Fizikai kémia 2. A newtoni fizika alapfeltevései. A newtoni fizika alapfeltevései E teljes. (=T) + E helyzeti.
|
|
- Ernő Halász
- 7 évvel ezelőtt
- Látták:
Átírás
1 Fiikai kémia.. A kvantummechanika alajai Dr. Berkesi Ottó SZTE Fiikai Kémiai és Anagtudománi Tanséke 05 A newtoni fiika alafeltevései I. Minden test megtartja mogásállaotát amíg valamilen erő annak megváltotatására nem kénseríti. (tehetetlenség elve) II. A testre ható erő a test mogásmenniségének (lendület imulus) a idő serinti megváltoása III. Két test kölcsönhatásakor mindkét testre aonos nagságú de ellentétes értelmű erő hat. (hatás-ellenhatás elve) IV. Ha eg testre eg időben több erő hat akkor aok egüttes hatása a erők vektori eredőjének hatásával aonos. (sueroíció elve) E teljes = E mogási (=T) + E heleti (=V) A newtoni fiika alafeltevései Ha ismerjük a kiindulási állaotot és a test mogásának egenleteit amelek a hel q(t) és a lendület (t) időbeli váltoását adják meg (e a trajektória) akkor bármikor meg tudjuk adni a test állaotát a rendser állaota determinált Alkalmauk a fentieket a ferde hajítás éldáját! Kedeti araméterek: m=00000 kg v o =000 m/s α=4000 = 500 m és = 300 m
2 Ferde hajítás (t)= o + v o t (t)= m v o /m (t)= o + v o t g/ t (t)= m(v o gt) q(t) = ((t); (t)) A vektori eredő adja (t)-t /m A newtoni fiika alafeltevései A fiikai menniségek váltoásának nincs sem felső sem alsó határa a értékük foltonosan váltohat elvileg bármilen finomsággal ki tudjuk sámolni a trajektóriát. Biontalanság csak mérési hibából ered! A testek mellett létenek: erőterek (l. E H és gravitációs) jellemik - térerő hullámok jellemik: v T/ν/λ/σ és I o fén seciális hullám tista energia! Ellentmondó taastalatok A elemi résecskék noma éles törést mutat a Wilson-féle ködkamrában anélkül hog más résecskével való ütköésnek noma lenne! Nem iga a tehetetlenség törvéne?
3 A Comton - effektus Comton 93-ban kötött elektronok és röntgensugarak ütköésével mutatott rá a jelenség lénegére. A résecske a fén hatására térül el a fénnek van lendülete? A fén hullámhossa váltoik meg nem a intenitása nem e a energia jellemője? Fénelektromos jelenség Fén hatására a fémekből elektronok lének ki fotoelektromos effektus Klassikus fiikai ké: E/J 0 T/J Követkemének: E besug. = állandó Független! V kötési /nm A elektron energiáját a fénelnelés növeli! Bármel hullámhoss jó ha megfelelő a intenitása! T/J ν/h ν besug. = állandó I határ e. - L-B-törv.! I o /lu Ellentmondó taastalatok! Kísérleti taastalatok: E besug. = állandó T/J lineáris! Magaráat: Einstein (905) - Fiikai Nobel-díj 9 E/J 0 Φ T T ν határ ν/h V kötési T/J ν besug. = állandó Független! I o /lu /nm h Φ m v e e A elektron kilökése egetlen esemén követkeméne! A foton léteése energiája E=hv Állaotok kvantáltsága! 3
4 Feketetest sugárás Absolút feketetest modellje - belülről kormoott üreg. hc E h A testek megvilágítva melegsenek - melegítve világítanak! Absolút feketetest - amel minden frekvenciánál teljesen és egenletesen kées elnelni a sugárást. A kísérleti eredmének maimumgörbét adtak. A klassikus fiika csak a alacson energiájú oldalt kées leírni - UV katastrófa! Planck feltételeése - a oscillátorok nem tetsőleges hanem csak E=hv egés sámú többsörösét kéesek tárolni - kvantált állaotok- heles leírás! Harmonikus oscillátor: C v Testek hőkaacitása 3RT T Váll. E E(T) átlag 3D-re: kq mv Ekviartició tétele serint mol-ra: 3R RT RT E(T) átlag 3RT Dulong-Petit - sabál Ellentmondó taastalatok! 3R Magaráat: Einstein (905) - Planck feltételeését a harmonikus oscillátorok (E=nhv) kvantált állaotairól figelembe véve kata a alkalmas modellt. 4
