Robottechnika II. 1. Bevezetés, ismétlés. Ballagi Áron Automatizálási Tanszék
|
|
- Jázmin Székelyné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Robottechnika II. 1. Beveetés, ismétlés Ballagi Áron Automatiálási Tansék
2 Bemutatkoás Dr. Ballagi Áron tansékveető-helettes, egetemi docens Automatiálási Ts. C71, 3461 Autonóm és Intelligens Robotok Laboratórium (AIR) ÚT111, :51:45
3 Féléves menetrend Heti előadások a A-5 teremben Gakorlatok 2 hetes bontásban A és B csoport Feliratkoás! Kivételek: sept. 28. csústatás / helettesítés okt. 21. Audi karbantartó mérnöki előadás okt. 19. CogInfoCom konferencia látogatás nov. 9. csústatás / helettesítés Zh elővisga a utolsó órán: nov :51:45
4 Irodalom Kulcsár Béla: Robottechnika, LSI Informatikai Oktatóköpont, Budapest, Lantos Béla: Robotok iránítása, Akadémiai Kiadó, 22. hillip John McKerrow: Introduction to Robotics, Addison-Wesle, eter Corke: Robotics, Vision And Control: Fundamental Algorithms In Matlab (Springer Tracts In Advanced Robotics), Springer, :51:45
5 Robot kinematika Direkt kinematika: a robotkar állapotának meghatároásáho (ha a össes csukló váltoó ismert) Inver kinematika: a eges csukló váltoók sámításáho (ha a kar/tc eg bionos állapota/poíciója adott) :51:45
6 A robot mint mechanimus Robotkar: 3 dimeniós, nílthurkú mechanikai lánc Eg sabadságfokú árthurkú három-tagú mechanimus (a) árthurkú (b) nílthurkú mechanimus :51:45
7 ont leírása a térben pont leírása a térben: 3 koordinátával eg referencia koordinátarendserben (keret frame) ^ ^ ^ p aib jck p :51:45
8 Koordinátarendserek leírása (Keret Frame) A kereteket eg referencia keretben írjuk le a referencia keret lehet rögített vag váltoó deréksögű jobbsodrású koordinátarendsereket hasnálunk Aonos origójú keretek leírása: F n n n o o o a a a :51:45
9 Eltolt origójú keret leírása p tolási vektor homogén koordinátákkal :51:45 9 Koordinátarendserek leírása (Keret Frame) 1 a o n a o n a o n F
10 Eg tárg térbeli leírása eg hoákötött kerettel és annak leírásával oldható meg :51:45 1 Eg merev test térbeli heletének leírása 1 object a o n a o n a o n F
11 A transformációs mátri mindig négetes mátri sorásokho a dimenióknak egenie kell könnebb inver sámítás :51:45 11 Homogén transformációs mátri 1 a o n a o n a o n F
12 Transformáció: eg keret leírása (elmodítása) eg másik kerethe visonítva eltolás és forgatás Eltolás: :51:45 12 Transformációk - eltolás d d d T
13 Transformációk - forgatás Kedeti feltétel: a keretek aonos origóban vannak és a tengelek párhuamosak forgatáskor a origó helben marad p pont -tengel körüli forgatása: forgatás előtt forgatás után :51:45
14 Transformáció Eltolási és forgatási lépések soroata a sorrend nem mindeg! 1. transformáció 2. transformáció 1. transformáció 2. transformáció 3. transformáció 3. transformáció :51:45
15 Direkt kinematika Direkt kinematikai analíis a robotkar és a tagok poícióját és orientációját sámolja ha ismert minden kénser állapota, akkor kisámítható a robot bármel pontjának (általában TC) helete a adott pillanatban :51:45
16 ortál robot téglatest munkatér, deréksögű koordinátarendser csak translációs kénser (TTT) :51:45 16 Direkt kinematikai leírás: portál robot cart R T T
17 Direkt kinematikai leírás: hengeres munkaterű Hengeres munkaterű robot eg rotációs és két translációs tengel (RTT) r transláció a -tengel mentén forgatás a -tengel körül l transláció a -tengel mentén R T T cl ( r,, l) Trans(,, l)rot(, )Trans( r,,) R T T cl C S S C 1 rc rs l :51:45
