Geometria tervezés alapjai
|
|
- György Király
- 6 évvel ezelőtt
- Látták:
Átírás
1 Geomeia evezés alapjai Geomeiai evezés alapjai Koodináa endsze + + k j i i, j, k az,, koodináa engelyek iányába muaó egységvekook
2 Objekum anszfomációk Objekum elolása az elolás veko az új helyveko az elolás uán Geomeiai evezés alapjai Objekum anszfomációk oáció (elfogaás) oáció az engely köül α + α szöggel ( α ) ( α ) Geomeiai evezés alapjai
3 Geomeiai evezés alapjai 5 Objekum anszfomációk oáció (elfogaás) oáció az engely köül szöggel megjegyzés: fogásiány az óamuaó jáásával ellenkezıleg Geomeiai evezés alapjai 6 Objekum anszfomációk oáció (elfogaás) oáció az engely köül szöggel
4 Objekum anszfomációk oáció (elfogaás) oáció az engely köül szöggel Geomeiai evezés alapjai 7 Objekum anszfomációk Kombinál oáció Mivel egyszee csak egy koodináa engely köül lehe fogani, ezé öbb lépésben kell végehajani. Példa:. lépés oáció az engely köül szöggel. lépés - oáció az engely köül szöggel A soend nem mindegy! Geomeiai evezés alapjai 8
5 5 Geomeiai evezés alapjai 9 Objekum anszfomációk Nyújás i Geomeiai evezés alapjai Objekum anszfomációk Tüközés Koodináa síkoka való üközés [ ], síka üközés
6 6 Geomeiai evezés alapjai Objekum anszfomációk Tüközés Koodináa síkoka való üközés [ ], síka üközés Geomeiai evezés alapjai Objekum anszfomációk Tüközés [ ], síka üközés
7 7 Geomeiai evezés alapjai Objekum anszfomációk Tüközés Tüközés koodináa engelye engelye,, Geomeiai evezés alapjai Objekum anszfomációk Tüközés engelye,,
8 8 Geomeiai evezés alapjai 5 Objekum anszfomációk Tüközés engelye,, Geomeiai evezés alapjai 6 Objekum anszfomációk Tüközés Oigóa való üközés
9 9 Geomeiai evezés alapjai 7 Objekum anszfomációk Megfonolás Annak édekében, hogy az objekum anszfomációk azonos mőveleel legyenek leíhaók, és ez a mővele legyen egységesen a szozás, ezé az elolás kibıvíe helyveko segíségével alakísuk á, összeadásból szozássá. + T Geomeiai evezés alapjai 8 Objekum anszfomációk Ennek megfelelıen a engelyek köüli fogaás kibıvíe máiai (az eedei kiegészíve egy negyedik soal és oszloppal, melynek elemei -ák, kivéve a fıáló uolsó elemé, amely.
10 Geomeiai evezés alapjai 9 Objekum anszfomációk A nyújás máia az alábbiak szein alakul á kibıvíe máiá Geomeiai evezés alapjai Objekum anszfomációk A üközés máiai az alábbiak szein alakulnak á kibıvíe máiá
11 Geomeiai evezés alapjai Objekum anszfomációk A üközés máiai az alábbiak szein alakulnak á kibıvíe máiá,,,,,, Geomeiai evezés alapjai Objekum anszfomációk Példa. ogassuk el a P pono 9 -al, a P ponon ámenı, koodináaengellyel páhuzamos engely köül. Háom egymás köveı anszfomációval lehe megoldani a feladao.
12 Geomeiai evezés alapjai Objekum anszfomációk Példa.. lépés: oljuk el a fogásengely az engelybe. Az elolás veko: Az elolás kibıvíe máia: T Geomeiai evezés alapjai Objekum anszfomációk Példa.. lépés: fogassunk 9 -al az koodináa engely köül. A fogaás kibıvíe máia: mivel 9 és 9.
