Vegyipari és áramlástechnikai gépek. 4. előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vegyipari és áramlástechnikai gépek. 4. előadás"

Átírás

1 Vegyipri és ármlásechniki gépek. 4. elődás Készíee: dr. Várdi Sándor Budpesi Műszki és Gzdságudományi Egyeem Gépészmérnöki Kr Hidrodinmiki Rendszerek Tnszék, Budpes, Műegyeem rkp. 3. D ép Tel: F: hp://

2 Vegyipri- és ármlásechniki gépek. 4. elődás Mekkor résármlás, mekkor kpcs.-bn lévő fogk közé zár folydék? A főpon fele kpcsolódó fogpár eseén hol A főpon l kpcsolódó fogpárnál ( ) + + i r R i r R B q pill i ( ) + + i y r R i r R B q y pill

3 Vegyipri- és ármlásechniki gépek. 4. elődás

4 A résármlás számíás A kpcsolóvonl főponól blr eső szksz k F [ z ( z ) sin α zsin ]m α A kpcsolóvonl főponól jobbr eső szksz F k n [ z sin α + 4( z + ) z sin α ]m Vegyipri- és ármlásechniki gépek. 4. elődás

5 A résármlás számíás Vegyipri- és ármlásechniki gépek. 4. elődás

6 Vegyipri- és ármlásechniki gépek. 4. elődás q q q q q pill y pill R y pill R pill R pill ( ) i y B i y i B q R pill ( ) ( ) ( )( ) y B y B y B ( ) y B q R pill +

7 Vegyipri- és ármlásechniki gépek. 4. elődás Mivel h ezzel y + y ( ) [ ] [ ] [ ] B B B q R pill q q R pill R pill m m K k k n ( ) m + + K B K B q R pill

8 H vgy 0 Vezessük be kövekező válozó: ezzel z z m R ( ) B K K 0 0 q pill m 0 K q R pill + B [ ] + K B 0 Vegyipri- és ármlásechniki gépek. 4. elődás

9 o függvényében m.-ról csökken nullár Vegyipri- és ármlásechniki gépek. 4. elődás

10 H ( ) q R f pill 0 n 0 k n 0 k k k Mivel ( K ) < ezér folydékszállíás szkszos 0 K k k n K K kk Vegyipri- és ármlásechniki gépek. 4. elődás n ( ) 0

11 K ( ) pl. min.4 eseén.4 < 0. < Vegyipri- és ármlásechniki gépek. 4. elődás

12 Mekkor érfogo jelen besrffozo rész? idő l esz meg kpcsolóvonlon kpcsolódó fogpár 0 u cos β v r r r r v kpcs v kpcs v r r áll. Tehá kpcs. pon kpcs. vonlon v kpcs áll. sebességgel hld r r Vegyipri- és ármlásechniki gépek. 4. elődás

13 Vegyipri- és ármlásechniki gépek. 4. elődás másrész miből és mivel A besrffozo érfog vkpcs / 0 ( ) r K r v kpcs 0 0 r r r ( ) ( ) ( ) 3 m 4 K r B r K K B q V R pill

14 Felhsználv ovábbá, hogy r cosα rπ π r cosα r zr z Végeredménykén dódik, hogy V B π B π K 4 z z ( ) K ( ) Vegyipri- és ármlásechniki gépek. 4. elődás

15 Péld. Fogskerék-szivyú résármlás B 0 mm kerékszélesség n 576 /min fordulszám (p5 póluspár) z 4 fogszám m/π 3.75 mm modul (szbványos mére).78 mm oszás α 0 fok kpcsolóvonl szöge rzm/ 43.75/ 45 mm z oszókör sugr Rr+m mm fejkör sugr cosα mπcosα.07 mm lposzás r rcosα 45cos0 4.9 mm z lpkör sugr Vegyipri- és ármlásechniki gépek. 4. elődás

