Vektoralgebra és vektoranalízis

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vektoralgebra és vektoranalízis"

Átírás

1 VI. Vektoalgeba és vektoanalís fka kémában gakan találkounk olan mennségekkel meleknek csak nagsága van len például a tömeg a dő és a hőméséklet. Eek skalá mennségek. Étékük a válastott koodntátaendsetől és annak oentácójától független. Uganakko több sámunka édekes mennség jelleméséhe a nagságon kívül eg án s tatok. Ilen például a elmodulás a sebesség a gosítás a eő a mpulus (lendület) és a mpulusnomaték (pedület) a elektomos lletve a mágneses té (a elektomágneses té). Nagsággal és ánnal jellemehetők a vekto mennségek (másképpen ánított sakas). skalá mennségektől töténő megkülönbötetés édekében a vektookat félkövé betűkkel jelöljük folóíásban pedg gakan níllal a mennség jele felett. Fogalmak (a) a vektook kénelmesen epeentálhatók eg ánított sakassal (níllal) melnek hossa a vekto nagságával egek meg ána pedg a vekto ánával a R n - dmenós vektotében (általában n (sík) lletve n 3 (3D Eukldes té) a sokásos válastás); vektook össeadása ekko a vektook egmás után heleését jelent (első vekto végéhe llestjük a másodk vekto elejét ) majd a háomsög sabál sent a össeg vekto a első vekto kndulás pontjától a másodk vekto végpontjág tat (b) a egségvektook a válastott koodnátaendse (pl. Descates-koodnátaendse) tengele ánába mutatnak kjelölk a potív és negatív ánokat hossuk egségn (aa nem csak otogonálsak de otonomáltak egmása e e δ ) (c) vektoalgeba sabála/aómá (V vektoté a b és c vektook m és n skaláok): V0. m a V ( a b) V V át a skaláal soása és a vektook össeadásáa néve V1. a b b a a vektook össeadása kommutatív V. a (b c) (a b) c a vektook össeadása assocatív V3. a 0 a a 0 a össeadás aonossága V4. 0a 0 V5. 1a a a 1 a soás aonossága V6. m(na) (mn)a n(ma) V7. m(a b) ma mb a sámmal soás dstbutíva V8. (m n)a ma na vektook össeadásáa néve V1-V3 sabálok a vektook össeadásáa a V4-V6 sabálok a skaláal töténő soása vonatkonak. V7 és V8 sabálok a két művelet kölcsönhatását defnálják. Eeket a sabálokat könnű megjegen met lénegében aonosak a sámoka megtanult művelet aómákkal. V0-V8 sabálokat kelégítő tetsőleges objektumok vektoteet képenek. De megjegendő hog a sabálok egelőe semmt nem mondanak két ánított sakas (vekto) soásáól. (d) amennben a adott V vektotébel v 1 v... v vektook a1 v 1 av... a v lneákombnácója csak a tváls a a... a 0 válastás mellett nulla akko a 1 m n mn 79

2 vektook lneásan függetlenek míg ellenkeő esetben a vektook lneásan össefüggőek (e) bás a adott koodnátaendset egételműen kfesítő egségvektook össességét básnak a báselemeket pedg básvektooknak neveük; másképpen eg V vektotében lévő I { v1 v...v n } véges n-elemű halmat a V básának neveünk amennben mnden V-bel vekto a I -bel vektook lnákombnácójával eg és csaks eg módon állítható elő (véges dmenójú teek esete de vannak végtelen dmenójú teek s) (f) amennben eg V vektoteet n básvekto fesít k úg a V dmenója n: dm V n (nlván V {} 0 dmenója 0) (g) a e e e és B e B e B e B vektook össeadásáa a gafkus össeadás technka mellett a alább algeba össefüggés vonatkok: ± B e ± B ) e ( ± B ) e ( ± B ) ( (h) vektook felíásáho többne elegendő a komponensek megadása és a egségvektook elhagása pl. ( ) a komponensek lehetnek valós és képetes sámok s (vag általában bámlen más objektumok) () vekto soása sámmal csak a vekto nagságát váltotatja meg ánát nem (j) a e e e vekto hossa R 3 -ban ( ) 1/ et gakan nomának nevek (k) vektook R 3 -ban egenlőség: B ekko B 1 3 össeadás: B C ekko B C 1 3 skaláal töténő soás: a ( a1 a a3) a valós ( a v a v amennben a < 0 a vekto oentácója s megváltok nem csupán a hossa) negatív vekto: ( 1) ( 1 3) null vekto: 0 (000) 80