18 Direkt kinematikai leírás: gömb munkaterű Gömb munkaterű robot két rotációs és eg translációs tengel (RRT) r transláció a -tengel mentén forgatás a -tengel körül forgatás a -tengel körül R T T sph ( r, l) Rot(, )Rot(, )Trans(,,, ) R T T sph C C C S S S S C rs C C S S rs S C rc :51:45
19 Direkt kinematikai leírás: függőleges csuklókaros Függőleges csuklókaros robot csak rotációs tengel (RRR) 3 forgatás Denavit Hartenberg mátri :51:45
20 Kinematika Orientáció leírása Eg tárg orientációja többféle módon írható le: Roll-itch-Yaw (RY) sögek Euler sögek csukló sögek (Denavit Hartenberg leírás) :51:45
21 Orientáció leírása Roll itch Yaw (RY) sögek A mogó kerethe kötött tengelenkénti elfordulások repülőknél hasnált módser a tárgho kötött RY sögek a Roll: söggel való elfordulás a-tengel körül (a mogó keret -tengele) itch: o söggel való elfordulás o-tengel körül (a mogó keret -tengele) Yaw: n söggel való elfordulás n-tengel körül (a mogó keret -tengele) :51:45
22 Orientáció leírása Euler sögek Euler sögek Z-Y-Z egmás utáni forgatás 1. söggel való elfordulás a-tengel körül (a mogó keret -tengele), majd 2. söggel való elfordulás o-tengel körül (a mogó keret -tengele), majd 3. söggel való elfordulás ismét a a- tengel körül (a mogó keret -tengele) :51:45
23 Denavit Hartenberg leírás DH mátri (leírás) a robot kompleitásától független egserű tag és csukló leírási módser minden robot konfigurációho hasnálható bármel koordináta transformáció lehetséges :51:45
24 Denavit Hartenberg leírás DH leírás előkésítése kijelölünk eg csuklót, e les a n. csukló a n. és a at követő és megelőő somsédos csuklókho is felvesünk egeg lokális referencia keretet a tengelt nem hasnáljuk a DH leírásban Lokális keretek felvétele minden csukló a tengellel jellemett (a rotáció vag a transláció tengele) a tengelek köti köös normális, mindkét tengelre merőleges párhuamos tengelek esetén végtelen sok ilen van metső tengelek esetén o a normális hossa (metséspontban értelmeük) a tengel a normális mentén mutat a követkeő csukló iránába :51:45
25 Denavit Hartenberg leírás DH leírásban hasnált simbólumok: : tengel körüli elfordulás d : tengel menti elmodulás (távolság) a : a köös normális hossa (csukló ofset) : két egmást követő tengel söge (csukló twist) Csak a és a d igai csukló váltoó! :51:45
26 Denavit Hartenberg leírás Stanford kar # d a d d :51:46
27 KÉRDÉS? Kösönöm a figelmet! :51:46
28 :51:46
29 UMA-56 csuklókaros robot :51:46
Robotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
RészletesebbenRobottechnika. 1. Bevezetés. Ballagi Áron Automatizálási Tanszék
Robottechnika 1. Bevezetés Ballagi Áron Automatizálási Tanszék Bemutatkozás Dr. Ballagi Áron tanszékvezető-helyettes, egyetemi docens Automatizálási Tsz. C701, 3461 Autonóm és Intelligens Robotok Laboratórium
RészletesebbenInfobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció
Részletesebben5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája
TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...
RészletesebbenDenavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra
Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás
RészletesebbenA szilárdságtan 2D feladatainak az feladatok értelmezése
A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai
RészletesebbenProjektív ábrázoló geometria, centrálaxonometria
Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.
