Fizika 1i. 1.előadás. Fizika Tsz. 3 h előadás + 1 h gyakorlat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika 1i. 1.előadás. Fizika Tsz. 3 h előadás + 1 h gyakorlat"

Átírás

1 Fizik 1i 1.elődás Fizik Tsz. 3 h elődás 1 h gykol

2 Mié éppen fizik? Fiziki kuások Alklmzások Számíógépes hálóz Inene (www. ) Tnziszo Nemlin. Egyenleek (ámlásn) GPS (omó, el. elm.) Félvezeő elekonik Számíógép Helymegháozás 40%

3 Mié éppen fizik? Fiziki kuások CT (NMR) Alklmzások Gyógyász, ákdignoszik Hologáfi Anygudomány 3D képlkoás, 3D TV bnkkáy, sb. Új nygok, DNS

4 Mié éppen fizik? Káosz elméle Modell

5 Mié éppen fizik? Me édekes!!!

6 Mié éppen fizik? Me izglms jövő Kvnumszámíógép Ngy számolási sebesség RSA kód felöése, sb. Nnofizik Láhln epülőgép Öniszuló uh "Öngyógyuló" számíógép

7 Robo kuy Youube: obo dog boson dynmics hps://youu.be/m8yjvhybz9w

8 Mi kell udni Memikából???

9 Emlékezeő I. Vekook b c b Vekogeomei Vekook összedás: b b v b b b b b b c c λb - b

10 Veko(ok) kivonás b b v? b (-b) v ( b) - b b b b b b b

11 Konponensek és egységvekook y i j y j i Θ Polá koodináák : & Θ y n Θ y Desces koodináák: i j 1 y & y y cos sin Θ Θ (, Θ) (, y )

12 Elemi vekolgeb j i y j b i b b y? b d )j b ( )i b ( b y y d y d c )j b ( )i b ( b y y c y c...)j c b (...)i c b (... c b y y y

13 Sklászoz ϕ b Def.: b i i j j 1 b cosϕ és i j 0 i j b b i b j b? y y b b y b y z b z cosϕ b b Szupepozíció Péld: munk W F s

14 Vekoiális szoz γ sin b b k j i i k j és j i k és, de: 0 k k j j i i Jobbkéz-szbály: Péld: fogónyomék F M

15 Vekoiális szoz kiszámíás? b b b k j i b z y z y ( ) ( ) ( ) k b b j b b i b b b y y z z y z z y Szupepozíció

16 II. Tigonomei sin( α β) sin α cosβ cosαsin β sin(α) sin α cosα cos( α β) cos α cosβ sin αsin β cos(α) g( α β) sin α cos α sin gα gβ 1 gαgβ cos α 1 α Jó udni:.. H.F.: g (α)? cos( 3α)? α cos?

17 MATEMATIKA BEVEZETŐ 1. Diffeenciálszámíás

18 Mié hsznos diffeenciálszámíás? Péld: Sebesség ú/idő Álgsebesség Pillnnyi sebesség

19 Ú-idő méése diszké s ponokbn Mekko z álgsebesség 3. és 4. s közö? Mekko z álgsebesség 3. és z 5. s közö? s16m α s7m Geomeii jelenés: 1s s A sebesség vízszinessel bezá szög ngensé, meedeksége muj meg.

20 Az ú és idő közö isme függvénykpcsol péld: 0 X() 1 D mozgás ( ) A sebesség még mindig álgsebesség ( szelő meedeksége), kifejezés diffeencihánydos. H ngyon megközelíi 1 -e ( 1 Δ, és Δ 0 ) ( 1 ) diffeencihánydos háééke diffeenciálhánydos, deivál: 1 ( ) ( ) v( ) lim 0 d d mely megmuj pillnnyi sebessége (z éinő meedekségé) 1 -ben.

21 A diffeenciálás (deiválás) lklmzás Háozzuk meg z y függvény gfikonjánk meedekségé 3 ponbn f() Képezzük függvény deiválfüggvényé vgy deiváljá f() f () Helyeesísük be z éinési pon koodináájá f (3) 36 Az f() függvény gfikonjánk meedeksége z 3 helyen 6. gα6

22 Deiválási szbályok ( ) e e

23 Összee függvény f(g()) fsin() g3 f(g())sin(3 ) Összee függvény deiválás (f(g())) f (g()) g () Péld : (sin(3 )) cos(3 ) 6

24 Második deivál Péld: f()5 3 f () f () D mozgás Alklmzás (pl): 0 X() ()5 3 Fm F kiszámíhó

25 Szélsőéék megháozás Péld: f() Hol vn z f() fv. szélsőééke? f() függvény szélsőééke o lálhó, hol f ()0 f () , Minimum vgy mimum? f ()6-460 f ()1-4 f (5)18 Minimum! f ()-18 Mimum!