3 Mntafeladatok 4 djuk össe a a (k 5 3 a) és b (e 15 3 b) 4-dmenós vektookat ( a b R ). k e T 10 Megoldás: ( a b). 0 a b Nomáljuk 1-e a v (1 3) vektot. v Megoldás: e e N N v Gakoló feladatok Találja meg at a vektot mel meőleges a U j k és a V j k vektooka. M a helet akko ha at s megköveteljük hog ennek a vektonak a hossa egségn legen? Bonítsa be a V1. sabált! Hán dmenós téel lehet epeentáln eg mól He atom fásteét? 81

4 V.1 Skalásoat Fogalmak (a) két vekto és B skalásoata eg sám amele fennáll hog B B cosθ ahol θ a két vekto által beát sög míg és B a vektook hossát jelöl (b) a skalásoás eedméne ksámítható mnt B B B B amennben komponensek adott koodnátaendseben smetek amből látsk hog a skalásoás kommutatív (c) a skalásoat egk leggakobb alkalmaása a munka eő ktéítés cos θ kfejeés kapcsán töténk amelet úg ntepetálunk hog a ktéítést megsoouk a eőnek a ktéítés ánába eső pojekcójával W F S (d) amennben B 0 és tudjuk hog 0 és B 0 úg cos θ 0 tehát θ ±90 ±70 stb. és a két vekto egmása meőleges (otogonáls) (e) a skalásoat valóban skalás mennség aa nem függ a koodnátaendse elfogatásától (nvaáns a fogatás műveletée) Gakoló feladatok Bonítsa be R -ben hog a skalásoat valóban nvaáns a Descates koodnátaendse elfogatásáa. B B B. Mutassa meg hog ( ) ( ) Bonítsa be a kosnus-tövént abból kndulva hog ( B C). (Nehé!) Két dpólusnomaték vekto μ 1 és μ kölcsönhatását mnd vektoáls μ1 μ 3( μ1 )( μ ) V 3 5 mnd skalás μ μ V 3 ( cosθ cosθ snθ snθ cos) alakban k lehet fejen ahol a két dpólvekto kedőpontját össekötő vekto θ 1 és θ a és a dpólvektook által beát sög míg φ a dpól síkok elfodulását leíó dédees sög. Mutassa meg hog a két kfejeés egmással ekvvalens. 8

5 V. Vektoáls (keest) soat Fogalmak (a) két vekto és B vektoáls soata eg olan C B eedménvekto mel meőleges a két vekto által kfesített síka úg hog a B és C vektook jobbsodású koodnátaendset alkossanak továbbá a eedménvekto hossáa ga hog C B snθ (b) a vektoáls soás antkommutatív B B (c) a B B snθ megfelel a köös kedőpontban felvett két vekto által kfesített paallelogamma teületének (d) a vektoáls soat vekto jellege a általunk megsokott geometa té háomdmenós temésetével van kapcsolatban (ld. geometa algeba pl. Clffod algeba általánosításat) (e) a C vektoáls soat ( C jbk k B j j k mnd különböő és a 13-nak cklkus pemutácója) elemenek memoálását segít a alább detemnáns alak: e e e C e e B B B B B B B Gakoló feladatok mennben adott a alább háom vekto P 3 e e e Q 6 e 4e e és R e e e találjon kettőt melek meőlegesek és kettőt melek páhuamosak vag ellentétes ánúak. Bonítsa be hog ( B) ( B) ( B ) ( B). Ellenőe hog a v ( 1 0) és u ( 3 1 0) vektook vektoáls soatával kapott w v u vekto ténleg meőleges u-a és v-e s. e B B 83

6 V.3 Hámas skalás és vektoáls soatok Fogalmak (a) háom vekto B és C hámas skalás soata a alább módon keül defnálása: ( B C) am eg skalát eedméne (nnen a elneveés); a áójelet el s lehet hagn (a gakolatban el s hagják) hsen ( B) C eg skalá és eg vekto vektoáls soatát jelentené am nncsen defnálva (b) können belátható a magas smmetája ennek a kfejeésnek hsen B C B C C B C B B C C B (c) at s édemes megjegen hog a skalás és a vektoáls soás soendje s B C B megcseélhető: ( ) C (d) e a kfejeés s legkönnebben eg detemnáns segítségével memoálható: B C B C (e) a hámas skalás soat geometa jelentése: a köös kedőpontban felvett háom vekto által defnált paaleleppedon téfogata (f) háom vekto B és C hámas vektoáls soata a alább módon keül defnálása: ( B C) vektot eedméne (nnen a elneveés) és a áójelet nem lehet elhagn mvel a vektoáls soás nem assocatív (g) fennáll hog ( B C) B( C) C( B) B C B C 84