5 Kvantált állaotok A atomok vonalas sínkée is bionítja hog a elektronok kvantált állaotban vannak! Résecskék hullámjellege Davisson-Germer kísérlet - elektronok sóródása nikkel kristálon (97) G.P. Thomson - elektronok és röntgen sugarak sóródása fémfólián (97) köös Nobel-díj 937 Al-fólia Röntgen - elektron dualitás - de Broglie h λ Újfajta biontalanság! A mérés ontossága a esköök és a módserek váltotatásával javítható illetve a mérés ismétlése és átlagolása a ontosság javításáho veet minden határon túl - klassikus fiika Heisenberg 97-ben jutott arra a követketetésre hog a hel és a lendület (imulus) koordináta egüttes soksori mérésének eredméneként kaott átlagok sórása nem javítható korlátlanul csak egmás rovására! ÚJ FIZIKA KIDOLGOZÁSA SZÜKSÉGES! 5
6 A résecske állaotának a leírása a hullámfüggvén A résecskék állaotát leíró függvének váltoói a három térdimenió () = τ és a idő bár mi een a kuruson csak időben állandósult aa stacionárius állaotokkal foglalkounk eért e utóbbival nem sámolunk. A hullámokban általában valamel fiikai menniség váltoása terjed térben és időben aa a amlitúdónak van valamilen mértékegsége. Mi a amlitúdója a résecskék állaotát leíró anaghullámoknak? A hullámfüggvének tulajdonságai Erre nincs válas! A hullámfüggvénnel kacsolatban Born fogalmata meg a ún. koenhágai vag más néven valósínűségi értelmeést: a hullámfüggvén eg adott térbeli onton kisámított értékének a négete megadja a résecske tartókodási valósínűségét a adott ont dτ kis körneetében: P( ) Ψ ( )Ψ( ) d A hullámfüggvének tulajdonságai P( ) Ψ Ψ dτ Ψ dτ A hullámfüggvén valós váltoójú (t) de értékkéslete lehet valós vag komle eért a négetét a komle konjugálttal kéett sorata adja meg. Mivel a nem lehet hog a résecske ne tartókodhasson a világegetem bármel ontján eért értelmeési tartomána ki kell hog kiterjedjen a - tőla+ -ig mindhárom tériránban. 6
7 A hullámfüggvének tulajdonságai P( ) Ψ Ψ dτ Ψ dτ Nilvánvaló hog a függvénnek foltonosnak kell lennie nem lehet sakadása sem mert akkor a sakadás tíusától függően kimarad eg térrés vag a tartókodás valósínűségének egértelműségével van gond. Ugane miatt a függvén nem lehet többértékű sem mert akkor uganaon hel kis körneetében többféle valósínűséggel tartókodhatna! A hullámfüggvének tulajdonságai Elvárás a is a hullámfüggvénnel semben hog a első deriváltja is foltonos legen aa ne legen benne törésont a eges sakasok belesimuljanak egmásba aa a második derivált is léteen! Eg véges térfogatban való tartókodás valósínűségét a hullámfüggvén négetének a megfelelő határok köötti integrálásával kajuk meg. P( V ) Ψ Ψ dτ V Ψ Ψ d d d P telj A hullámfüggvének tulajdonságai. Ψ Ψ dτ Ψ Ψ d d d V Ebből logikusan követkeik hog ha a integrálás a teljes térre történik akkor annak a eredménének egnek kell lennie mert a résecskének benne kell lennie a világegetemünkben! E aonban túl sigorú elvárás a függvénnel semben ha e iga akkor a a hullámfüggvén normált. 7