13 Geomeiai evezés alapjai 5 Objekum anszfomációk Példa.. lépés: oljuk vissza a fogásengely az eedei helyée. Az elolás veko: Az elolás kibıvíe máia: T Geomeiai evezés alapjai 6 Objekum anszfomációk Példa. Az elfogao objekum új helye: ( ) [ ] T T A soend köö, jobból bala! T T M T Az eedı anszfomáló mái: ( ) T T M
14 Geomeiai evezés alapjai 7 Objekum anszfomációk Példa. A P objekum kibıvíe helyvekoa A fogaás uán az objekum új kibıvíe helyvekoa M Tehá P Geomeiai evezés alapjai 8 Objekum anszfomációk Példa : Tüközzük meg a P koodináájú objekumo az síka. (A sík páhuzamos az [, ] síkkal)
15 Példa : Objekum anszfomációk Háom egymás köveı anszfomációval lehe megoldani a feladao.. lépés: oljuk el a síko az [, ] síkba. Az elolás veko: Az elolás kibıvíe máia: T Geomeiai evezés alapjai 9 Példa :. lépés: üközés A üközés kibıvíe máia:, Objekum anszfomációk Geomeiai evezés alapjai 5
16 6 Geomeiai evezés alapjai Objekum anszfomációk Példa :. lépés: oljuk vissza a síko az eedei helyée Az elolás veko: Az elolás kibıvíe máia: T Geomeiai evezés alapjai Objekum anszfomációk Példa : A megüközö objekum helye:, T T A soend köö, jobból bala! Az eedı anszfomáló mái:, T T M, T M
17 7 Geomeiai evezés alapjai Objekum anszfomációk Példa : Az objekum új helye: M 6 Tehá 6 P
[ ] Dr. Mikó Balázs Hervay Péter Tóth Georgina Nóra
. CAD RENDSZEREK GEOMETRIAI ALAPJAI D. Mkó Balázs Hevay Pée Tóh Geogna Nóa A számíógéppel segíe gépésze evezés soán egy vuáls modell hozunk lée. Ez a modell ö összeevııl áll, egyész a geomea modellıl,
A kiszámított nyomatékok módszere (CTM - Computed Torque Method)
A kiszámío nyomaékok módszee CM - Compued oue Mehod A obokaok D+G és ID iányíási módszeei csak a onól onig iányíás eseében gaanálják a nulla állandósul állapobeli hibá illeve csak az előí eenciapon közelében
Valek Béla. Modern Fizika Kézikönyv I. Általános Relativitáselmélet
Valek Béla Moden Fizika Kézikönyv I. Álalános Relaiviáselméle Valek Béla Moden Fizika Kézikönyv I. Álalános Relaiviáselméle A dokumenum bámely észé, vagy egészé ilos anyagi haszonszezés céljából sokszoosíani,
1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c
t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,
Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése
Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Tásulat Aany Dániel Matematikai Tanulóveseny 017/018-as tanév 1. foduló Haladók III. kategóia Megoldások és javítási útmutató 1. Anna matematika házi feladatáa áfolyt a tinta.
ELEKTROMECHANIKUS MŰSZEREK
ELEKTROECHANKUS ŰSZEREK VLLAOS ENNYSÉGEK ÉRÉSÉRE ALKALAS ECHANKUS SZERKEZETEK ÉRŐŰSZEREK Csopoosíás: Felépíésü szein éési elv szein -eleomechnis -eleonis -nlóg -digiális Ponosság lpján - üzemi( 0,5; 1;
Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű
Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á
Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú
ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú
ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö
Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő
IV x. 2,18 km magasan van a hôlégballon.