7 V.4 Nabla (del) tt megadott defnícók a megsokott 3D Descates-tée vonatkonak a fka és fka-kéma alkalmaásoknak megfelelően. legtöbb fogalmat csak Descateskoodnáták esetében defnáljuk más koodnátaendseeke töténő (amúg sokso alkalmaott) általánosításuk túlmutat tágalásunkon. Fogalmak (a) nabla (del) vekto: : j k e e e dffeencáló vekto opeáto (mndkét tulajdonság fontos a vele töténő munkálkodásko) (b) gadens (gad ) a nabla vekto skalámeőe hat és vektomeőt eedméne (c) dvegenca (dv ) egseű ktejestése a gadensnek vekto függvéneke aa vektomeőe hat és skalámeőt eedméne (d) otácó (cul ) vektomeőe hat és a vektoáls soás eedméneként vektomeőt eedméne Legen a függvénnek háom váltoója és. Ekko a teljes dffeencála at íhatjuk hog d( ) ( d d d) ( ) [ ( d d d) ( d d) ] [ ( d d) ( d) ] [ ( d) ( ) ] d d d a at a fontos követketetést vonhatjuk le hog a teljes dffeencál eg skalásoat melnek egk tagja a d koodnáta vekto másk tagját pedg a függvén ánment deváltja alkotják. gadens geometa jelentésének megétéséhe képeük a skalásoatát a elmodulás d d jd kd vektoával. Ekko a követkeő önmagában s tanulságos állítást kapjuk: d d d d d. Most tekntsünk eg adott felület esetén két olan köel P és Q pontot meleke ( ) C ahol C konstans aa Q távolsága P-től d. Temésetesen mnthog a válastott felületől nem modulunk el íg d d 0. E at mutatja hog a gad gadensvekto meőleges a ( ) C sntfelülete. s meggondolható hog amennben két C 1 -gel lletve C -vel jellemehető felület köött mogunk úg a gad gadensvekto a legövdebb utat defnálja a két felület köött aa mamáls megváltoásának ánába mutat. E abból s látsk hog a függvén d d megváltoása a skalás a skalás soat tulajdonsága alapján akko a legnagobb amennben d. 85

8 Mntafeladatok potencál gadensét. V ( ) V ( ) V ( ) Megoldás: V ( ) j k és V() pl. -től a () kapcsolaton keestül függ. Mnthog Sámítsuk k a V ( ) V ( ) V ( ) dv ( ) d és ( ) 1/ ( ) 1/ stb. íg 1 dv ( ) dv ( ) dv ( ) V ( ) ( j k) ˆ d d ahol ˆ a potív ánba mutató adáls egségvektot jelöl. Gakoló feladatok Sámítsa k ( ) ( ) 3/ S esetén a gadenst a (1 3) pontban. Eg víet tatalmaó lombk köepébe njekcós tűvel eg csepp etanolt juttatunk. etanol koncentácójának kedet eloslása c( ) c0 ep( ). Fck I. tövéne alapján adja meg a kedet anagáamot a hel függvénében. 86

9 V.5 Dvegenca a opeáto Vektomeők dffeencálása egseű ktejestése a skalá mennségek dffeencálásával kapcsolatban elmondottaknak. Ha egsee fgelünk a nabla vekto művelet kapcsán annak mnd a dffeencáló mnd a vekto tulajdonságáa akko vlágos hog V V V V és et a skalámeőt a V vektofüggvén dvegencájának neveük. Mntafeladatok Sámítsuk k a koodnátavekto dvegencáját. Megoldás: j k ( j k) 3. Sámítsuk k a centáls eőté dvegencáját. Megoldás: df df ( f ( ) ) [ f ( ) ] [ f ( ) ] [ f ( ) ] 3 f ( ) d d 3 f ( ) df d df d. Gakoló feladatok 1 Mutassa meg hog amennben a centáls eőté alakja f ( ) n úg annak dvegencája n -e eltűnk (éus). Mutassa meg hog ( f V) ( f ) V f V am eg skaláfüggvén és eg vektofüggvén soataként kapott mennség dvegencájának ksámításáa solgáltat fomulát (a eedmén nagban emléketet a soatfüggvén dffeencálása kapcsán tanultaka). 87