RészletesebbenInfobionika ROBOTIKA. IX. Előadás. Robot manipulátorok I. Alapfogalmak. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA IX. Előadás Robot manipulátorok I. Alapfogalmak Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Robot manipulátorok definíciója és alkalmazásai Manipulátorok szerkezete
RészletesebbenA lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.
9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön
Részletesebben2. Koordináta-transzformációk
Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,
RészletesebbenAz ipari robotok definíciója
Robot manipulátorok Az ipari robotok definíciója Mechanikai struktúra vagy manipulátor, amely merev testek (szegmensek) sorozatából áll, melyeket összeillesztések (csuklók, ízületek) kapcsolnak össze A
RészletesebbenRobotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
RészletesebbenHéj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok
Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot
RészletesebbenMester Gyula 2003 Intelligens robotok és rendszerek
Mester Gyula 003 Intelligens robotok és rendszerek Robotmanipulátorok kinematikája Robotmanipulátorok dinamikája Robotmanipulátorok szabad mozgásának hagyományos irányítása Robotmanipulátorok adaptív irányítása
RészletesebbenINTELLIGENS ROBOTOK ÉS RENDSZEREK
INTELLIGENS ROBOTOK ÉS RENDSZEREK Mester Gyula Dr. Mester Gyula Robotkinematika 1 ROBOTMANIPULÁTOROK KINEMATIKÁJA Mester Gyula Dr. Mester Gyula Robotkinematika 2 1.1 ROBOTMANIPULÁTOROK GEOMETRIAI MODELLJE
Részletesebben2.2. A z-transzformált
22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk
RészletesebbenKozák Imre Szeidl György FEJEZETEK A SZILÁRDSÁGTANBÓL
Koák Imre Seidl Görg FEJEZETEK SZILÁRDSÁGTNBÓL KÉZIRT 008 0 Tartalomjegék. fejeet. tenorsámítás elemei.. Beveető megjegések.. Függvének.3. másodrendű tenor fogalmának geometriai beveetése 5.4. Speciális
RészletesebbenInfobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai
RészletesebbenA VÉGESELEM-MÓDSZER ALAPJAI
A VÉGESEEM-MÓDSZER AAPJAI A projekt címe: Egségesített Jármű- és mobilgépek képés- és tananagfejlestés A megvalósítás érdekében létrehoott konorcium réstvevői: KECSKEMÉI FŐISKOA BUDAPESI MŰSZAKI ÉS GAZDASÁGUDOMÁNYI
RészletesebbenRobottechnika. 1. Bevezetés. Ballagi Áron Automatizálási Tanszék
Robottechnika 1. Bevezetés Ballagi Áron Automatizálási Tanszék Bemutatkozás Ballagi Áron tanszékvezető-helyettes, egyetemi adjunktus Automatizálási Tsz. C701, 3461 Autonóm és Intelligens Robotok Laboratórium
Részletesebben6. Robotok és manipulátorok a rugalmas gyártórendszerekben. 6.1 Manipulátorok
6. Robotok és manipulátorok a rugalmas gyártórendszerekben Isaac Asimov: Én, a robot (1950), a robotika alaptörvényei A robot nem árthat az embernek, és nem nézheti tétlenül, ha az embert veszély fenyegeti
RészletesebbenANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL. Oktatási segédlet
ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL Oktatási segédlet a Rugalmasságtan és Alkalmaott mechanika laboratóriumi mérési gakorlatokho a egetemi mesterképésben (MSc) réstvevő mérnökhallgatók
RészletesebbenIntelligens hatlábú robot kinematikai vizsgálata
Sályi István Gépészeti Tudományok Doktori Iskola Intelligens hatlábú robot kinematikai vizsgálata Füvesi Viktor I. éves doktorandusz Tel: +6-46-565111/1144 e-mail: elkfv@uni-miskolc.hu Témavezető: Dr.
RészletesebbenHajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
RészletesebbenMODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
RészletesebbenAz összetett hajlítás képleteiről
A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra
RészletesebbenMáté: Számítógépes grafika alapjai
VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B
RészletesebbenTöbbváltozós analízis gyakorlat, megoldások
Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,
RészletesebbenA feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.
Oros Gyula, 00. november Emelt sintű érettségi feladatsor Össeállította: Oros Gyula; dátum: 00. október A feladatsorok össeállításánál felhasnáltuk a Nemeti Tankönyvkiadó RT. Gyakorló és érettségire felkésítő
RészletesebbenA lecke célja: A tananyag felhasználója megismerje a forgó tömegek kiegyensúlyozásának elméleti alapjait.
modu: Kinematika Kinetika 4 ecke: Forgó tömegek kiegensúoása ecke céja: tananag fehasnáója megismerje a forgó tömegek kiegensúoásának eméeti aapjait Követemének: Ön akkor sajátította e megfeeően a tananagot
Részletesebben3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
RészletesebbenRobottechnika. 2. Ipari robotok. Ballagi Áron Automatizálási Tanszék
Robottechnika 2. Ipari robotok Ballagi Áron Automatizálási Tanszék IGM látogatás, oktatás IGM Robotrendszerek Kft. Hegesztőrobotok specialistája http://www.igm-group.com/hu Max. 8 fő! akiket tényleg érdekel
RészletesebbenFizika A2E, 1. feladatsor
Fiika AE, 1. feladatsor Vida Görg Jósef vidagorg@gmail.com 1. feladat: Legen a = i + j + 3k, b = i 3j + k és c = i + j k. a Mekkora a a, b és c vektorok hossa? b Milen söget ár be egmással a és b? c Mekkora
Részletesebbenaz eredő átmegy a közös ponton.
M Műszaki Mechanikai Tanszék STTIK dr. Uj József c. egetemi tanár g közös ponton támadó koncentrált erők (centrális erőrendszer) Két erő eredője: = +, Több erő eredője: = + ++...+ n, az eredő átmeg a közös
RészletesebbenSzámítógépes grafika
Halotán: a alkén-alogenidek caládjába tartoik: CF 3 CHCIBr. intéie a triklór-etilénből können megvalóítató, idrogén-flouriddal katalitiku körülmének köött, majd brómmal való evítéel. obaőmérékleten,868g/cm
RészletesebbenSzilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki
RészletesebbenIPARI ROBOTOK. Kinematikai strukturák, munkatértípusok. 2. előadás. Dr. Pintér József
IPARI ROBOTOK, munkatértípusok 2. előadás Dr. Pintér József Az ipari robotok kinematikai felépítése igen sokféle lehet. A kinematikai felépítés alapvetően meghatározza munkaterének alakját, a mozgási sebességét,
RészletesebbenSCARA robot munkatere és pályagenerálás
SCARA robot munkatere és pályagenerálás 1. A gyakorlat célja Egy SCARA robotkar munkatere korlátainak meghatározása felhasználva az direkt geometriai feladatot megoldó programot. SCARA robot elírt, világkoordinátákban
RészletesebbenS 05 ROBOTOK ÉS VIZSGÁLATUK I. ÉAÜLT ROBOT1 S 05 SEGÉDLET Dr. Pápai Ferenc KOORDINÁTA TRANSZFORMÁCIÓK
S 5 OBOOK ÉS VIZSGÁAUK I. ÉAÜ OBO S 5 SGÉ r. Páai Feren. KOOINÁA ANSZFOMÁCIÓK BM ÉAG KOOINÁA ANSZFOMÁCIÓK.... FOGAÁS... A elemi rotáió mátriok invere:.... -P-Y SZÖGK.... OMOGÉN ANSZFOMÁCIÓK... A homogén
RészletesebbenFizika A2E, 5. feladatsor
Fiika A2E, 5. feladatsor Vida György Jósef vidagyorgy@gmail.com. feladat: Mi a homogén E térer sség potenciálja? A potenciál deníciója: E(x,y, = U(x,y,, amely kifejtve a három komponensre: Utolsó módosítás:
Részletesebben7. feladatsor: Laplace-transzformáció (megoldás)
Matematika Ac gyakorlat Vegyésmérnöki, Biomérnöki, Környeetmérnöki sakok, 017/18 ős 7. feladatsor: Laplace-transformáció (megoldás) 1. A definíció alapján sámoljuk ki a követkeő függvények Laplace-transformáltját.