16 Cosinuséel felhsználásávl Vegyipri- és ármlásechniki gépek. 4. elődás

17 ( ) ( ) ( ) ( ) r m + cos + α cos + o k F r k F r 90 ( o ) + α sinα 90 ( ) F + ( F ) sinα + rm + r r m k r + zm zm + k m ( ) ( ) F F sinα m 0 k ( ) ( ) F + zmsinα F ( z + ) 0 k k m k Vegyipri- és ármlásechniki gépek. 4. elődás

18 A kpcsolóvonl félhosszúság másodfokú egyenle megoldáskén számíhó ( F ) k zmsinα + z m sin α + 4m ( z + ) zm m sinα + z sin α + 4 z m [ z sin α + 4( z + ) sinα ] z ( + ).75 [ ] 4 sin 0 + 4( 4 + ) 4sin mm 3 Vegyipri- és ármlásechniki gépek. 4. elődás

19 Ezzel kpcsolószám éréke K kk n ( F ) ( F ) k cosα k mπ cosα π cos 0.60 A fogüregből kiármló érfog V B π z π 3 3 ( K ) (.60 ) 9.07mm cm A rés-érfogárm pedig q o zvn cm 3 min Vegyipri- és ármlásechniki gépek. 4. elődás

20 Fogskerék-szivyú jelleggörbe A fogskerék-szivyú folydékszállíás veszeségmenes fordulszámválozássl szbályozhó. H ez nem leheséges, kkor megkerülő-vezeékes szbályozás lklmznk. A megkerülő-vezeékbe épíe szelep kézzel állíhó, de vezérelheő nyomóoldli nyomásról vgy egy külön szbályzó berendezésről. Vegyipri- és ármlásechniki gépek. 4. elődás

21 Fogskerék-szivyú volumerikus hásfok Volumerikus hásfok Amikor szívó- és nyomóér közö nincs nyomáskülönbség, kkor definíció szerini - η v és nyomáskülönbség növekedésével z η v ( p) fokozosn csökkenő prbol jellegű görbe. ηv [-],0 0,8 0,6 0,4 0, 0,0 náll p [br] Vegyipri- és ármlásechniki gépek. 4. elődás

22 Fogskerék-szivyú volumerikus hásfok Érdemes megnézni, hogy vlmely rögzíe p éréknél volumerikus hásfok fordulszám függvényében hogyn válozik. Az ábr szerin fordulszám növekedésével résveszeség fjlgosn csökken, miből nyilván rr is kövekezeheünk, hogy gép fordulszámánk csökkenésével z összhásfok is romlik. ηv [-],0 0,8 0,6 0,4 0, 0,0 Volumerikus hásfok páll n [/min] Vegyipri- és ármlásechniki gépek. 4. elődás

23 Fogskerék-szivyú összhásfok Az összhásfoko fogskerekek kerülei sebességének függvényében vizsgálv z láljuk, hogy minden nyomásérékhez egy opimális kerülei sebesség rozik. Ezek görbék rr ulnk, hogy kisnyomású szivyúknál nem érdemes ngy kerülei sebességeke hsználni, hnem inkább ngyobb modulusú fogskerekeke kell hsználni. ηö [-] 0,8 0,6 0,4 0, 0 Összhásfok v k [m/s] Dp5br 0 5 Vegyipri- és ármlásechniki gépek. 4. elődás

24 P ö q k Fogskerék-moor jelleggörbe p P h Pöη ö q V geom n k Ph M M πn Pöη q k pη ö V geom ö n pη p M η áll ö. ö p V π geomη ö M Vegyipri- és ármlásechniki gépek. 4. elődás

25 Belső fogzású fogskerék-szivyú Előnye: szívó- és nyomóüregek kiölése hosszbb úon örénik, min külső fogzású szivyúnál, ezér csendesebb, kisebb zjszinű gép. Kisebb méreben készíheő. Hárány: nehezebb megmunkálás, kölségesebb gyárás Vegyipri- és ármlásechniki gépek. 4. elődás