10 V.6 Rotácó (cul) a opeáto Eg másk lehetőség a nabla vekto és a vektomeők kapcsolatában a hog a kettő vektoáls soatát ( keestsoatát ) képeük. Ekko a követkeő össefüggést állapíthatjuk meg a vektook vektoáls soása kapcsán tanultak alapján: ˆ V V ˆj V kˆ V et a vektomeőt a V vektomeő otácójának neveük. Mntafeladatok Sámítsuk k a centáls eőté otácóját. Megoldás: ( f ( ) ) f ( ) [ f ( ) ] ahog a első gakoló feladat mutatja. Können megmutatható hog 0 (mnden képendő veges devált éus). Koábból tudjuk hog f ( ) ˆ ( df / d) tehát df ( f ( ) ) ˆ 0 aa a centáls eőté otácója nulla. d Gakoló feladatok Mutassa meg (legegseűbb elősö a egk komponense megmutatn) hog ( f V ) f V ( f ) V am eg skalámeő és eg vektomeő soataként kapott mennség otácójának ksámításáa solgáltat jól alkalmaható fomulát (a eedmén analóg a dvegencánál megsmet eedménnel). 88

11 V.7 Nabla többsö alkalmaása gadens (skalából vekto) a dvegenca (vektoból skalá) és a otácó (vektoból vekto) fogalmának megsmeése után felmeülhet a kédés hog m töténk ha a kapott mennségeke smételten hattatjuk a nabla vekto opeátot. alább öt esetet különbötethetjük meg amennben skalámeő míg V vektomeő: (a) dv gad (b) ot gad (c) V gad dv V (d) V dv ot V V ot ot V. (e) ( ) Mnden eges esetben másodk deváltakat magukban foglaló kfejeéseket kapunk a műveletek eedméneként és mnden fellépő mennség seepel a fkában és a fka kémában különös tekntettel a elektomágnesség elméletée (lásd Mawellegenletek). Mndaonáltal a kfejeések nem egfomán fontosak íg jelen helen csak a első kettővel foglalkounk ésletesebben. Össefoglaló tábláat a nabla-t alkalmaó kfejeésekől ahol U és V skalámeők míg és B vektomeők: Kfejeés Ételmeés ( U V ) gad( U V ) U V gad U gadv ( B) dv( B) B dv dv B ( B) ot( B) B ot ot B ( U) ( U ) U ( ) ( U) ( U ) U ( ) ( B) B ( ) ( B) ( B) ( B ) B( ) ( ) B ( B) ( U ) U U U U ( U ) 0 (ot gad U 0) ( ) 0 (dv ot 0) ( ) ( ) 89

12 90 Mntafeladatok Sámítsuk k a dv gad kfejeést. Megoldás: k j k j és íg können megmutatható hog. Gakan előfodul hog a helett a jelölést alkalmauk. Sámítsuk k a ot gad kfejeést. Megoldás: k j. detemnáns kfejtéséből adódk hog 0 k j feltéve hog a pacáls dffeencálás soendje felcseélhető. E fennáll amennben a függvén másodk pacáls deváltja foltonosak. a at a általánosan événes eedmént kaptuk hog a gadens otácója aonosan nulla a pobléma fka köülménetől függetlenül. Gakoló feladatok Mutassa meg hog amennben a centáls potencál alakja n V ) ( úg 1) ( dv gad n n n V am eltűnk n 0 (a potencál konstans) és n 1 (Coulomb potencál) esetée (aa a Coulomb-potencál megoldása a 0 ) ( V ún. Laplaceegenletnek). Mutassa meg hog tetsőleges vektomeő otácójának dvegencája aonosan nulla.

V. Vektoranalízis. = vektorok összeadására a grafikus. összeadási technika helyett az alábbi algebrai összefüggés vonatkozik:

V. Vektoranalízis. = vektorok összeadására a grafikus. összeadási technika helyett az alábbi algebrai összefüggés vonatkozik: V. Vetoanalís fa émában gaan találoun olan mennségeel, melene csa nagsága van, len például a tömeg, a dő és a hőmésélet. Ee salá mennsége. Étéü a válastott oodntátaendsetől és anna oentácóától független.

