ha F (x) = f(x) x D eseté. A primitív függvéy R R típusú, ezért a deriváltja egy vektor, ami éppe a parciális deriváltakból áll össze, s ez egyelő f(x) kompoes függvéyeivel: ( F(x) x 1, F(x) x 2,, F(x) ) = (f x 1 (x), f 2 (x),, f (x)) j {1,2,, } Vagyis pl. j F = f j (A primitív függvéy j-edik változó szeriti parciális deriváltja a j-edik kompoes függvéyt adja eredméyül; j megy 1-től -ig.) Tétel. Szükséges feltétel a primitív függvéy létezéséhez: Ha D R yílt halmaz, és F: R R az f primitív függvéye, akkor i f j = j f i Azaz f j-edik kompoes függvéyéek az i-edik változó szeriti parciális deriváltja megegyezik az i-edik kompoes függvéy j-edik változó szeriti parciális deriváltjával. Tétel. Elégséges feltétel a primitív függvéy létezéséhez: Legye D R kovex, yílt halmaz. Ha f: D R folytoosa differeciálható és i f j = j f i i, j {1,2,, } eseté, akkor az f-ek létezik primitív függvéye. 2. R R k leképezés differeciálhatósága Def.: Legye U R yílt halmaz, f: U R k leképezés. Azt modjuk, hogy f differeciálható az a D f potba, ha létezik A: R R k lieáris leképezés és ω: R R k leképezés, melyre ω() =, valamit létezik ω(h) lim h h =, hogy f(x) f(a) = A(x a) + ω(x a) Az A leképezések egy kx-es mátrix felel meg, hisze a deriválás egy (lieáris) leképezés! x a = h helyettesítéssel: f(a + h) f(a) = A(h) + ω(h) 3. Iráymeti derivált Egyváltozóba az adott potbeli derivált egyértelmű, de többváltozós függvéyek eseté az adott potba végtele sok éritője va a felületek, ezért kiválasztuk egy síkot, amivel elmetsszük ezt a felületet. Ez a görbe kimetsz a felületből egy egyeest, eek pedig már kokrét éritője va. Az iráymeti derivált az adott iráy által kimetszett függvéy deriváltja: f e = lim f(a + λe) f(a) =< e, gradf >, ahol e = 1 λ + λ Ha a feti határérték létezik és az egy valós szám, akkor ezt az f a potbeli, e iráyú iráymeti deriváltjáak evezzük. Jele: e f(a). Az a vektor által mutatott pothoz tehát em midegy, hogya, melyik iráyból közelítük. 1

4. Parciális derivált A koordiátategelyek iráyába eső iráymeti deriváltak kitütetett szerepe va, ez a parciális derivált. Ekkor az egyik koordiátategely iráyából tartuk az adott potba, a másik változót rögzítjük, kostasak tekitjük, és úgy deriváluk. A többváltozós függvéy valamely változója szeriti deriváltját parciális deriváltak evezzük: Jele: f x = f x vagy f y = f y 5. Gradies Def.: Legye f: R R típusú függvéy, ekkor f gradiesvektora az egyes változók szeriti parciális deriváltakból áll: f x 1 f grad f = f = x 2 f [ x ] - mide potba merőleges a poto áthaladó szimmetriavoalra - a függvéy legagyobb övekedéséek iráyába mutat 6. Jakobi mátrix Def.: Legye f: R R k típusú függvéy. Tudjuk, hogy a deriválás is egy lieáris leképezés, így megfeleltethető eki egy kx-es mátrix: f (a) A M kx A deriválás mátrix reprezetációja a legegyszerűbb esetbe: [ 2 ] 1 Jelölés: f (a) = Jf(a)= f 1 f 1 x 1 x gradf 1 (a) = gradf 2 (a) f k f k [ x 1 x ] kx [ gradf k (a)] Léyege: azoos oszlopba a külöböző függvéyekek ugyaazo változó szeriti parciális deriváltja kerül; azoos sorba pedig az adott függvéy egyes parciális deriváltjai, vagyis a gradiesek. 7. Szélsőérték Az f(x, y) kétváltozós függvéy lokális szélsőértéke létezéséek szükséges, de em elégséges feltétele: az első parciális deriváltak ullák legyeek az (x, y ) potba, azaz f x (x, y ) = f y (x, y ) = Az f(x, y) kétváltozós függvéy lokális szélsőértéke létezéséek elégséges feltétele: az ú. Hesse-mátrix determiása agyobb legye, mit, azaz f xx f xy = f f yx f xx f yy f 2 xy = D(x, y) > yy (A második parciális deriváltak folytoosak, így f xy = f yx ) 11

Tehát va lokális szélsőérték, ha D >. Eze belül: a függvéyek lokális miimuma va, ha S(x ) = f xx + f yy > lokális maximuma va, ha S(x ) = f xx + f yy < S(x ) a főátlóba lévő elemek összege, vagyis a Hesse-mátrix yoma (Spur, Trace). Nem döthető el, hogy va-e szélsőérték, ha D =. Nics szélsőérték, ha D <. 8. Kvadratikus formák defiitsége Def.: ψ: V V R szimmetrikus bilieáris forma és η(x) = ψ(x, x) kvadratikus forma. Az η: V R kvadratikus formát i. pozitív defiitek modjuk, ha η(x) > ii. egatív defiitek modjuk, ha η(x) < iii. pozitív szemi-defiitek modjuk, ha η(x) iv. egatív szemi-defiitek modjuk, ha η(x) x V eseté. Ha ezek egyike sem teljesül, akkor idefiit kvadratikus formáról beszélük. A kvadratikus formák defiitsége kapcsolatba hozható a lokális szélsőértékek létezésével: 1) Ha Q pozitív defiit, akkor f-ek az x potba lokális miimuma va. 2) Ha Q egatív defiit, akkor f-ek az x potba lokális maximuma va. 3) Ha Q idefiit, akkor f-ek az x potba ics szélsőértéke. 4) Ha Q szemi-defiit: em tudjuk megmodai, hogy va-e szélsőértéke. 9. Riema-itegrálhatóság (alsó-felső Darboux-itegrál) Legye f: I R R típusú korlátos függvéy. Ekkor az f függvéyt Riemaitegrálhatóak modjuk, ha S(f) = S(f) (alsó és felső Darboux-itegrál megegyezik). S(f): = su p{s(f, d) d beosztása I ek} alsó Darboux-itegrál S(f): = if{s(f, d) d beosztása I ek} ahol A d beosztáshoz tartozó alsó itegrálközelítő összeg: k S(f, d) if(f(i i )) Vol(I i ) i=1 A d beosztáshoz tartozó felső itegrálközelítő összeg: S(f, d) sup(f(i i )) Vol(I i ) ahol k i=1 felső Darboux-itegrál Vol(I i ) = (b 1 a 1 )(b 2 a 2 ) (b k a k ) szorzat az i. itervallum térfogata. Ameyibe az alsó- és felső Darboux-itegrál megegyezik, akkor ezt a közös értéket f(x)dx -szel jelöljük és Riema-itegrálak evezzük. I 12