8 A hullámfüggvének tulajdonságai Ψ Ψ dτ N - Elegendő ha a függvén négetesen integrálható aa a teljes térre vett integrálja véges mert a íg kaott integrálérték négetgökének recirokával sorova kajuk a normált hullámfüggvént. Ψnorm. NΨ NΨ NΨ dτ N Ψ Ψ dτ N N - - A hullámfüggvének tulajdonságai A négetesen integrálhatóság aonban megköveteli hog a függvén értéke véges tartománon ne legen végtelen. Össefoglalva hullámfüggvénnek: a (- + ) intervallumon értelmeett valós váltoójú de majdnem mindenütt véges valós vag komle értékű foltonos foltonosan deriválható egértékű négetesen integrálható függvén kell lennie. A fiikai menniségek rereentációja - oerátorok Mivel a résecskék állaotát a nem fiikai menniségek (q) hanem hullámfüggvének írják le eért a fiikai menniségeket ún. oerátorok "helettesítik" - rereentálják a kvantummechanikában. Oerátor olan műveleti utasítás amelet eg függvénre alkalmava a abból eg másik függvént ho létre. A rereentált fiika menniség jelére a ^ (kala) jelet heleve jelöljük őket! f g Értsd! Omega oerátort alkalmava f -függvénre annak eredméne g-függvén. 8
9 Oerátorok A oerátorok lénege néhán egserű éldán kerestül können megérthető: Vegük a = függvént f ( ) és alkalmauk rá a -vel való sorás oerátorát. Eredménként a = függvént kajuk. f ( ) g( ) Erre a függvénre alkalmauk a + oerátort. g( ) Eredméne a =+ függvén. Oerátorok A kvantummechanikában ún. lineáris oerátorokat hasnálunk a fiikai menniségek rereentálására ami serint bármel f és g függvénre és c konstansra iga hog: Ω (f g) Ω c f Ω c f Ω Ω f g Oerátorok A kvantummechanikai oerátorok tulajdonságai: Ω Ω f Ω f Ω f Ω Ω f Ω Ω f Ω Ω Ω f Ω Ω f Ω f Ω Ω f Ω f Ω f oerátorok össege/különbsége oerátorok sorata: felcserélhető oerátorok nem felcserélhető o.-ok Egenlőségük bmel f-re! 9
10 Oerátorok A legfontosabb oerátorok köre amit a kurus során hasnálunk igen sűk eg résük egmásból klassikus fiikai ismeretek alaján sármatathatók: A helkoordináta oerátorok a adott koordinátával való sorás művelete. Lendület (imulus) oerátor - vektor oerátor ) ( ) ( ; ; r i i i i ; ; Oerátorok A mogási energia oerátora a imulusoerátorból megkaható: m (m v ) m m v T T m i m m ~ m m Oerátorok A otenciális energia oerátorait a klassikus fiikában alkalmaott otenciális energia kifejeésekkel való sorás adja! Δr e Z Z 4π V kq V aa V V o at. elektrost reg.
11 Oerátorok A legfontosabb oerátor a teljes energia oerátora a Hamilton-oerátor: H T V m Ĥ T V V Mérhető fiikai menniségek a sajátérték egenletek A fiikai menniségek eg-eg mérés során kaható értékeit a ún. sajátérték egenletek adják meg. Ennek feltétele hog a hullámfüggvén sajátfüggvéne legen a adott fiikai menniség oerátorának ami at jelenti hog a oerátor alkalmaásának eredméneként a eredeti függvénnek eg valós sámmal való soratát kajuk. A sorósám a ún. sajátérték és a fiikai menniség mérhető értékét adja meg - tehát valós sám. Ha a hullámfüggvén nem sajátfüggvéne eg oerátornak akkor a fiikai menniség értéke határoatlan! Sajátérték egenletek Néünk néhán éldát: a kettővel való sorás oerátorának bármel függvén sajátfüggvéne 3 3 de a sajátérték mindig. a + oerátornak visont nem sajátfüggvéne egik sem: de a =c függvének visont igen a sajátértékek: a (c+)/c konstansok.