RészletesebbenSzámítógépes geometria (mester kurzus)
2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)
Részletesebben15. Többváltozós függvények differenciálszámítása
5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =
RészletesebbenSZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)
SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A
RészletesebbenA ferde hajlítás alapképleteiről
ferde hajlítás alapképleteiről Beveetés régebbi silárdságtani sakirodalomban [ 1 ], [ ] más típusú leveetések, más alakú képletek voltak forgalomban a egenes tengelű rudak ferde hajlításával kapcsolatban,
Részletesebben1. Lineáris transzformáció
Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható
RészletesebbenRobottechnika szakirány
Robottechnika szakirány Robotok és robotszerû eszközök ipari alkalmazásának fejlesztési, programozási, irányítástechnikai és rendszerintegrálási feladatait megoldani képes informatikus mérnökök képzése
RészletesebbenChasles tételéről. Előkészítés
1 Chasles tételéről A minap megint találtunk valami érdekeset az interneten. Az [ 1 ] tankönyvet, illetve an - nak fejezetenként felrakott egyetemi internetes változatát. Utóbbi 20. fejezetében volt az,
RészletesebbenModellezési transzformáció: [r lokális,1] T M = [r világ,1] Nézeti transzformáció: [r világ,1] T v = [r képernyo,1]
Inkrementális képsintéis Inkrementális 3D képsintéis Sirma-Kalos Lásló Árnalás, láthatóság nehé, különösen általános heletu objektumokra koherencia: oldjuk meg nagobb egségekre feleslegesen ne sámoljunk:
RészletesebbenAz első robot sorozatgyártás 1959-ben indul ben már játékgyártók kínálnak tanítható, mikroprocesszor vezérlésű játékrobot építőszettet.
A robotok előhírnökei az önműködő szerkezetek (automaták) voltak. "Író fiú", egy svájci órás műve 1772-ből, mely karszerkezet segítségével képes volt tollal papírra írni. 1893-ban, Amerikában már beépített
RészletesebbenROBOTTECHNIKA. Kinematikai strukturák, munkatértípusok. 2. előadás. Dr. Pintér József
ROBOTTECHNIKA 2. előadás Kinematikai strukturák, munkatértípusok Dr. Pintér József Kinematikai strukturák Az ipari robotok kinematikai felépítése igen sokféle lehet. A kinematikai felépítés alapvetően
RészletesebbenKvadratikus alakok gyakorlás.
Kvadratikus alakok gakorlás Kúpszeletek: Adott eg kvadratikus alak a következő formában: ax 2 + 2bx + c 2 + k 1 x + k 2 + d = 0, a, b, c, k 1, k 2, d R (1) Ezt felírhatjuk a x T A x + K x + d = 0 alakban,
RészletesebbenTartalom. Nevezetes affin transzformációk. Valasek Gábor 2016/2017. tavaszi félév
Tartalom Motiváció Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. tavaszi félév Transzformációk Transzformációk általában Nevezetes affin
Részletesebben6. Robotok a rugalmas gyártórendszerekben. 6.1 Manipulátorok
6. Robotok a rugalmas gyártórendszerekben Isaac Asimov: Én, a robot (1950), a robotika alaptörvényei A robot nem árthat az embernek, és nem nézheti tétlenül, ha az embert veszély fenyegeti Engedelmeskednie
RészletesebbenFizika 1 Mechanika órai feladatok megoldása 9. hét. , ahol ρ a sűrűség (ami lehet helyfüggő is), és M = ρ dv az össztömeg. ϕ=104,45 d=95,84 pm !,!