26 f()

27 3D-ben: Szokásos jelölés z idő szeini deivál v dv d v dv d d d & d v& && d d d v& & d d &

28 Tylo-so... ) (! () f ) ()( f f () f()...! 1 cos()... 3! sin() 3...! 1 e

29 . Inegálszámíás

30 CÉL: Göbe li eüle megháozás 1 1

31 Péld: F F s WFs v IF sv

32 Alsó-felső közelíő összeg s(f) s(f) < S(f) S(f) Minél finombb beoszás, z lsó és felső közelíő összeg ééke nnál inkább megközelíi egymás

33 Inegál H beoszás minden háon úl finomodik, kko s(f)s(f) s(f)s(f) b

34 Az inegál kiszámíás Newon-Leibniz éel H léezik F(), úgy, hogy F() z f()függvény pimiív függvénye: F ()f() F() f () d (Háozln inegál) A pimiív függvény segíségével háozo inegál kiszámíhó

35 Péld: f() f() F() 3 /3 Ellenőzés: (F()) f() () 3 /3-(1) 3 /37/3,33

36 Inegálási szbályok Pimiív függvény

37 Pimiív függvény megháozás Péld: sin 5 ()cos()d sin(35)d sin( 5 ) 4 d H. F.

38 Pciális inegálás Péld: Péld: H. F.

39 Példák

40 Kinemik

41 A kinemik lpji A ömegpon helyének megdás z idő függvényében Tömegpon helyzee : () Elmozdulás: ) ( ) Mege ú: s i ( 1 Δi Kinemik ömegpon helyzee pl. enisz: "chllnge" Apophis kisbolygó?

42 Legegyszeűbb modell: 1 D - mozgás 0 ()

43 Definíciók:,s,d: [m] : [s] ponosbbn: később Álgsebesség: v ál. s össz. össz. Méékegység: m/s Pillnnyi sebesség: Elmozdulás: ( ) ( ) v( ) lim 0 () (1) v()d viδ 1 i i d d Pozíció: () 0 elmozdulás v 7 km/h 0 m/s

44 Legegyszeűbb mozgás: egyenesvonlú egyenlees mozgás v () - o v cons. () o () o v v() v s s v v s v

45 GPS

46 Egy egyszeű feld: Álgsebesség (láuk): v ál. s össz. össz. A B s Avege velociy: Avege speed: elmozdulás idő ( ) ( ) 1 1 v ál. s össz. össz.

47 Egy pdoon: Achilleus és eknősbék Achilleus nem éi uol eknősbéká, me mie odé, hol eknősbék vol eedeileg, ddig eknős előbbe juo, és így ovább. ()!!! Megoldás: Achilleus nem éi uol eknősbéká, míg nem éi uol eknősbéká!!! Hol hib???

48 Hosszúság és időegység A másodpec: A másodpece eedeileg z álgos Np-np segíségével lehee megháozni, nnk 1/86400-d észe. Aomó: ngy ponosság 1ms / év vgy jobb A másodpec z lpállpoú cézium-133 om ké hipefinom enegiszinje közöi ámenenek megfelelő sugázás peiódusánk időm. A mée: 1 mée Föld keüleének ( Páizson ámenő délkönek) 1/ od észe ősmée 1 mée: K 86 nncsság spekumvonlánk szoos Ponosbb definíció: jegyze

49 v cons. v v() Def. álgos gyosulás: Def. pillnnyi gyosulás: Gyosulás Δv ál. Δ v( )-v( - 1 v() 1 ) m s ál. gα ( ) lim v( ) v( Δ ) 0 v () i i v0 i vi i 0 () dv d v( ) v( 1 ) v α 1 i