12 Sajátérték egenletek A kurus folamán fontos éldák: e e sin cos a a e a e a a a k cosk k k sink k a első derivált oerátora - a lendület (imulus) oerátor a eoneciális-függvén különböő formáival a sinus függvénnel a kosinus függvénnel Sajátérték egenletek A második derivált oerátor: - kinetikus energia oerátor e e ae a a a e a e e a a 4a a a a e e a a e a e a a a e e a a a a (a 4a ) Sajátérték egenletek A második derivált oerátor: - kinetikus energia oerátor sin sin k k cosk cos cos k sink k k k k k
13 A Schrödinger-egenlet A teljes energia oerátor (Hamilton-oerátor) sajátérték egenlete: m T Ψ V Ψ E ĤΨ E kin. tot. Ψ Ψ E ot. Ψ Ψ V Ψ E tot. Ψ Nagsámú mérés átlaga a várható érték Eg fiikai menniség nagsámú mérésből sármaó átlagát a várható érték integrálból kahatjuk meg: ω Ösegés a térre Ψ Ω Ψdτ Ψ ωψdτ ωψ Ψdτ Ψ Ω Ψdτ ω mivel Ω Ψ ωψ átl. Ψ Ψdτ Ψ Ψdτ ω átl. Össegés a térre A biontalansági elv Heisenberg-féle biontalansági reláció eg általánosabb elv seciális esete. Ha két fiikai menniség oerátora nem felcserélhető akkor kööttük hasonló vison áll fenn! Ami megmutatható a ún. kommutátor értékének kisámításával!. ΔΔ Ω Ψ Ω Ω Ψ Ω Ω Ω Ω Ω Ω Ω 0 3
14 A biontalansági elv Néünk meg a fenti éldát! f() - f() i i f() - f() i i f() f() - f() f() i i A kvantummechanika alafeltevései Nr.. A résecske állaotát a trajektória helett eg ún. hullámfüggvén írja le! - Ψ( t) Nr.. A fiikai menniségeket ún. oerátorok rereentálják - Ω Nr.3. A fiikai menniségek mérhető értékét a. ún. sajátérték egenlet megoldása adja meg - Ω Ψ ωψ Nr.4. Nagsámú mérés átlagának határértékét a ún. várható érték integrál adja meg - ω Ψ Ω Ψ dτ - Nr.5. A egmással nem felcserélhető oerátorú fiikai menniségek nagsámú mérésekkel kaott biontalanságai egidejűleg csak korlátoottan javíthatók - ΔωΔω konst. Irodalom P.W Atkins Fiikai kémia II. Serkeet Nemeti Tankönvkiadó B oldal. P.Atkins and J.de Paula Atkins' Phsical Chemistr Tenth Edition Oford Universit Press Oford oldal. htt://fiiedia.bme.hu/inde.h/kvantummechanika# Gesti Tamás Kvantummechanika Tote B oldal. Nag Károl Kvantummechanika Tankönvkiadó B oldal. H.Metiu Phsical Chemistr Quantum Mechanics Talor & Francis NY oldal. 4
A szilárdságtan 2D feladatainak az feladatok értelmezése
A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai
Részletesebben3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül
RészletesebbenA differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:
RészletesebbenFizika A2E, 1. feladatsor
Fiika AE, 1. feladatsor Vida Görg Jósef vidagorg@gmail.com 1. feladat: Legen a = i + j + 3k, b = i 3j + k és c = i + j k. a Mekkora a a, b és c vektorok hossa? b Milen söget ár be egmással a és b? c Mekkora
RészletesebbenEgzakt következtetés (poli-)fa Bayes-hálókban
gakt követketetés pol-fa Baes-hálókban Outlne Tpes of nference B method: exact, stochastc B purpose: dagnostc sngle-step, sequental DSS, explanaton generaton Hardness of exact nference xact nference n
RészletesebbenProjektív ábrázoló geometria, centrálaxonometria
Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.
RészletesebbenKozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL
Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális
RészletesebbenMEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG
Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről
RészletesebbenSzilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki
RészletesebbenMechanika. III. előadás március 11. Mechanika III. előadás március / 30
Mechanika III. előadás 2019. március 11. Mechanika III. előadás 2019. március 11. 1 / 30 7. Serkeetek statikája 7.2. Rácsos serkeet hidak, daruk, távveeték tartó oslopok, stb. 3 kn C 4 m 2 4 8 5 3 7 1
Részletesebben3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
RészletesebbenSTATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)
STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A
RészletesebbenLászló István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
RészletesebbenSzabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .
Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban
RészletesebbenFizika A2E, 5. feladatsor
Fiika A2E, 5. feladatsor Vida György Jósef vidagyorgy@gmail.com. feladat: Mi a homogén E térer sség potenciálja? A potenciál deníciója: E(x,y, = U(x,y,, amely kifejtve a három komponensre: Utolsó módosítás:
RészletesebbenAtomfizika előadás Szeptember 29. 5vös 5km szeptember óra
Aomfiika előadás 4. A elekromágneses hullámok 8. Sepember 9. 5vös 5km sepember 3. 7 óra Alapkísérleek Ampere-féle gerjesési örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada indukciós
RészletesebbenHatárérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
RészletesebbenEUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
RészletesebbenHéj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok
Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot
RészletesebbenPolarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor
Polariált fén, polariáció PÉCSI TUDOMÁNYGYTM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR Fluorescencia aniotrópia, FRT Megjelenés fotóáskor! Nitrai Miklós, 2015 február 10. Miért van ilen hatása? Polariáció fogalma A
RészletesebbenFizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
Részletesebben2.2. A z-transzformált
22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk
RészletesebbenMatematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
Részletesebben1. El szó. Kecskemét, 2005. február 23. K házi-kis Ambrus
. Elsó olgoat témájául solgáló utatásoat egrést még a buaesti Silártestfiiai Kutatóintéet munatársaént etem maj eg utatással fejlestéssel foglaloó magáncég (& Ultrafast asers Kft.) olgoójaént jelenleg
RészletesebbenKalkulus II., harmadik házi feladat
Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség
Részletesebben2. Koordináta-transzformációk
Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,
RészletesebbenTARTÓSZERKETETEK III.
TARTÓSZERKETETEK III. KERESZTETSZETEK ELLENÁLLÁSA + STABILITÁSI ELLENÁLLÁS 1 KERESZTETSZETEK ELLENÁLLÁSA 1.1 Csavarlukkal gengített köpontosan húott rúd 1. Egik sárán kapsolt köpontosan húott sögaél 1.
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenAtomfizika előadás 4. Elektromágneses sugárzás október 1.
Aomfka előadás 4. lekromágneses sugárás 4. okóber. Alapkísérleek Ampere-féle gerjesés örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada ndukcós örvéne elekromos ér örvénessége mágneses
RészletesebbenAz összetett hajlítás képleteiről
A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra
RészletesebbenEGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN
Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti
RészletesebbenTöbbváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
RészletesebbenPéldatár megoldások. æ + ö ç è. ö ç è. ö ç è. æ ø. = ø
Műsaki matematika I. Lineáris algebra pldatár s feladattár Ksítette a Centroset SakkpsServesi Nonprofit Kft. Pldatár megoldások. feladat megoldása Mivel s B típusa megegeik, a sseadás elvgehető s Z is
RészletesebbenDr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN
Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN UNIVESITAS-GYŐ Nonprofit ft Gőr 9 SZÉCHENYI ISTVÁN EGYETEM GYŐ Írta: Dr Égert János Dr Nag Zoltán
RészletesebbenKvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK
Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?
RészletesebbenKétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Részletesebben7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenAz optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
RészletesebbenTeljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
Részletesebben15. Többváltozós függvények differenciálszámítása
5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =
RészletesebbenA kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.
A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása
RészletesebbenLepárlás. 8. Lepárlás
eárlás 8. eárlás csefolós elegek szétválasztására leggakrabban használt művelet a leárlás. Míg az egszeri leárlás desztilláció néven is ismerjük az ismételt leárlás vag ismételt desztillációt rektifikálásnak
Részletesebben6. RUDAK ÖSSZETETT IGÉNYBEVÉTELEI
RUK ÖZETETT GÉNYBEVÉTELE Tönkremeneteli elméletek a) peiális eset: a fesültségi tenornak sak eg eleme nem nulla (pl rudak egserű igénbevételeinél), ϕ tt nins probléma, mert a anagjellemők eekre a egserű
RészletesebbenJanuary 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
RészletesebbenKvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
RészletesebbenMáté: Számítógépes grafika alapjai
VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B
RészletesebbenAtomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
RészletesebbenRobottechnika II. 1. Bevezetés, ismétlés. Ballagi Áron Automatizálási Tanszék
Robottechnika II. 1. Beveetés, ismétlés Ballagi Áron Automatiálási Tansék Bemutatkoás Dr. Ballagi Áron tansékveető-helettes, egetemi docens Automatiálási Ts. C71, 3461 Autonóm és Intelligens Robotok Laboratórium
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenKVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
RészletesebbenElektromágneses hullámok
KÁLMÁN P.-TÓT.: ullámok/4 5 5..5. (kibőíe óraála) lekromágneses hullámok elekromágneses elenségek árgalásánál láuk, hog áloó mágneses erőér elekromos erőere (elekromágneses inukció), áloó elekromos erőér
RészletesebbenFIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
RészletesebbenMolekulák világa 1. kémiai szeminárium
GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont
RészletesebbenNéhány mozgás kvantummechanikai tárgyalása
Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben
Részletesebben1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.
Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)
RészletesebbenFüggvények határértéke és folytonossága. pontban van határértéke és ez A, ha bármely 0 küszöbszám, hogy ha. lim
Függvének határértéke és oltonossága Deiníció: Az -hoz megadható olan üggvénnek az A. pontban van határértéke és ez A ha bármel küszöbszám hog ha A akkor. Jele: a) Függvén határértékének ogalma visszavezethető
Részletesebbenx = 1 egyenletnek megoldása. Komplex számok Komplex számok bevezetése
Komplex sámok Komplex sámok beveetése A valós sámok körét a követkeőképpen építettük fel. Elősör a termésetes sámokat veettük be. Itt két művelet volt, a össeadás és a sorás (ismételt össeadás A össeadás
Részletesebben3. A kvantummechanikai szemlélet kialakulása
3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs
RészletesebbenAz f függvénynek van határértéke az x = 2 pontban és ez a határérték 3-mal egyenl½o lim f(x) = 3.