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

Egzakt következtetés (poli-)fa Bayes-hálókban

Egzakt következtetés (poli-)fa Bayes-hálókban gakt követketetés pol-fa Baes-hálókban Outlne Tpes of nference B method: exact, stochastc B purpose: dagnostc sngle-step, sequental DSS, explanaton generaton Hardness of exact nference xact nference n

Részletesebben

A szilárdságtan 2D feladatainak az feladatok értelmezése

A szilárdságtan 2D feladatainak az feladatok értelmezése A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai

Részletesebben

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei

EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők

Részletesebben

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1

α v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1 Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató

Részletesebben

Gömb illesztés. Korszerű matematikai módszerek a geodéziában

Gömb illesztés. Korszerű matematikai módszerek a geodéziában Gömb llestés Koseű matematka módseek a geodéában 13.11.5. Gömb llestése 1. Hán pont sükséges a feladat megoldásáho?. Hogan lehet meghatáon a gömb heletét, sugaát? 3. Hogan llessük be a RANSAC eljáásba?

Részletesebben

σ = = (y', z' ) = EI (z') y'

σ = = (y', z' ) = EI (z') y' 178 5.4.. Váltoó kerestmetsetű rudak tsta hajlítása Enhén váltoó kerestmetsetű, tsta hajlításra génbevett rúdnál a eges pontok fesültség állapota - a váltoó kerestmetsetű rudak tsta nomásáho vag húásáho

Részletesebben

Projektív ábrázoló geometria, centrálaxonometria

Projektív ábrázoló geometria, centrálaxonometria Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.

Részletesebben

1. MATEMATIKAI ÖSSZEFOGLALÓ

1. MATEMATIKAI ÖSSZEFOGLALÓ 1. MTEMTIKI ÖSSZEFOGLLÓ fejeet néhány olyan matematiai össefüggést foglal össe, ao egat bionyítása nélül, amelyete a Fiia I. c. tágy tágyalása soán felhasnálása eülne. 1.1. Vetoo, művelete vetooon 1.1.1.

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Relációk. Vázlat. Példák direkt szorzatra

Relációk. Vázlat. Példák direkt szorzatra 8.. 7. elácók elácó matematka fogalma zükséges fogalom: drekt szorzat Halmazok Descartes drekt szorzata: Legenek D D D n adott doman halmazok. D D D n : = { d d d n d k D k k n } A drekt szorzat tehát

Részletesebben

Vázlat. Relációk. Példák direkt szorzatra

Vázlat. Relációk. Példák direkt szorzatra 7..9. Vázlat elácók a. elácó fogalma b. Tulajdonsága: refleív szmmetrkus/antszmmetrkus tranztív c. Ekvvalenca relácók rzleges/parcáls rrendez relácók felsmere d. elácók reprezentálása elácó matematka fogalma

Részletesebben

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév) STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A

Részletesebben

Matematikai összefoglaló

Matematikai összefoglaló Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru

Részletesebben

15. Többváltozós függvények differenciálszámítása

15. Többváltozós függvények differenciálszámítása 5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

2. Koordináta-transzformációk

2. Koordináta-transzformációk Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

BUDAPESTI MSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR. Dr. Gausz Tamás H- ÉS ÁRAMLÁSTAN II ÁRAMLÁSTAN (TERVEZETT JEGYZET!

BUDAPESTI MSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR. Dr. Gausz Tamás H- ÉS ÁRAMLÁSTAN II ÁRAMLÁSTAN (TERVEZETT JEGYZET! BUDAPESI MSZAKI ÉS GAZDASÁGUDOMÁNYI EGYEEM KÖZLEKEDÉSMÉRNÖKI KAR D. Gaus amás H- ÉS ÁRAMLÁSAN II ÁRAMLÁSAN (EREZE JEGYZE!) 003 BEEZEÉS E jeget a áamlástan alapismeeteivel és néhán, egsebb alkalmaással

Részletesebben

18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK

18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK 18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók

Részletesebben

A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.

A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait. 9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön

Részletesebben

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül

Részletesebben

Tartóprofilok Raktári program

Tartóprofilok Raktári program Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente

Részletesebben

Az összetett hajlítás képleteiről

Az összetett hajlítás képleteiről A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra

Részletesebben

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.