50 cons. Mozgás állndó gyosulássl v()-v o v() > 0 v() v o < 0 v() v o

51 v v o v o 1 v Elmozdulás és pozíció Láuk: Elmozdulás: s v o 1 τ ( ) τ Pozíció: v o o v( τ ) dτ ( τ ) dτ d v 0 0 ( ) 0 v v v 1 cons. Feldmegoldáshoz hsznos fomulák v v cons. v 0 0 v v 0 cons. v 1 v 0 v 0 s v v v v 1 1 s 1 v v s 1 v 0 v0

52 g 9.81 m/s 10 m/s Szbdesés

53 Minpéldák:. e.. : D és 3D mozgás koodináendszeek

54 D és 3D mozgás Álgsebesség (veko): v ál. v ál. elmozdulás idő Álgsebesség: v ál. s össz. össz. Pillnnyi sebesség: Mivel: d du v( ) d d v( ) d d u du d u : éinő iányú egységveko v?

55 Polákoodináák:, ϕ (síkbeli) y v v v v & e & e & e & e & ϕe & ϕ e ϕ e ϕ v v de ϕ e ( d) ϕ e ϕ () e ( d) dϕ () e de v& && e e && & & ϕe ϕ && ϕe (&& & ϕ ) e ( & & ϕ && ϕ) e ϕ ϕ && ϕe ϕ & ϕe & ϕ e e& ϕ& e ϕ

56 A ömegpon helyzee: ( ) v( τ ) d τ 0 0 A ömegpon áll mege ú: s 0 v( τ ) dτ vu vu & vu & A ömegpon gyosulás: ( ) (egyszeűen) dv d d d du u vd R du d v R vu & v R n cp

57 cp v () cp hol v csökken: 0 cp lim 0 v R v cons v () cp v növekszik: 0 cp R

58 Egy speciális ese: cons. () o v o 1 v() v o () v () v o v o o 1 Vízszines mozgás y() v () v y y o v oy o y y 1 y Függőleges mozgás

59 Hjíás függőleges mozgás v o v o cosθ v o y() y o v oy y o y f 0 1 y v oy v o sinθ voy g vo s sin( Θ) g v oy Θ v o s vízszines elmozdulás () v o v v o 1 0 v oy y oy y cosθ v o sinθ g s v o v o cosθ v o v cosθ o sinθ g

60 A ngy Beh és si v o 1700 m/s θ 55 s? h?

61 Egy jó ségi hógolyócsához / vgy hogyn lehe lányok (fiúk) hógolyóvl ellálni / Tudjuk (lg.): sinα sin ( π α ) vo s sin( Θ) g ( π ) sin( β ) sin( Θ) sin Θ Θ π β

62 Egy újbb péld / vgy mié épíeék vák hegyeőe / 1. megoldás:, y. megoldás: y()

63 Ciklois göbe ()? y()?

64 Koodiná endszeek Desces-féle koodiná endsze i yj zk (, y, z) & v i & yj & zk & & v& && i && yj && zk z Henge koodiná endsze & (, ϕ, z) ρe zk ρ v & ρe ρ & ϕe ρ ϕ zk & & v& (...) e (...) e ρ ϕ && zk ϕ ρ z y Síkbeli polá

65 Gömbi koodináendsze (, ϕ, θ ) z e ϕ & e v e & sinθ & ϕe ϕ & θe θ θ e ϕ e θ & v& H.F.? y Segíség: e sinθ cosϕi sinθsinϕj cos( Θ) k e sin ϕi cosϕj ϕ cosθ cosϕi cosθsinϕj sinθk e Θ

66 Kinemik dinmik Keple övények (Tycho de Bhe) 1. Np. A A 1 Np A 1 A T 3 cons. 3. Np

Fizika Előadás

Fizika Előadás Fizika 11 1. Előadás Fonos-e egy manage-nek fiziká anulnia????? Mié fonos egy manage-nek fiziká anulnia??? Az euo/usd keeszáfolyam göbéje. A legnagyobb őzsdei guuk sem udják megállapíani, melyik az öpeces,

Részletesebben

Modern fizika és alkalmazásai

Modern fizika és alkalmazásai Moden fizika és alkalmazásai.előadás Fizika Tsz. h előadás http://fizipedia.bme.hu/inde.php/moden_fizika_ és_alkalmazásai Miét éppen fizika? Fizikai kutatások Alkalmazások Számítógépes hálózat Intenet