8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk
Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel
2. gyakorlat: Z épület ferdeségmérésének mérése
. gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban
Matematika A3 HÁZI FELADAT megoldások Vektoranalízis
Maemaika A HÁZI FELADAT megoldáok Vekoranalízi Nem mindenhol íram le a konkré megoldá. Ahol az jelenee volna, hogy félig én oldom meg a feladao a hallgaóág helye, o cak igen rövid megjegyzé alálnak A zh-ban
Szilárdsági vizsgálatok eredményei közötti összefüggések a Bátaapáti térségében mélyített fúrások kızetanyagán
Mérnökgeológia-Kızemehanika 2011 (Szerk: Török Á. & Vásárhelyi B.) 269-274. Szilárdsági vizsgálaok eredményei közöi összefüggések a Báaapái érségében mélyíe fúrások kızeanyagán Buoz Ildikó BME Épíıanyagok
A FAHASZNÁLAT TRAKTORELLÁTÁSÁNAK NÉHÁNY IDŐSZERŰ KÉRDÉSE
634.0.375.4 A FAHASZNÁLAT TRAKTORELLÁTÁSÁNAK NÉHÁNY IŐSZERŰ KÉRÉSE Ballá Gábor A fahasználai feladaok közül az anyagmozgaás, közelíés, kiszállíás ké fő erőgépípussal végzik, a speciális erdészei közelíő
Tájékoztató a portfólió értékelésérıl, illetve a portfólión elért hozam számításáról
Tájékozaó a pofóló éékeléséıl, lleve a pofólón elé hoza száíásáól Jelen ájékozaó elválaszhaalan észé képez az Ügyfél és az EQUILOR Befekeés Z. (ovábbakban EQUILOR) közö léejö pofólókezelés szezıdésnek.
5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR
5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbikbn külön, egymásól függelenül izsgáluk nyugó ölések elekomos eé és z időben állndó ám elekomos és mágneses eé Az elekomágneses é ponosbb modelljé kpjuk, h
Fizika 1i. 1.előadás. Fizika Tsz. 3 h előadás + 1 h gyakorlat
Fizik 1i 1.elődás Fizik Tsz. 3 h elődás 1 h gykol Mié éppen fizik? Fiziki kuások Alklmzások Számíógépes hálóz Inene (www. ) Tnziszo Nemlin. Egyenleek (ámlásn) GPS (omó, el. elm.) Félvezeő elekonik Számíógép
Fizika Előadás
Fizika 11 1. Előadás Fonos-e egy manage-nek fiziká anulnia????? Mié fonos egy manage-nek fiziká anulnia??? Az euo/usd keeszáfolyam göbéje. A legnagyobb őzsdei guuk sem udják megállapíani, melyik az öpeces,
ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó
É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó
É Á Á Ö Á
É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á
ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú
ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö
ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á
ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö
ü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
Ó Ó ó ö ó
É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó
ipari fémek USA 2015.07.22 16:30 Készletjelentés m hordó július USA 2015.07.27 14:30 Tartós cikkek rendelésállománya % június 0.5