A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit. modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően

Részletesebben

Másodfokú függvények

Másodfokú függvények Másodfokú függvének Definíció: Azokat a valós számok halmazán értelmezett függvéneket, amelek hozzárendelési szabála f() = a + bc + c (a, b, c R, a ) alakú, másodfokú függvéneknek nevezzük. A másodfokú

Részletesebben

Merev test mozgása. A merev test kinematikájának alapjai

Merev test mozgása. A merev test kinematikájának alapjai TÓTH : Merev test (kbővített óraválat) Merev test mogása Eddg olyan dealált "testek" mogását vsgáltuk, amelyek a tömegpont modelljén alapultak E aal a előnnyel járt, hogy nem kellett foglalkon a test kterjedésével

Részletesebben

Mikro és makroökonómia BMEGT30A001 C1-es kurzus Jegyzet gyanánt 2018 ősz 3.ELŐADÁS

Mikro és makroökonómia BMEGT30A001 C1-es kurzus Jegyzet gyanánt 2018 ősz 3.ELŐADÁS Mkro és makroökonóma BMEGT30A001 C1-es kurzus Jegzet ganánt 2018 ősz Az tt közzé adott anag néhol részletesebb, néhol csak utal arra, amt órán vettünk. A számonkérés kzárólag az órán elhangzott anagból

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Atomfizika előadás 4. Elektromágneses sugárzás október 1.

Atomfizika előadás 4. Elektromágneses sugárzás október 1. Aomfka előadás 4. lekromágneses sugárás 4. okóber. Alapkísérleek Ampere-féle gerjesés örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada ndukcós örvéne elekromos ér örvénessége mágneses

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése

x = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás

Részletesebben

VII. FORGÁSI SPEKTROSZKÓPIA (MIKROHULLÁMÚ SPEKTROSZKÓPIA)

VII. FORGÁSI SPEKTROSZKÓPIA (MIKROHULLÁMÚ SPEKTROSZKÓPIA) V. FORGÁS SPEKTROSZKÓPA (MKROHULLÁMÚ SPEKTROSZKÓPA) 934-ben Cleeton és Wllams absopcót fgelt meg mkohullámú fekvencáknál a NH 3 esetén, e elentette a mkohullámú spektoskópa kedetét. Eg évted elteltével

Részletesebben

2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA

2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLASZOK EGYETEMI MÉRNÖKHALLGATÓK SZÁMÁRA 2.2. ELMÉLETI KÉRDÉSEK ÉS VÁLSZK EGYETEMI MÉRNÖKHLLGTÓK SZÁMÁR (1) Mi a mechanika tága? nagi endseek (testek) heletváltotatással jáó mogásainak és a eeket létehoó hatásoknak (e knek) a visgálata. heletváltoást

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.

Líneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük. Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m

Részletesebben

Fizika A2E, 1. feladatsor

Fizika A2E, 1. feladatsor Fiika AE, 1. feladatsor Vida Görg Jósef vidagorg@gmail.com 1. feladat: Legen a = i + j + 3k, b = i 3j + k és c = i + j k. a Mekkora a a, b és c vektorok hossa? b Milen söget ár be egmással a és b? c Mekkora

Részletesebben

Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév)

Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév) Műsaki Mechanika I. A legfontosabb statikai fogalmak a gépésmérnöki kar mérnök menedser hallgatói résére (2008/2009 ősi félév) Műsaki Mechanika I. Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL

Kozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális

Részletesebben

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai

10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai (C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti

Részletesebben

A folyamatműszerezés érzékelői

A folyamatműszerezés érzékelői R E P E A A folamatműsereés érékelő Energaátalakulások slárd testekben peo- és proelektromos átalakítók 1. Dr. Fock Károl A érékelők működésének alapat a energaátalakulások képek. A ckksoroat most kedődő

Részletesebben

Nemlineáris függvények illesztésének néhány kérdése

Nemlineáris függvények illesztésének néhány kérdése Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk

Részletesebben

NÉGYROTOROS PILÓTANÉLKÜLI HELIKOPTER FEDÉLZETI REPÜLÉSSZABÁLYZÓJÁNAK ELŐZETES TERVEZÉSE LQG MÓDSZERREL BEVEZETÉS

NÉGYROTOROS PILÓTANÉLKÜLI HELIKOPTER FEDÉLZETI REPÜLÉSSZABÁLYZÓJÁNAK ELŐZETES TERVEZÉSE LQG MÓDSZERREL BEVEZETÉS óc ntal NÉGYROOROS PILÓNÉLKÜLI HELIKOPER FEDÉLZEI REPÜLÉSSZÁLYZÓJÁNK ELŐZEES ERVEZÉSE LQG MÓDSZERREL EVEZEÉS tóbb dőben a négotoos elendeésű helkopte a sabáloástechnka és a mkoelektonka fejlődésének kösönhetően

Részletesebben

A végeselem programrendszer általános felépítése (ismétlés)

A végeselem programrendszer általános felépítése (ismétlés) SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kdolgozta: Szüle Veronka eg. ts.) IX. előadás A végeselem rogramrendszer általános feléítése (smétlés) A végeselem

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

3D-s számítógépes geometria és alakzatrekonstrukció

3D-s számítógépes geometria és alakzatrekonstrukció D-s sámíógépes geome és lkekonskcó. Göék és felüleek hp://cg..me.h/pol/node/ hps://www.k.me.h/kepes/gk/viiiav8 D. Vád Tmás Sl Pée BME Vllmosménök és Infomk K Iáníásechnk és Infomk Tnsék Tlom Ponok és ekook

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja

Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot

Részletesebben

. Vonatkoztatási rendszer z pálya

. Vonatkoztatási rendszer z pálya 1. Knemaka alapfogalmak. A pála, a sebesség és a gorsulás defnícója. Sebesség, és gorsulás lokáls koordnáá. Mogás leírása különböő koordnáa-rendserekben. A knemaka a mogás maemaka leírása, a ok felárása

Részletesebben

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n) ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

5. Hőtranszport. Hőátvitel

5. Hőtranszport. Hőátvitel asotfolamatok 5. Hőtasot. Hőátvtel Nago sok a, sőt laboatóum ste végbemeő folamat hőátvtellel töték. A hőátvtel külöböő köegek köt hőeega átadását jelet. A hőátvtel hajtóeeje a hőméséklet külöbség. A temodamka

Részletesebben

Inverz függvények Inverz függvények / 26

Inverz függvények Inverz függvények / 26 Inverz függvének 2015.10.14. Inverz függvének 2015.10.14. 1 / 26 Tartalom 1 Az inverz függvén fogalma 2 Szig. monoton függvének inverze 3 Az inverz függvén tulajdonságai 4 Elemi függvének inverzei 5 Összefoglalás

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

Mechanika. III. előadás március 11. Mechanika III. előadás március / 30

Mechanika. III. előadás március 11. Mechanika III. előadás március / 30 Mechanika III. előadás 2019. március 11. Mechanika III. előadás 2019. március 11. 1 / 30 7. Serkeetek statikája 7.2. Rácsos serkeet hidak, daruk, távveeték tartó oslopok, stb. 3 kn C 4 m 2 4 8 5 3 7 1

Részletesebben

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA

l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.

Részletesebben

7. Kétváltozós függvények

7. Kétváltozós függvények Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és

Részletesebben

4πε. Mozgó elektromos töltés elektromágneses tere

4πε. Mozgó elektromos töltés elektromágneses tere KÁLMÁN P-TÓTH A: Hullámok/5 63 53 (kibőítet óaálat) Mogó elektomos töltés elektomágneses tee A elektomágneses sugáás kibosátásánál a mogó töltések alapető seepet játsanak, eét most a enegia- és impulussűűsége

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,

Részletesebben

Az alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében

Az alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében DIMENZIÓK 35 Matematikai Közlemének III. kötet, 5 doi:.3/dim.5.5 Az alkalmazott matematika tantárg oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében Horváth-Szováti Erika NME EMK

Részletesebben

A ferde hajlítás alapképleteiről

A ferde hajlítás alapképleteiről ferde hajlítás alapképleteiről Beveetés régebbi silárdságtani sakirodalomban [ 1 ], [ ] más típusú leveetések, más alakú képletek voltak forgalomban a egenes tengelű rudak ferde hajlításával kapcsolatban,

Részletesebben

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) . Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

Ideje: 2009 december 8-án, Névsor szerint: 12:15-kor (A-K-ig) ill. 13:15-kor (L-Z-ig) az előadás helyen (Aud. Max)