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

Fizika és 6. Előadás

Fizika és 6. Előadás Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn

Részletesebben

Kétváltozós vektor-skalár függvények

Kétváltozós vektor-skalár függvények Kétáltozós ekto-skalá függények Definíció: Az olyan függényt amely az ( endezett alós számpáokhoz ( R R ( ektot endel kétáltozós ekto-skalá függénynek neezzük. : ( ( ( x( i + y( j + z( k Az ektoal együtt

Részletesebben

Koordinátarendszerek

Koordinátarendszerek Koordinátarendszerek KO 1 Koordinátarendszerek Ponthalmazok előállításai Koordinátarendszerek KO Két gyakran alkalmazott síkbeli koordinátarendszer Derékszögű (Descartes féle) koordinátarendszer Síkbeli

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

Megjegyzés: jelenti. akkor létezik az. ekkor

Megjegyzés: jelenti. akkor létezik az. ekkor . Hármas Integrál. Bevezetés és definíciók A bevezetés első részében egy feladaton keresztül jutunk el a hármasintegrál definíciójához. Feladat: Legyen R korlátos test, és a testnek legyen az f(x, y, z

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Vegyipari és áramlástechnikai gépek. 4. előadás

Vegyipari és áramlástechnikai gépek. 4. előadás Vegyipri és ármlásechniki gépek. 4. elődás Készíee: dr. Várdi Sándor Budpesi Műszki és Gzdságudományi Egyeem Gépészmérnöki Kr Hidrodinmiki Rendszerek Tnszék, Budpes, Műegyeem rkp. 3. D ép. 334. Tel: 463-6-80

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Fogaskerekek III. Általános fogazat

Fogaskerekek III. Általános fogazat Fogskeekek III. Áltlános fogt Elei, kopenált fogtok esetén: vlint: ostóköök gödülőköökkel egybeesnek áltlános fogt főbb jelleői: A tengelytáv: -ól -enő, A kpcsolósög α-ólα -e nő, A ostókö dés gödülőkö

Részletesebben

1. feladatsor: Vektorfüggvények deriválása (megoldás)

1. feladatsor: Vektorfüggvények deriválása (megoldás) Matematika A gyakorlat Energetika és Mechatronika BSc szakok 016/17 ősz 1. feladatsor: Vektorfüggvények deriválása megoldás) 1. Tekintsük azt az L : R R lineáris leképezést ami az 1 0) vektort az 1 0 )

Részletesebben

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0 Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Utak és környezetük tervezése

Utak és környezetük tervezése Dr. Fi István Utak és környezetük tervezése 3A előadás: Vonalvezetési elvek Vonalvezetési elvek Vonalvezetés az útvonalat alkotó egyenesek és ívek elrendezése. A vonalvezetés ismérve az ívesség (I) (lásd

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Biológiai molekulák számítógépes szimulációja Balog Erika

Biológiai molekulák számítógépes szimulációja Balog Erika Bológa molekulák számíógépes szmulácóa Balog Eka Semmelwes Egyeem, Bofzka és Sugábológa Inéze SZEKVENCIA ALA THR SER THR LYS LYS LEU HSD LYS GLU PRO ALA ILE LEU LYS ALA ILE ASP ASP THR TYR VAL LYS PRO

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13.

Kettős integrál Hármas integrál. Többes integrálok. Sáfár Orsolya május 13. 2015 május 13. Kétváltozós függvény kettősintegráljának definíciója Legyen f (x, y), R 2 R korlátos függvény egy T korlátos és mérhető területű tartományon. Vegyük a T tartomány egy felosztását T 1, T

Részletesebben

Káprázás -számítási eljárások BME - VIK

Káprázás -számítási eljárások BME - VIK Káprázás -számítási eljárások 2014.04.07. BME - VIK 1 Ismétlés: mi a káprázás? Hatása szerint: Rontó (disabilityglare, physiologische Blendung) Zavaró(discomfortglare, psychologischeblendung) Keletkezése

Részletesebben

A Riemann-integrál intervallumon I.