0-06, II. félév. FELADATLAP Eredmének. Van határértéke, illetve foltonos az f függvén az alábbi pontokban? (a) = Az f függvénnek van határértéke az = pontban és ez a határérték -mal egenl½o f() =.! Az
RészletesebbenTöbb valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
RészletesebbenMűszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév)
Műsaki Mechanika I. A legfontosabb statikai fogalmak a gépésmérnöki kar mérnök menedser hallgatói résére (2008/2009 ősi félév) Műsaki Mechanika I. Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése
RészletesebbenMechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31
Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során
RészletesebbenÍrja át a következő komplex számokat trigonometrikus alakba: 1+i, 2i, -1-i, -2, 3 Végezze el a műveletet: = 2. gyakorlat Sajátérték - sajátvektor 13 6
Építész Kar Gakorló feladatok gakorlat Számítsa ki az alábbi komple számok összegét, különbségét, szorzatát, hánadosát: a/ z = i z = i b/ z = i z = - 7i c/ z = i z = i d/ z = i z = i e/ z = i z = i Írja
RészletesebbenA kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
RészletesebbenStokes-féle eltolódási törvény
mléketető: fluorescencia spektrumok Fluorescencia polariáció, aniotrópia FRT Definíció! a. missiós spektrum b. Gerjestési spektrum (ld. absorpciós sp.) Stokes-féle eltolódási törvén A emissiós spektrum
RészletesebbenVI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
RészletesebbenHÁZI FELADAT megoldási segédlet PONTSZERŐ TEST MOZGÁSA FORGÓ TÁRCSA HORNYÁBAN 2. Anyagi pont dinamikája neminerciarendszerben
HÁZI FELADAT megolási segélet PONTSZEŐ TEST MOZGÁSA FOGÓ TÁCSA HONYÁBAN. Anyagi pont inamikája neminerciarenserben. A pont a tárcsán egyenes pályán moog, mert a horony kénysert jelent a mogása sámára.
RészletesebbenElemi függvények. Nevezetes függvények. 1. A hatványfüggvény
Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek
RészletesebbenAtomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
RészletesebbenAtomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
Atomfizika I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
RészletesebbenA feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.
Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő
Részletesebben10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
Részletesebben1. Lineáris transzformáció
Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható
Részletesebben10. elıadás: Vállalati kínálat, iparági kínálat Piaci ár. A versenyzı vállalat kínálati döntése. A vállalat korlátai
(C) htt://kgt.bme.hu/ 1 /8.1. ábra. A versenzı vállalat keresleti görbéje. A iaci árnál a vállalati kereslet vízszintes. Magasabb árakon a vállalat semmit nem ad el, a iaci ár alatt edig a teljes keresleti
RészletesebbenKvantumos információ megosztásának és feldolgozásának fizikai alapjai
Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33
RészletesebbenAZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE
AZ ELEKTROMÁGNESES SUGÁRZÁS KETTŐS TERMÉSZETE A Planck-féle sugárzási törvény Hipotézis 1.: A hősugárzást (elektromágneses hullámokat) kis, apró rezgő oszcillátorok hozzák létre. Egy ilyen oszcillátor
RészletesebbenKozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL
Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 004 008 . FEJEZET tenorsámítás elemei.. Beveető megjegések... Könapi tapastalat, hog a terméset jelenségei függetlenek a megfigelőtől. Várható tehát,
RészletesebbenSíkban polarizált fény Síkban polarizált fény
2013.02.15. Fluorescencia aniotrópia, Luminescencia Fluorescencia Reonancia nergiatransfer A molekuláknak at a fénemissióját, amelet a valamilen módon (például fénnel való besugárással) gerjestett molekula
RészletesebbenA lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.
9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön
RészletesebbenDr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747)
Dr. BAOGH ABERT A folyamatkéesség és a folyamatteljesítméy statistikái ISO 747 Folyamat sabályoott, ha csak véletle okú váltoásokat hibákat tartalma. Sabályoatla, ha aoosítható okú redseres váltoásokat
RészletesebbenKémiai alapismeretek 2. hét
Kémiai alapismeretek 2. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2014. szeptember 9.-12. 1/13 2014/2015 I. félév, Horváth Attila c Hullámtermészet:
RészletesebbenGÉPÉSZMÉRNÖKI, INFORMATIKAI ÉS VILLAMOSMÉRNÖKI KAR
ZÉCHENYI ITVÁN EGYETE GÉPÉZÉRNÖKI, INFRTIKI É VILLÉRNÖKI KR E C H N I K LKLZTT ECHNIK TNZÉK Elméleti kérdések és válasok mesterképésben (c) réstvevő mérnökhallgatók sámára 1 dja meg vektorok skaláris sorásának
RészletesebbenA ferde hajlítás alapképleteiről
ferde hajlítás alapképleteiről Beveetés régebbi silárdságtani sakirodalomban [ 1 ], [ ] más típusú leveetések, más alakú képletek voltak forgalomban a egenes tengelű rudak ferde hajlításával kapcsolatban,
Részletesebben5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája
TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...