Fiika 1 Mechanika órai feladatok megoldása 9. hét Tömegköéppont (súlpont) Pontrendser esetén a m i tömegű, r i helvektorú tömegpontok tömegköéppontja a tömegekkel súloott átlagos helvektor: = =, ahol M
Részletesebben2. Koordináta-transzformációk
Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,
RészletesebbenLíneáris függvények. Definíció: Az f(x) = mx + b alakú függvényeket, ahol m 0, m, b R elsfokú függvényeknek nevezzük.
Líneáris függvének Definíció: Az f() = m + b alakú függvéneket, ahol m, m, b R elsfokú függvéneknek nevezzük. Az f() = m + b képletben - a b megmutatja, hog a függvén hol metszi az tengelt, majd - az m
RészletesebbenTérbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
RészletesebbenRobotkiszolgáló-rendszer kinematikai szimulációja
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TUDOMÁNYOS DIÁKKÖRI DOLGOZAT Robotkiszolgáló-rendszer kinematikai szimulációja Készítették: Rónai László Cservenák Ákos Miskolci Egyetem GÉIK mechatronikai
RészletesebbenPolarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor
Polariált fén, polariáció PÉCSI TUDOMÁNYGYTM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR Fluorescencia aniotrópia, FRT Megjelenés fotóáskor! Nitrai Miklós, 2015 február 10. Miért van ilen hatása? Polariáció fogalma A
Részletesebben1. ROBOTOK KIALAKULÁSÁNAK ÁTTEKINTÉSE
.oldal. ROBOTOK KIALAKULÁSÁNAK ÁTTEKINTÉSE 946 95 954 959 960 966 G.C. Devol kifejleszt egy villamosjelek feldolgozására alkalmas vezérlõberendezést, amelyet késõbb mechanikus berendezések vezérléséhez
RészletesebbenValasek Gábor Informatikai Kar. 2016/2017. tavaszi félév
Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2016/2017. tavaszi félév Tartalom 1 Motiváció 2 Transzformációk Transzformációk általában 3 Nevezetes
RészletesebbenHELYSZÍN: RAMADA RESORT AQUAWORLD BUDAPEST IDÔPONT: 2011. OKTÓBER 27. REGISZTRÁCIÓ: HUNGARY.NI.COM/NIDAYS
ÜZLET > [PRESSZÓ] A BOSCH TÖRTÉNETÉNEK SAROKPONTJAI 1886, Stuttgart a cég megalakul, finommechanikai és elektrotechnikai profillal I 1902 szinte az elsô gyártmányuk a nagyfeszültségû, mágneses gyújtási
RészletesebbenKinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Részletesebben2. E L Ő A D Á S D R. H U S I G É Z A
Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A
RészletesebbenMérési útmutató Robotkar inverz geometriája (és irányítása)
BME Irányítástechnika és Informatika Tanszék www.iit.bme.hu Mérési útmutató Robotkar inverz geometriája (és irányítása) összeállította: Dr. Kiss Bálint Budapest, 2016 bkiss@iit.bme.hu Intelligens robotok
RészletesebbenRobotmechanizmusok Dr. Szabó, Zsolt Budai, Csaba Dr. Kovács, László Dr. Lipovszki, György
Robotmechanizmusok Dr. Szabó, Zsolt Budai, Csaba Dr. Kovács, László Dr. Lipovszki, György Robotmechanizmusok írta Dr. Szabó, Zsolt, Budai, Csaba, Dr. Kovács, László, és Dr. Lipovszki, György Publication
RészletesebbenA táblázatkezelő mérnöki alkalmazásai. Számítógépek alkalmazása előadás nov. 24.