A Riemann-integrál intervallumon I. A Riemnn-integrál intervllumon I. A htározott integrál foglm és kiszámítás Boros Zoltán Debreceni Egyetem, TTK Mtemtiki Intézet, Anĺızis Tnszék Debrecen, 2017. március 6. Zárt intervllum felosztási A továbbikbn,

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető

Optika gyakorlat 2. Geometriai optika: planparalel lemez, prizma, hullámvezető Optika gyakorlat. Geometriai optika: planparalel lemez, prizma, hullámvezető. példa: Fényterjedés planparalel lemezen keresztül A plánparalel lemezen történő fényterjedés hatására a fénysugár újta távolsággal

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

2. gyakorlat: Z épület ferdeségmérésének mérése

2. gyakorlat: Z épület ferdeségmérésének mérése . gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban

Részletesebben

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA

ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA ANALÍZIS II. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Blogh Tmás 2013. jnuár 16. H hibát tlálsz, kérlek jelezd info@bloghtms.hu e-mil címen! Ez Mű Cretive Commons Nevezd meg! - Ne dd el! - Így

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Biológiai molekulák számítógépes szimulációja Balog Erika

Biológiai molekulák számítógépes szimulációja Balog Erika Bológa molekulák számíógépes szmulácóa Balog Eka Semmelwes Egyeem, Bofzka és Sugábológa Inéze SZEKVENCIA ALA THR SER THR LYS LYS LEU HSD LYS GLU PRO ALA ILE LEU LYS ALA ILE ASP ASP THR TYR VAL LYS PRO

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.

T obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19. Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor

Részletesebben

Csuklós mechanizmus tervezése és analízise

Csuklós mechanizmus tervezése és analízise Csuklós mechanizmus tervezése és analízise Burmeister Dániel 1. Feladatkitűzés Megtervezendő egy többláncú csuklós mechanizmus, melynek ABCD láncában található hajtórúd (2-es tag) mozgása során három előírt

Részletesebben

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál

Határozott integrál. Newton -Leibniz szabály. alkalmazások. improprius integrál Htározott integrál definíció folytonos függvények esetén definíció korlátos függvények esetén Newton -Leibniz szbály integrálási szbályok lklmzások improprius integrál Legyen z f függvény [, b]-n értelmezett

Részletesebben

Fizika I minimumkérdések:

Fizika I minimumkérdések: Fizika I minimumkérdések: 1. Elmozdulás: r 1, = r r 1. Sebesség: v = dr 3. Gyorsulás: a = dv 4. Sebesség a gyorsulás és kezdei sebesség ismereében: v ( 1 ) = 1 a () + v ( 0 0 ) 5. Helyvekor a sebesség

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok /0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbikbn külön, egymásól függelenül izsgáluk nyugó ölések elekomos eé és z időben állndó ám elekomos és mágneses eé Az elekomágneses é ponosbb modelljé kpjuk, h

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

Geometria tervezés alapjai

Geometria tervezés alapjai Geomeia evezés alapjai Geomeiai evezés alapjai Koodináa endsze + + k j i i, j, k az,, koodináa engelyek iányába muaó egységvekook Objekum anszfomációk Objekum elolása az elolás veko az új helyveko az elolás

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk

Részletesebben

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló

1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Fotovillamos és fotovillamos-termikus modulok energetikai modellezése

Fotovillamos és fotovillamos-termikus modulok energetikai modellezése Fotovillamos és fotovillamos-termikus modulok energetikai modellezése Háber István Ervin Nap Napja Gödöllő, 2016. 06. 12. Bevezetés A fotovillamos modulok hatásfoka jelentősen függ a működési hőmérséklettől.

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

GBN304G Alkalmazott kartográfia II. gyakorlat

GBN304G Alkalmazott kartográfia II. gyakorlat GBN304G Alkalmazott kartográfia II. gyakorlat TEREPI FELMÉRÉSI FELADATOK Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Földtudományi BSc (Geográfus, Földrajz

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Kiberfizikai rendszerek

Kiberfizikai rendszerek Kibefizikai endszeek A fizikai vonatkozásokól 2. foltatás 2016. novembe 29. 1 A befogadó könezet modellezése x( n 1) Ax( n) ( n) Cx( n) 1 (n) e(n) Koekció G xˆ ( n 1) Axˆ( n) Ge( n) ˆ ( n) Cxˆ( n) ˆ (

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

A kúpszeletekről - V.