26 Csúszólpáos szivyú Kedvező zjszin Rossz η v rövid lpáok mi Vegyipri- és ármlásechniki gépek. 4. elődás

27 A lpáok kilkíás Vegyipri- és ármlásechniki gépek. 4. elődás

28 Csvrszivyú Vegyipri- és ármlásechniki gépek. 4. elődás

29 Csvrszivyú jellemzői p m 50 ~ 00 br q m 0 ~ 30 dm 3 /min A gép egy ömíőorsóvl is ud dolgozni. A ké ömíőorsó zér kell, hogy η v jobb legyen, vlmin hjó orsó ne legyen rdiális erővel erhelve. A ömíő orsó lehe műnyg, vgy önövs is Vegyipri- és ármlásechniki gépek. 4. elődás

30 A csvrszivyú orsóink szelvényei Vegyipri- és ármlásechniki gépek. 4. elődás

31 Ebben z eseben hjóorsó profilj nyújo ill. csúcsos epiciklois. Ez z XY egyenes drb különböző helyzeeinek burkoló görbéje. Bizonyíhó, hogy ez csúcsos epiciklois egy d/ ámérőjű legördülő kör kerülei ponj is leírj, miközben z legördül d körön. Vegyipri- és ármlásechniki gépek. 4. elődás

32 Szokásos geomeri: d/d3/5 ; ezzel d d-dd/5 hd meneemelkedés kisebb ellennyomásnál hd meneemelkedés ngyobb ellennyomásnál Vegyipri- és ármlásechniki gépek. 4. elődás

33 Folydékkl ölö szelvények érfogárm számíásához q k η q η v e v Ahn Vegyipri- és ármlásechniki gépek. 4. elődás

34 A csvrszivyú jelleggörbéje Vegyipri- és ármlásechniki gépek. 4. elődás

35 A ngy szállíómgsság mi közelíés elfogdhó, ezzel szivyú hsznos eljesíménye P q ρgh η A szivyú engelyén nyomék h k p H ρ g v Ahn p M π η h η m Ah p Vegyipri- és ármlásechniki gépek. 4. elődás

A hajtás nyomatékigénye. Vegyipari- és áramlástechnikai gépek. 3. előadás

A hajtás nyomatékigénye. Vegyipari- és áramlástechnikai gépek. 3. előadás Vegyipari és áramlástechnikai gépek. 3. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem

Részletesebben

Mérnöki alapok 11. előadás

Mérnöki alapok 11. előadás Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

ismerd meg! A digitális fényképezgép VII. rész

ismerd meg! A digitális fényképezgép VII. rész ismerd meg! A digiális ényképezgép VII. rész 3.5.3. Mélységélesség A képérzékel síkjábn kelekez kép szigorún véve cskis beállío ávolságr ekv árgyknál éles. Az ennél közelebb és ávolbb lev árgyk képe z

Részletesebben

Mérnöki alapok 10. előadás

Mérnöki alapok 10. előadás Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

II. A számtani és mértani közép közötti összefüggés

II. A számtani és mértani közép közötti összefüggés 4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!

Részletesebben

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Tehetetlenségi nyomatékok

Tehetetlenségi nyomatékok Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk

Részletesebben

M4 autópálya Törökszentmiklós Kelet Püspökladány közötti szakasz. KÖRNYEZETI HATÁSTANULMÁNY Hánypótlási dokumentáció MELLÉKLETEK

M4 autópálya Törökszentmiklós Kelet Püspökladány közötti szakasz. KÖRNYEZETI HATÁSTANULMÁNY Hánypótlási dokumentáció MELLÉKLETEK M uópály Törökszenmiklós Kele Püspökldány közöi szksz Készíee: KÖRNYEZETI HATÁSTANULMÁNY Hánypólási dokumenáció MELLÉKLETEK Megízó: Budpes - 5- TARTALOMJEGYZÉK I. Az. pon eljesíéshez csol dokumenumok módosío

Részletesebben

A digitális multiméterek

A digitális multiméterek A digiális muliméere A digiális muliméere - z nlóg muliméerehez hsonlón - egyen- és válozó feszülség, egyen- és válozó árm, vlmin ohmos-ellenállás mérésére llms. Szolgálásu zonbn - digiális jelfeldolgozás

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Mérnöki alapok 4. előadás

Mérnöki alapok 4. előadás Mérnöki alapok 4. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Mérnöki alapok 10. előadás

Mérnöki alapok 10. előadás Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

Anyag- és gyártásismeret II - LBt /

Anyag- és gyártásismeret II - LBt / Anyag- és gyárásismere II - B 00.0.. / 04.7. Gyáráservezés feladaa: Megervezni a konsrukır álal megerveze ermék gyárási folyamaá. A ehnológiai ervezés élja a gyáráshoz szükséges dokumenáiók elıállíása.