A tábláatkeelő mérnöki alkalmaásai Sámítógépek alkalmaása. 7. előadás 003. nov. 4. A előadás témái Felsín- és térfogatsámítás A Visual Basic Modul hasnálata Egyenletmegoldás, sélsőérték sámítás A Solver
RészletesebbenEUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
RészletesebbenMechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31
Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során
Részletesebben26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007
6 Győri Istvá, Hartug Ferec: MA4f és MA66a előadásjegyet, 006/007. A -trasformált.. Egy iformációátviteli probléma Legye adott egy üeetátviteli redserük, amelybe a üeeteket két alapjel modjuk a és b segítségével
RészletesebbenHÁZI FELADAT megoldási segédlet PONTSZERŐ TEST MOZGÁSA FORGÓ TÁRCSA HORNYÁBAN 2. Anyagi pont dinamikája neminerciarendszerben
HÁZI FELADAT megolási segélet PONTSZEŐ TEST MOZGÁSA FOGÓ TÁCSA HONYÁBAN. Anyagi pont inamikája neminerciarenserben. A pont a tárcsán egyenes pályán moog, mert a horony kénysert jelent a mogása sámára.
RészletesebbenStatika. Miskolci Egyetem. (Oktatási segédlet a Gépészmérnöki és Informatikai Kar Bsc levelez½os hallgatói részére)
iskolci Egetem GÉPÉSZÉRNÖKI ÉS INORTIKI KR Statika (Oktatási segédlet a Gépésmérnöki és Informatikai Kar sc levele½os hallgatói résére) Késítette: Sirbik Sándor, Nándori riges ½usaki echanikai Intéet iskolc,
RészletesebbenMechanika. III. előadás március 11. Mechanika III. előadás március / 30
Mechanika III. előadás 2019. március 11. Mechanika III. előadás 2019. március 11. 1 / 30 7. Serkeetek statikája 7.2. Rácsos serkeet hidak, daruk, távveeték tartó oslopok, stb. 3 kn C 4 m 2 4 8 5 3 7 1
RészletesebbenBevezetés. Bevezetés. Bevezetés. Történeti áttekintés. Bevezetés
Beveetés Valós és képeletbeli objektumok (pl. tárgak képei, függvének) sintéise sámítógépes moelljeikből (pl. pontok, élek, lapok) Beveetés Történeti áttekintés Horoható softverek, sabvánok Interaktív
RészletesebbenSTATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)
STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A
RészletesebbenXI. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
XI. FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolosvár, 6. márcus 4-5. A PÉTRVÁR-I CSAVAR TAGJAI POZICIÓJÁNAK GHATÁROZÁSA KÉNYSZRGYNLTK SGÍTSÉGÉVL Gergel Attla-Levente Astract Ths paper refl presents a mathod
RészletesebbenPneumatika az ipari alkalmazásokban
Pneumatika az ipari alkalmazásokban Manipulátorok Balanszer technika Pneumatikus pozícionálás Anyagmozgatási és Logisztikai Rendszerek Tanszék Manipulátorok - Mechanikai struktúra vagy manipulátor, amely
RészletesebbenVIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői
VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula
Részletesebbenl = 1 m c) Mekkora a megnyúlás, ha közben a rúd hőmérséklete ΔT = 30 C-kal megváltozik? (a lineáris hőtágulási együtható: α = 1, C -1 )
5. TIZTA HÚZÁ-NYOMÁ, PÉLDÁK I. 1. a) Határouk meg a függestőrúd négetkerestmetsetének a oldalhossát cm-re kerekítve úg, hog a függestőrúdban ébredő normálfesültség ne érje el a σ e = 180 MPa-t! 3 m 1 C
RészletesebbenA projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés. A megvalósítás érdekében létrehozott konzorcium résztvevői:
ROBOTTECHNIKA II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI
RészletesebbenA szilárdságtan alapkísérletei III. Tiszta hajlítás
5. FEJEET silárdságtan alapkísérletei III. Tista hajlítás 5.1. Egenes primatikus rúd tista egenes hajlítása 5.1.1. Beveető megjegések.tista hajlításról besélünk, ha a rúd eg adott sakasa csak hajlításra
RészletesebbenA fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként
A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni
Részletesebben3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül
RészletesebbenRobotika. A robotok története - bevezetés. Magyar Attila amagyar@almos.vein.hu
Robotika A robotok története - bevezetés Magyar Attila amagyar@almos.vein.hu A robotok története Idő Irodalmi utalás, esemény Robot, vagy szerkezet Kr.e.1000 Kr.e. 800 Kr.e. 400 Kr.e. 300 Biblia (Ter.):
RészletesebbenA fogyasztói döntés. Hasznosságelméletek. 3. előadás. Egyváltozós hasznossági függvény. kardinális hasznosságelmélet. ordinális hasznosságelmélet
3. előadás fogasztói döntés Hasznosságelméletek: kardinális és ordinális hasznosságelmélet. Hasznossági függvén, határhaszon. Fogasztói preferenciarendezés, közömbösségi görbék, helettesítési határráta.