Ideje: 2009 december 8-án, Névsor szerint: 12:15-kor (A-K-ig) ill. 13:15-kor (L-Z-ig) az előadás helyen (Aud. Max) Fka rásbel test megajánlott jegért (A3) Ideje: 009 december 8-án Névsor sernt: 1:15-kor (A-K-g) ll. 13:15-kor (-Z-g) a előadás elen (Aud. Ma) Néán leetséges rásbel vsgakérdés: 1. Pref jelentések. 10 atvána

Részletesebben

Feladatok Oktatási segédanyag

Feladatok Oktatási segédanyag VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit

Részletesebben

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra Aomfiika előadás 4. A elekromágneses hullámok 8. Sepember 9. 5vös 5km sepember 3. 7 óra Alapkísérleek Ampere-féle gerjesési örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada indukciós

Részletesebben

Többváltozós függvények Riemann integrálja

Többváltozós függvények Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Többváltozós üggvének Riemann integrálja Az integrál konstrukciója tetszőleges változószám esetén Deiníció: n dimenziós

Részletesebben

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok

Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot

Részletesebben

IV.2 Az elektrosztatika alaptörvényei felületi töltéseloszlás esetén

IV.2 Az elektrosztatika alaptörvényei felületi töltéseloszlás esetén IV Az elektosztatka alaptövénye felület töltéseloszlás esetén Az előző paagafusban láttuk, hogy a töltések a vezető felületén helyezkednek el, gyakolatlag kétdmenzós vagy más szóval felület töltéseloszlást

Részletesebben

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

= és a kínálati függvény pedig p = 60

= és a kínálati függvény pedig p = 60 GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q

Részletesebben

Mesterséges Intelligencia 1

Mesterséges Intelligencia 1 Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.

Részletesebben

Az EM tér energiája és impulzusa kovariáns alakban. P t

Az EM tér energiája és impulzusa kovariáns alakban. P t LDIN 4- A té enegá és mpls ováns lbn β ε δ β BBβ β μ (, β,,) μ B ( g) P t t ( ε ) S A negtív előelne töténelm o vnn S μ B g S ε B ε μ B ésesé nnsene elen tében P ε g t S t Cs eletomágneses teet ttlm 4-es

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

felületi divergencia V n (2) V n (1), térfogati töltéseloszlás esetében

felületi divergencia V n (2) V n (1), térfogati töltéseloszlás esetében IV Az elektosztatka alaptövénye felület töltéseloszlás esetén Az előző paagafusban láttuk, hogy a töltések a vezető felületén helyezkednek el, gyakolatlag kétdmenzós vagy más szóval felület töltéseloszlást

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok KÁLMÁN P.-TÓT.: ullámok/4 5 5..5. (kibőíe óraála) lekromágneses hullámok elekromágneses elenségek árgalásánál láuk, hog áloó mágneses erőér elekromos erőere (elekromágneses inukció), áloó elekromos erőér

Részletesebben

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.

8. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár. 8 MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgota: dr Nag Zoltán g adjunktus; Bojtár Grgl g Ts; Tarnai Gábor mérnöktanár) 8 Fsültségi állapot smlélttés Adott: Ismrt g silárd tst pontjában a fsültségi állapot

Részletesebben

Záró monitoring jelentés

Záró monitoring jelentés Záró monitoring jelentés (megfeleltetés és szinopszis) 13. számú fejlesztési t ÁROP-3.A.2-2013-2013-0017 projekthez Verziószám: 3.0 verzió Budapest, 2014. október 31. 1 Tartalom 1. Vezetői összefoglaló...

Részletesebben

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor Polariált fén, polariáció PÉCSI TUDOMÁNYGYTM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR Fluorescencia aniotrópia, FRT Megjelenés fotóáskor! Nitrai Miklós, 2015 február 10. Miért van ilen hatása? Polariáció fogalma A

Részletesebben

Fizikai kémia 2. A newtoni fizika alapfeltevései. A newtoni fizika alapfeltevései E teljes. (=T) + E helyzeti.

Fizikai kémia 2. A newtoni fizika alapfeltevései. A newtoni fizika alapfeltevései E teljes. (=T) + E helyzeti. 06.07.0. Fiikai kémia.. A kvantummechanika alajai Dr. Berkesi Ottó SZTE Fiikai Kémiai és Anagtudománi Tanséke 05 A newtoni fiika alafeltevései I. Minden test megtartja mogásállaotát amíg valamilen erő

Részletesebben