A kúpszeletekről - V. A kúpszeleekről - V. A kúpszeleekről szóló munkánk III. részének 10. ábrájá kiegészíve láhajuk az 1. ábrán. Mos ez alapján dolgozva állíunk fel összefüggéseke a kúpszeleek Dandelin - gömbös / körös vizsgálaának

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

Valek Béla. Modern Fizika Kézikönyv I. Általános Relativitáselmélet

Valek Béla. Modern Fizika Kézikönyv I. Általános Relativitáselmélet Valek Béla Moden Fizika Kézikönyv I. Álalános Relaiviáselméle Valek Béla Moden Fizika Kézikönyv I. Álalános Relaiviáselméle A dokumenum bámely észé, vagy egészé ilos anyagi haszonszezés céljából sokszoosíani,

Részletesebben

. Vonatkoztatási rendszer z pálya

. Vonatkoztatási rendszer z pálya 1. Knemaka alapfogalmak. A pála, a sebesség és a gorsulás defnícója. Sebesség, és gorsulás lokáls koordnáá. Mogás leírása különböő koordnáa-rendserekben. A knemaka a mogás maemaka leírása, a ok felárása

Részletesebben

Mobilis robotok irányítása

Mobilis robotok irányítása Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

TRANSZPORT FOLYAMATOK MODELLEZÉSE

TRANSZPORT FOLYAMATOK MODELLEZÉSE TRANSZPORT FOLYAMATOK MODELLEZÉSE D. Iányi Miklósné pofesso emeius. előadás PTE PMMK Műszaki Infomaika Tanszék TFM/10//4/EA-II/1 Tömegpon kinemaikája mozgásegyenleek a diek kapcsola ha helyzeeko isme -helyzeeko

Részletesebben

Makromolekulák fizikája

Makromolekulák fizikája Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés

Részletesebben

Fa rudak forgatása II.

Fa rudak forgatása II. Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória . kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Matematika III előadás

Matematika III előadás Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 30 Egy

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Kifáradás kisfeladat: Feladatlap

Kifáradás kisfeladat: Feladatlap BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Jáű- és hjáseleek I. (KOJHA56) Kifáás kisfel: Fellp Ssz.:.. Név:... Nepun kó.:. ADATVÁLASZTÉK (A Gépeleek I. Felok c. jegyze.4 fejezeében lálhó) A lk B lk

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)

Részletesebben

Fizika feladatok - 2. gyakorlat

Fizika feladatok - 2. gyakorlat Fizika feladatok - 2. gyakorlat 2014. október 9. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában

Részletesebben

VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI

VALÓSÁGOS ÖRVÉNYEK IDEÁLIS ÖRVÉNYEK MEGMARADÁSI ELVEI D. Gausz Tamás VALÓSÁGOS ÖRVÉNYEK Az aeodinamikában igen gyakan találkozunk az övény fogalmával. Ez az övény a epülőgép köüli áamlásban kialakuló otációból (fogásból) számazik. Egy általában kis téész

Részletesebben

Kalkulus 2., Matematika BSc 1. Házi feladat

Kalkulus 2., Matematika BSc 1. Házi feladat . Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény.

Az f ( xy, ) függvény y változó szerinti primitív függvénye G( x, f xydy= Gxy + C. Kétváltozós függvény integrálszámítása. Primitívfüggvény. Tartalomjegyzék Kétváltozós függvény integrálszámítása... Primitívfüggvény... Kettősintegrál... A kettősintegrál téglalap tartományon... A kettősintegrál létezésének szükséges feltétele... 3 Illusztráció...

Részletesebben

1. A komplex számok ábrázolása

1. A komplex számok ábrázolása 1. komplex számok ábrázolása Vektorok és helyvektorok. Ismétlés sík vektorai irányított szakaszok, de két vektor egyenlő, ha párhuzamosak, egyenlő hosszúak és irányúak. Így minden vektor kezdőpontja az

Részletesebben

6. témakör. Egyetemi szintű gépészmérnöki szak II. félév. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék

6. témakör. Egyetemi szintű gépészmérnöki szak II. félév. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék Anyagmozgatás és gépei tantárgy 6. témakör Egyetemi szintű gépészmérnöki szak 006-07. II. félév MISKOLCI EGYEEM Anyagmozgatási és Logisztikai anszék . fólia Hajlékony vonóelemes szállítás Hajlékony vonóelem:

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

A kiszámított nyomatékok módszere (CTM - Computed Torque Method)

A kiszámított nyomatékok módszere (CTM - Computed Torque Method) A kiszámío nyomaékok módszee CM - Compued oue Mehod A obokaok D+G és ID iányíási módszeei csak a onól onig iányíás eseében gaanálják a nulla állandósul állapobeli hibá illeve csak az előí eenciapon közelében

Részletesebben