Részletesebben3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát
RészletesebbenKorszerű szerszámgépek
SZÉCHENYI ISTVÁN EGYETEM GYŐR SZERSZÁMGÉPEK (NGB_AJ009_2) Korszerű szerszámgépek Összeállította: Dr. Pintér József 2011.09.26. Korszerű szerszámgépek 1 Korszerű szerszámgépek VÁZLAT 1. Kinematikai alapok,
RészletesebbenÖsszeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
RészletesebbenUlveczki Balázs. Robotkarok mozgatása akadályok között
Eötvös Loránd Tudományegyetem Természettudományi Kar Ulveczki Balázs Robotkarok mozgatása akadályok között BSc Szakdolgozat Témavezető: Szeghy Dávid Geometria Tanszék Budapest, 2017 1 Tartalomjegyzék 1.
RészletesebbenKlár Gergely 2010/2011. tavaszi félév
Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták
RészletesebbenKörmozgás és forgómozgás (Vázlat)
Körmozgás és forgómozgás (Vázlat) I. Egyenletes körmozgás a) Mozgás leírását segítő fogalmak, mennyiségek b) Egyenletes körmozgás kinematikai leírása c) Egyenletes körmozgás dinamikai leírása II. Egyenletesen
Részletesebbenσ = = (y', z' ) = EI (z') y'
178 5.4.. Váltoó kerestmetsetű rudak tsta hajlítása Enhén váltoó kerestmetsetű, tsta hajlításra génbevett rúdnál a eges pontok fesültség állapota - a váltoó kerestmetsetű rudak tsta nomásáho vag húásáho
RészletesebbenTeljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
Részletesebben2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
RészletesebbenA lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit.
2 modul: Erőrendserek 21 lecke: Erő és nomték lecke célj: tnng felhsnálój megismerje erő, nomték és erőrendserek jellemőit Követelmének: Ön kkor sjátított el megfelelően tnngot, h sját svivl meg tudj htároni
RészletesebbenAz alkalmazott matematika tantárgy oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében
DIMENZIÓK 35 Matematikai Közlemének III. kötet, 5 doi:.3/dim.5.5 Az alkalmazott matematika tantárg oktatásának sokszínűsége és módszertanának modernizálása az MSc képzésében Horváth-Szováti Erika NME EMK
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Részletesebben5.2 Rugalmas gyártórendszerek alrendszerei. a) A megmunkáló alrendszer és elemei. Megmunkáló alrendszer. Megmunkáló központ
Megmunkáló alrendszer 5.2 Rugalmas gyártórendszerek alrendszerei a munkadarabokon a technológiai műveletek elvégzése gyártóberendezések készülékek szerszámok mérőeszközök Anyagmozgatási alrendszer a munkadarabok
RészletesebbenSzemcsehatárok geometriai jellemzése a TEM-ben. Lábár János
Szemcsehatárok geometriai jellemzése a TEM-ben Lábár János Szemcsehatárok geometriai jellemzése Rácsok relatív orientációja Coincidence Site Lattice (CSL) O-lattice Határ közelítése síkkal Határsík orientációja
Részletesebben