www.kh.hu 215.7.16 Nyersanyagpiaci hírlevél piaci áekinés nyersanyag megnevezés akuális 2 héel ezelői kőolaj réz LME 3hó () 5565 5765 cink LME 3hó () 254 2 nikkel LME 3hó () 1162 1198 alumínium LME 3hó
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
ő ő Ó
ú ő ű ű ő ű ú ő ő ű ű ű ű ú ő ő Ó ú ú ú Ó ő ő ő ú ő ú ú ú ú ú ő ő ő ú ő ú ű ő ő ő ő ú ő ő ő ő ú ú ő ő ő ú Ö ő ú ű ő ű ő ű ő ú ő ő ű Á ő ő ő ő Á Ö Á Ö Ö Ü Ö Ö Ü Ö Ö Í Ö Ö ő Ö Ö Á Ö ő Ó Ó Á Á Ö Ö Á Ő Á Á
ű Ö ű Ú ű ű ű Á ű
ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű
ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü
ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű
ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É
Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű
Á Ó ű ű Á É ű ű ű ű Ú Ú
Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü
ű Ú ű ű É Ú ű ű
ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü
Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö
É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú
Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö
Ő Ó Ö Ó Ő Ü Í Ó Ö Ü Ő Á Ü Ó Ó Á Ü Ö Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö Ó Ó Á Ö Á Ó Ó Ü Í Ó Í Ü Ü Ó Ó Í Á Ö Á Ü Ö Í Ü Í Ó Ó Ó Ó Á Ó Ó Ü Ó Ö Ó Ó Ó Ó Ö Ö Ü Ó Ü Ü Ö Ó Ó Ü Ü Ó Ó Ó Í Ó Ü Ú Ö Ó Ó Ó Ü
Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö
Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű
Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö
ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö
ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő
Ö ü Ö Ö ő ü ű Ö Ó ő ü Ö ü Ö ü Ó ü ú ú ő ü ő ü ü Ö ő ő ü Ö ü Ö ü Ö ő ő ú Ö Ó Á ű Á ü Ö ú Ö ű ő ű Á ú Ó Í ű ű ő Ó ű ő ű ű ű ű ú ú ú ü Ö Ö ő ú ú ú ú ő ü ü Ó ő ú ú ú ü ú Ö Ö Ú ű ű ú Ö ű Ö ű ü ű ú ő ő ű ú
Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű
Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú
ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö
ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó
Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő
É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó
Gruber József, a hidrodinamikai szingularitások művelője
Gube József, a hidodinamikai szingulaitások művelője Czibee Tibo Személyes kapcsolatom Gube pofesszoal: Egyetemi tanulmányaimat a miskolci Nehézipai Műszaki Egyetemen végezvén nem hallgathattam egyetemi
á é é á ó á é ö Ű í É Á ó í á ü á ó
ö Ű Á ü ö ö ú Á ü ö ű ű ö ö ö ö ú ő Ó Á ö ü ö ö ő ő ú ü ő ö Ú Ó ő Ö Á Ö Ö Ö Ö ü Ö Ö Ó Ö Ö Í Ö Ö Í Ó Á Á Ö Ö Á Ö ü ő ö Ú Ó Á Ó Ó Ő Ö Ö Ö Ó Ó Ö Á Ö Ú Á Ú Ö Ö Á Ú Ö Á Á Á Í Á Ö ő ü ő ö ü ú ö ü ö ú ü ü ú ú
Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú
Ö ü Ő Ö Ü Ö ü Ó ü ü ü ü ü ü Á ü ü ü ü Á ü ü ü Ü ü ü ú Ö ü ü Ö Ö Ö Ö Ő Ó ü Á Á Ö Ö Ö Ő ü Í ú ű Í ú ú ü ú Ö Ö Ö Ő Ó ü ü Í ü ü ü ü Ö Ö ü ű Ö Ó Ö Ő ü ü Ö ü ú Ö ü ú ü ú ü Í Ü ű ű ü ű Í ú Ö Ö ü Ö ü ú ü ü Ü Á
ú ú ő ő ő ú ü ő ő ü ú ő ő
Ö Í ú ú ú ő ő ő ú ü ő ő ü ú ő ő ő ű Í Á ü ő ü ő ő ő ü ő ő ü ű ü ü ő ő ú ő Ü ú ő ő ő ű ő ő ű ő ő ő ő ő ő ő ő ú ű ő ő ü ű ü ő ő ü ú ú ő ő ü ő Í Ö ő ő ő Í ő ő ü ő ő ű Ü Á Á Á Á Á Á ű ő ő ő ü Í Ó ú Ó Á Á Á
Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó ó ó ú ó ö
ö ü ó Ö ü ó ü Ü ó ó ó ó ö ó ü ö ö ü ü ó Ó ü ó ü ó ó ó ó ö ó ü ó ó ó ó ó ó ö Á ó ű ú ó ö ü ű ű ó ó ö ü ó ö ó Ö ü ó ü ű ó ö ó ó ú ó ú ó ó ó ó ó ó ó Ö ö ó ó ó ó ö ó Ű ö ó ó ü Ó ű Í ó ó ó ó ó ó Ó ü ó ó ó ó
Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű
ű ű Ú Í ű ű Í Í Í Í Í Á Í ű Í Í Ó Ü ű Í Ü ű Ő Ó Í Í Í Ö Í Ü Ó Í Í ű ű Í ű ű Í Í Í Í Í ű ű ű Á ű Í Í ÍÍ Í Á ű Á Ó ű Ó Ü Ó Ó Ú Á Á Á Á Á Ó ű ű Ó Á ű ű Ö Ö Í Á Í Ú Ü Í Í Í Ú Á Á Ö Í Í Í Í ű Í Í ű Í Ö ű Í
í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü
ö ú í ü í Á í Ó Ü í ú Í í ö ö Á ü ö í í ö ö ö ü í ü í ű í ö ü í ü ö ö ö ö ö í í í í í ü í í í ö ú í ö í ü ú í í í í í ö ö í í í í í ű ü ű ö Á ű í ü ű ű ű í ű ö ú ö ú ú ü ö ö ű ü ö ú ö ű í í ű í ü ü ö ü
3D számítógépes geometria és alakzatrekonstrukció
3D számíógépes geomeia és alakzaekonsukció 3. Felülemeszések páhuzamosan elol és lekeekíő felüleek hp://cg.ii.bme.hu/poal/noe/3 hps://www.vik.bme.hu/kepzes/agak/viiima D. Váa Tamás D. Salvi Pée BME Villamosménöki
ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í ö í ű ö ö ú ö ú ö ő ó ő ö ő ő í ű ö ó ö í ó í í ő ó ü ő ő
ö ö í ú ö ö Á Á ö ö ű ö ö ö ö ö ó í ö ö ö ő ö ó ó ö ö ö í ú ö ó ó ö ó í Ű ö ő ó ö ő ö í ő ö ö ö ö ö ö ö ű í í ö ó Á ü ű ö ó ö ö ű ö ű ö ő ő ó ö ű ö ő í ő ó ő ó ö ó í í ó ő í í ő ö ő ő ó ő ö ű í ű í ö í
í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú
Á ö Ó ú ö ű í Ö Ő ö ű í Ó í ö Ó ü Ó ú í ö Ó ú ö ó ö í ö Ó í ö ó ó í Ó ö Ó ü Ó ö ó í í í í ü Ó ö í í í ó ó í í ü í ó ü ö ó ó ö ó ó ö í ö ö ó ó í ó í í ö ö ö í ú ö ó í ó ö ó ö ó í í ú ű ú ú ó ö Ó ú ö ó ú
ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű
ü ú É Á Á ü ű í ú ú ü ü ü ű ü ű ü ű ü ű ü í ü ű í í ü í í í í í ü í ű ü ű í ü í í ü ű í ü ű ü í ü í í í ü í ű ü í ú í ü ü ú í ü ü ű ü í í í ü ü ü í ü Ü ü ü ü ü ü í í í ü í í ü í í ü ű ü ú í ü í ü í ű í
Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó
Ö ü ü Ö ü ó ü ü í ó í ó í ü í ú ü ó ű ü ó ü ü ó ü ü Á í ó í ü í ú í Ö ó ó ó í ó Ö ü ó ü ü Ö ó í í ú ü ó ó ó ó ó í í ú í Ö ú í ó ó ó í ó ó ü ú ó í ü í ó ú ó ó í ü ü ű í ó ó ó ű ó í ó Ö ú Ö ü ó ü ó í Ö ú
ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó
ü Ö ü ü ó ó ó í ü ü ó ó ó ü ó ó ü ü Ö ü ü ó ó ó ü ó ó ó ó ó ó ü ó í ü ü ó ó ü ó ó ü ó ü ü í í ü ü í í ó ü ü Ö ü Ö ü ü ó ú ú ü ü Í ú ó í í ú ü Á Í ü Ö ü ü ó Ö ó ó Í ű í ü í ó í í í Ö ó í í í Ö ü ü í í Ö
Anyag- és gyártásismeret II - LBt /
Anyag- és gyárásismere II - B 00.0.. / 04.7. Gyáráservezés feladaa: Megervezni a konsrukır álal megerveze ermék gyárási folyamaá. A ehnológiai ervezés élja a gyáráshoz szükséges dokumenáiók elıállíása.
ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü
ü í ö ű ö ö í í í í ö ü Ö í ö ö í í ö í ö ö ú ö ö ü Ö ö ö ú ü ü ö ö ú ű ö ü ü ü ö ö ö ü Ö ö ö ö ü ö ö ö ö ö ö Ö ü ö ü ü ü ö ü í ü ö ü Ö ö í ű ö ö í í ö ö ü í ö ö ü í ö í ü ö ü í ö ű ö ü ö ö í ö ö ö ö ö
A Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é
Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü
ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü
Ő Ö ü ö Ö ü ü ü ü ü ü Í ö Í ö ű ö ú ö ö ü ö ü ö ű Í ü ö ö ö ü ö ü ú ü ö ö ö ö Í ö ö ö ö ö ú ö ü ö ö ö ü ű ú ö ú ü ö ű ö ü ö ű ö ú ö ö ú ö ü ö ü ö ü ü ö ü ö Ö ü ü ö ü ú ö ö ú Ó ö ü Ó ü ü ü ö Ö ü ö ö ú ű
Í ö Ű ö Á Í Ü ü Í ö
Ú Í Í Í ö Í ö Ű ö Á Í Ü ü Í ö Í ü ü ö Ü ö ö ö ö Ü Ü ö Ü Ü ö Ü Ü ö ú ü ö ü ö ű ö ű Ü Ü ö ö ö ü ü ö Ü ö ö ö ö ö ö ö ö ö Ü Ü Ü Ü ü ö ö ö ö ö ö ö ú Ü ö ű ü ö ú ű ü ö ö ö ü ü ü Ü ú ö ö ü ű ö ű ö ű ü Ü ü ü ö
https://www.vik.bme.hu/kepzes/targyak/viiima01
D sámíógépes geomeia és alakaekonsukció. Felülemesések páhuamosan elol és lekeekíő felüleek hp://cg.ii.bme.hu/poal/node/ hps://www.vik.bme.hu/kepes/agak/viiima D. Váad Tamás D. alvi Pée BME Villamosménöki
ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű
É Á É É Ó Á ű Á ű ú ú ű ű ú ű ű ú Á ú ű ú ű ú ű ú ű Á ű ú ű ű Ö Ú Á ű ű Á ű ű ú Í Ó Á ú Ű ű Ő Ö Á ú Ű Ü ú ú Á ú ű ű ú ű ű ű ű ű ú ű ű ű ű ű ű Á ú ű ű ú ú ű ű ű ű ű ú ű Á ű ű ű ű ű ű ú ű ú ű ú ű Ö ú ű Ö
Ancon feszítõrúd rendszer
Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a
1 ZH kérdések és válaszok
1. A hőérzee befolyásoló ényezők 1 ZH kérdések és válaok Hőérzee befolyásoló ényezők: - a levegő hőmérséklee, annak érbeli, időbeli elolása, válozása - a környező felüleek közepes sugárzási hőmérséklee
8. Optikai áramlás és követés
8. Opikai áramlás és köeés Kaó Zolán Képfeldolgozás és Számíógépes Grafika anszék SZT (hp://www.inf.u-szeged.hu/~kao/eaching/) Mozgókép (ideo) = diszkré képsoroza Y T X 3 OPTIKAI ÁRAMLÁS 4 Opikai áramlás
Ezért A ortogonális transzformációval diagonalizálható, vagyis létezik olyan S ortogonális transzformáció,
Kadaiku alakok A ( ) B( ) : V függén az B bilineái függénhez aozó kadaiku alaknak neezzük Minden kadaiku alak megadhaó a köekező fomában: T A ahol A zimmeiku mái é a kadaiku alak Miel A zimmeiku ezé a
A Lorentz transzformáció néhány következménye
A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre
Bor Pál Fizikaverseny. 2015/2016-os tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor ál Fizikaverseny 2015/201-os anév DÖNTŐ 201. április 1. 8. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a ovábbi lapokon is fel kell írnod a neved! skola:... Felkészíő anár neve:...
Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü
É Á í É Á Á ü Ú ű í Í Í Ü ü ú ü Í ü ü ü ü Í ü Í í ü ü ü ü ü ü ü ü ü í Í Ó ü ü í ü ü ü í Í í É í í Í Í ü ü ü í Í ü Í Ó Í Ó ü ü ü Í ü ü É ü ü ü ü ü É ü ü Í ü ü ü Í Ó Í Ó í Á í É ü í Í ü í Í í í ü ü É ü ü
ü ő ü ü ő ő Á ü Ö ő ő ő ő ő ü ő ú ő ü ü ő ü ő ő ü ü ő ú ú ü ő ü ü ő ő ő ú ő ő ú ő ő ú ő ő ő ő ő ő ő ű ő ő ő
Á Á ü ő ő ő ő ú ő ő ú ő ú ő ő ő ő ő ő ő ú ő ő ő ő ő ő ő ő ő ő ú ő ő ü ő ü ü ő ő Á ü Ö ő ő ő ő ő ü ő ú ő ü ü ő ü ő ő ü ü ő ú ú ü ő ü ü ő ő ő ú ő ő ú ő ő ú ő ő ő ő ő ő ő ű ő ő ő ő ő ő ő ő ő ő ű ő ő ő ő ő
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö
Ü É ű ü ü ö Í ü ö ö ü ű Í Í ü ű ö Ö ö ö ö Í ü ü É ö É É ö ö ö ü ö ö Á ű ö ű ű ű Á Í ö ö Ó ö ü ü ü Í ü ö ö ö ö ö ö ö ü Í Í ű ö ö ö ü ü ö ü ö ö ö ü ö ö ö ö ü ü ű ü ö ö ö ü ö ü ű ö ü ö ö ű Í ü ü ű Í ö ü ö
É Ö Á Í Á Ó Ö ü
Ö ű Ö ő ü ő ő ő ű Ö Ö ü Á Á É Ö Á Í Á Ó Ö ü Ö ű ű Ö ű ű ú ű ű ú ú ő ő ü ű ű É Ö ú ű ő ű ű ú ő ü Ö ú ú ő ő ú ű ü ő ü ű ú ú ű Ü ő ő Ó ü É Ó Ö Ö ú ü ü ü ü Ű ú Ö Á ü É Ó ű Á Ö Á ű ü ú Ö ű ű ű ü ő ő ő Á ő ő
ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü
ő É ő ő ő ő É Ü Ö Ö Ö Í Ö Ö Ö ő Ó Ó Ö Ö Á É É É ő Á É Á Á Ú Á Ú Ö Ö Á Ú Ö Á ű Á ú ő ő ü ü Ó ő ő ő ő ú É ü ú ú ű ú ű ő ő ő ő Á Á ü ő É É É É É É Á Ú Á Á ő ő ő ő ő É Á Á Á ő ő ő Á ü ő ő ü ő ő ő ő Á ü ú ú
í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö ö ú ő ő ú í ő í ő ö ö í ő ü ü í ő ö ü ü ú í í ü ő í ü Í í í í ö ő ö ü ő í ő ő ü ű ő ő í ő í í ő ő
ö Ö ő ü ü ő Á ü ö ö ő ő ű ő ü ő Ö ö ő í ő ö í ö ö ő ő ö í ú Á Á Á í Á í ü Á ő í í ő Á í ő ő ú ő ö ö ő Í í ő ő í í ö í ő Ó ő ő í ö ő ő ü ö ö ő ö í ö ő í ü í ü ő ő ü Í ő ő ő ú í ő ő ö ö ö ű ü í ő ő í ú ö