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória . kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

CRT

CRT soroz Egyoldlon szívó, direkmeghjású cenrifugális veniláorok, korrozióálló céllemezől készülnek, poliészer fedőfeséssel, cenrifugális hárhjló lpáozású, dinmikusn kiegyensúlyozo járókerék, háromfázisú moor,

Részletesebben

Törésmechanika. Statikus törésmechanikai vizsgálatok

Törésmechanika. Statikus törésmechanikai vizsgálatok Törésmechnik (Gykorlti segédlet) A C törési szívósság meghtározás Sttikus törésmechniki vizsgáltok A vizsgáltokt áltlábn z 1. és. ábrán láthtó úgynevezett háromontos hjlító (TPB) illetve CT róbtesteken

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

CIKLOISOK GÖRBE A KÁVÉSCSÉSZÉBEN. Gabika és a Slepp július 25. Miskolci Herman Ottó Gimnázium

CIKLOISOK GÖRBE A KÁVÉSCSÉSZÉBEN. Gabika és a Slepp július 25. Miskolci Herman Ottó Gimnázium CIKLOISOK GÖRBE A KÁVÉSCSÉSZÉBEN Gabika és a Slepp 2016. július 25. Miskolci Herman Ottó Gimnázium Tartalomjegyzék Kausztikus görbék Ruletták, Cikloisok Egy kis tudománytörténet A cikloisok alapvető csoportosításai

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről

Egyházashollós Önkormányzata Képviselőtestületének 9/ 2004. (IX.17) ÖR számú rendelete a helyi hulladékgazdálkodási tervről Egyházshollós Önkormányzt Képviselőtestületének 9/ 24. (IX.7) ÖR számú rendelete helyi hulldékgzdálkodási tervről Egyházshollós Önkormányztánk Képviselőtestülete z önkormányzti törvény (99. évi LXV. tv.)

Részletesebben

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek

Részletesebben

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.

26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése. 26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre

Részletesebben

1. Monotonitas, konvexitas

1. Monotonitas, konvexitas 1. Monotonitas, konvexitas 1 Adjuk meg az alabbi fuggvenyek monotonitasi intervallumait! a) f (x) = x 2 (x 3) B I b) f (x) = x x 5 I c) f (x) = (x 2) p x I d) f (x) = e 6x 3 3x 2 I 2 A monotonitas vizsgalat

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Megint a szíjhajtásról

Megint a szíjhajtásról Megint szíjhjtásról Ezzel témávl már egy korábbi dolgoztunkbn is foglkoztunk ennek címe: Richrd - II. Most egy kicsit más lkú bár ugynrr vontkozó képleteket állítunk elő részben szkirodlom segítségével.

Részletesebben

2. gyakorlat: Z épület ferdeségmérésének mérése

2. gyakorlat: Z épület ferdeségmérésének mérése . gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban

Részletesebben

Matematika A3 HÁZI FELADAT megoldások Vektoranalízis

Matematika A3 HÁZI FELADAT megoldások Vektoranalízis Maemaika A HÁZI FELADAT megoldáok Vekoranalízi Nem mindenhol íram le a konkré megoldá. Ahol az jelenee volna, hogy félig én oldom meg a feladao a hallgaóág helye, o cak igen rövid megjegyzé alálnak A zh-ban

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás: Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével

Részletesebben

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

A VI. FEKETE MIHÁLY EMLÉKVERSENY

A VI. FEKETE MIHÁLY EMLÉKVERSENY A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

Óravázlatok: Matematika 2. Tartományintegrálok

Óravázlatok: Matematika 2. Tartományintegrálok Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.