RészletesebbenBodó Bea, Somonné Szabó Klára Matematika 2. közgazdászoknak
ábra: Ábra Bodó Bea, Somonné Szabó Klára Matematika. közgazdászoknak III. modul: Többváltozós üggvének 5. lecke: Többváltozós üggvének, parciális deriválás Tanulási cél: Megismerkedni a többváltozós üggvének
RészletesebbenFizikai kémia 2. ZH I. kérdések I. félévtől
Fizikai kémia 2. ZH I. kérdések 2018-19 I. félévtől Szükséges adatok, állandók és összefüggések: c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me= 9,10939
RészletesebbenFÜGGELÉK - MATEMATIKAI ÖSSZEFOGLALÓ
FÜGGEÉK - MAEMAIKAI ÖSSZEFOGAÓ E a fejeet rövien össefoglalja aokat a matematikai ismereteket, ameleket a Végeselem analíis tantárg fel fog hasnálni A össefoglalás nem teljes résletességgel mutatja be
RészletesebbenAnalízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport
Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás
RészletesebbenA fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként
A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (b) Kvantummechanika. Utolsó módosítás: 2013. november 9. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (b) Kvantummechanika Utolsó módosítás: 2013. november 9. 1 A legkisebb hatás elve (1) A legkisebb hatás elve (Hamilton-elv): S: a hatás L: Lagrange-függvény 2 A
Részletesebben3. A kvantummechanikai szemlélet kialakulása
3. A kvantummechanikai szemlélet kialakulása A korábbi fejezetben tárgyalt atomelmélet megteremtette a modern kémiai alapjait, azonban rengeteg kérdés mégis megválaszolatlan maradt, különösen a miért nincs
RészletesebbenANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL. Oktatási segédlet
ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL Oktatási segédlet a Rugalmasságtan és Alkalmaott mechanika laboratóriumi mérési gakorlatokho a egetemi mesterképésben (MSc) réstvevő mérnökhallgatók
RészletesebbenA VÉGESELEM-MÓDSZER ALAPJAI
A VÉGESEEM-MÓDSZER AAPJAI A projekt címe: Egségesített Jármű- és mobilgépek képés- és tananagfejlestés A megvalósítás érdekében létrehoott konorcium réstvevői: KECSKEMÉI FŐISKOA BUDAPESI MŰSZAKI ÉS GAZDASÁGUDOMÁNYI
RészletesebbenSZÁMELMÉLET. Szigeti Jenő
SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p
RészletesebbenFeladatok Oktatási segédanyag
VIK, Műsaki Informatika ANAÍZIS () Komplex függvénytan Feladatok Oktatási segédanyag A Villamosmérnöki és Informatikai Kar műsaki informatikus hallgatóinak tartott előadásai alapján össeállította: Frit
RészletesebbenAtomok, elektronok. Általános Kémia - Elektronok, Atomok. Dia 1/61
, elektronok 2-1 Elektromágneses sugárzás 2-2 Atomi spektrum 2-3 Kvantumelmélet 2-4 Bohr-atom 2-5 Az új kvantummechanika 2-6 Hullámmechanika 2-7 A hidrogénatom hullámfüggvényei Dia 1/61 , elektronok 2-8
Részletesebben