Részletesebben

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2014/2015. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Oktatási Hivatal 04/0 tanévi Országos Középiskolai Tanulmányi Verseny első forduló MTEMTIK I KTEGÓRI (SZKKÖZÉPISKOL) Javítási-értékelési útmutató Határozza meg a tízes számrendszerbeli x = abba és y =

Részletesebben

Definíciók 3 rész. Fogalom Képlet, definíció Jelölések Jelmagyarázat, mértékegység A cellareakció szabadentalpiaváltozása és az elektromotoros erő

Definíciók 3 rész. Fogalom Képlet, definíció Jelölések Jelmagyarázat, mértékegység A cellareakció szabadentalpiaváltozása és az elektromotoros erő Defníó 3 rész oglom Kéle, defníó Jelölése Jelmgyráz, méréegység A ellreó szbdenlválozás és z eleromooros erő M z reó ölésszám () r reó szbdenl-válozás (J/mol) r -z özö sol dffúzós oenál elnygoló rdy-állndó

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai

Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Mtemtik középszint 061 ÉRETTSÉGI VIZSGA 007. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivlók Formi előírások:

Részletesebben

.hu shi ubi its m www.

.hu shi ubi its m www. www.mitsubishi.hu HÓDÍTSA MEG AZ UTAKAT! Urlj z utt tökéletesre csiszolt Outlnder volánj mögött. gilis kormányzásnk, közvetlen és pontos visszjelzéseknek, csendes utstérnek és z úthibákt gyengéden kiegyenlítő

Részletesebben

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül.

Kinematika: A mechanikának az a része, amely a testek mozgását vizsgálja a kiváltó okok (erők) tanulmányozása nélkül. 01.03.16. RADNAY László Tnársegéd Debreceni Egyetem Műszki Kr Építőmérnöki Tnszék E-mil: rdnylszlo@gmil.com Mobil: +36 0 416 59 14 Definíciók: Kinemtik: A mechnikánk z része, mely testek mozgását vizsgálj

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Kivitelek. Pneumatikus állítómû. Típus 3271

Kivitelek. Pneumatikus állítómû. Típus 3271 Pneumtikus állítómû Típus 71 Alklmzás Állítótgok tolómûve, különösen 40, 0, 80 típussoroztú állítószelepekre és 10 típusú mikroszelepre vlmint szbályozócsppntyúkr történõ ráépítésre. Membránfelületek 80

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

KÖZLEKEDÉSGÉPÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÖZLEKEDÉSGÉPÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Közlekedésgépész ismereek középszin 1811 ÉRETTSÉGI VIZSGA 018. okóber 19. KÖZLEKEDÉSGÉPÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Úmuaó a vizsgázók

Részletesebben

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik Szögek, szögpárok és fajtáik Szögfajták: Jelölés: Mindkét esetben: α + β = 180 Pótszögek: Olyan szögek, amelyeknek összege 90. Oldalak szerint csoportosítva A háromszögek Általános háromszög: Minden oldala

Részletesebben

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november

Integrálszámítás. a Matematika A1a-Analízis nevű tárgyhoz november Integrálszámítás a Matematika Aa-Analízis nevű tárgyhoz 009. november Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények........... 7.. A definíciók egyszerű következményei..................

Részletesebben

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11

1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11 ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával

Részletesebben

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek

Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Szinusz- és koszinusztétel

Szinusz- és koszinusztétel Szinusz- és koszinusztétel. Htározzuk meg z oldlk rányát, h α 0, β 60. α + β + γ 80 γ 80 α β 80 0 60 90 A szinusztételt felhsználv z oldlk rány: zz : : : sin β : sin 0 : sin 60 : sin 90 : : : : : :. Htározzuk

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika

Hullámtan és optika. Rezgések és hullámok; hangtan Rezgéstan Hullámtan Optika Geometriai optika Hullámoptika Rezgések és hullámok; hngtn Rezgéstn Hullámtn Optik Geometrii optik Hullámoptik Hullámtn és optik Ajánlott irodlom Budó Á.: Kísérleti fizik I, III. (Tnkönyvkidó, 99) Demény-Erostyák-Szbó-Trócsányi: Fizik

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása) Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei

Részletesebben

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel

3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel Válakozó (hibásan váló-) menniségeknek nevezzük azoka a jeleke, melek időbeli lefolásuk közben polariás (előjele) válanak, legalább egszer. A legalább eg nullámenei (polariásválás) kriériumnak megfelelnek

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

Fizika I minimumkérdések:

Fizika I minimumkérdések: Fizika I minimumkérdések: 1. Elmozdulás: r 1, = r r 1. Sebesség: v = dr 3. Gyorsulás: a = dv 4. Sebesség a gyorsulás és kezdei sebesség ismereében: v ( 1 ) = 1 a () + v ( 0 0 ) 5. Helyvekor a sebesség

Részletesebben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.

Részletesebben

( E) ( E) de. 4πε. Két példa: 1. példa: Rutherford-szórás. 2. példa: : Kemény gömbön történı szórás szögfüggése. szögfüggése (elméletileg(

( E) ( E) de. 4πε. Két példa: 1. példa: Rutherford-szórás. 2. példa: : Kemény gömbön történı szórás szögfüggése. szögfüggése (elméletileg( Mg- és neuronfizik 7. elıás Emlékezeı: ommgrekió: élárgy + + Jelölés: (, ) Rekióenergi: Q = (M + M M M ) Rekióseesség: R = φ N σ Fluxus: φ Célárgy omok R szám: N Mikroszkopikus háskereszmesze: σ = N φ

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

Gazdasági területfejlesztés

Gazdasági területfejlesztés Gzdsági erülefejleszés Szomhely 86-87.sz. főuk körforglmú csomóponján Némeh Szolcs +36 20/93-77-622 Adoságok: Szomhely Nyug-Mgyrország és z Alpoklj érség közponj, legjelenõse ngyváros. Egyenlő ávolságr

Részletesebben

VB-EC2012 program rövid szakmai ismertetése

VB-EC2012 program rövid szakmai ismertetése VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK. Prof.Dr. Zobory István

FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK. Prof.Dr. Zobory István FESZÍTŐMŰVES VASÚTI JÁRMŰALVÁZAK Prof.Dr. Zobory István Budpest 04 Trtlomegyzék. Bevezetés... 3. A vsúti árművek teherviselő részeiről... 3. Alvázs (nem önhordó) kocsik... 3.. Kéttengelyes kocsik... 4..

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

4. Az ábrán látható gépkocsikerék ágyazását kúpgörgıs csapágyazással

4. Az ábrán látható gépkocsikerék ágyazását kúpgörgıs csapágyazással 4. Az ábrán láthtó gépkocsikerék ágyzását kúpgörgıs cspágyzássl kell megoldni, 4.. Ábr Az lábbi dtok figyelembevételével: Kerékterhelés (nyuglmi állpotbn): Q = 19000 N. utókerék névleges átmérıje: D =

Részletesebben

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6

Gyakorló feladatok. 2. Matematikai indukcióval bizonyítsuk be, hogy n N : 5 2 4n n (n + 1) 2 n (n + 1) (2n + 1) 6 Gyakorló feladatok 1. Ismertesd a matematikai indukció logikai sémáját, magyarázzuk meg a bizonyítás lényegét. Bizonyítsuk be, hogy minden n természetes számra 1 + 3 + + (n 1) = n.. Matematikai indukcióval

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

Helyszükséglet összehasonlítás

Helyszükséglet összehasonlítás Hlyszükséglt összhsonlítás Hgyományos riálvntilátor A VAR rnszr összhsonlítás Hlios RADAX VAR Systm A VAR rnszr z lsony nyomás növkésű xiálvntilátorok és riál vntilátorok közötti szükségltkt légíti ki.

Részletesebben

Végeredmények, emelt szintû feladatok részletes megoldása

Végeredmények, emelt szintû feladatok részletes megoldása Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú

Részletesebben

Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem

Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W ,, G G v,, v, z, G G, αzf F ϕ, G G 1 ( α ) zf ϕ zf,,

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben