A DIFERENCIÁLSZÁMÍTÁS ALKALMAZÁSA A DEMOGRÁFIAI STATISZTIKÁBAN APPLICATION OF DIFFERENTIAL CALCULATION IN DEMOGRAPHIC STATISTICS
|
|
- Gyöngyi Hajduné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Gradus Vol 5, No 2 (218) ISSN A DIFERENCIÁLSZÁMÍTÁS ALKALMAZÁSA A DEMOGRÁFIAI STATISZTIKÁBAN APPLICATION OF DIFFERENTIAL CALCULATION IN DEMOGRAPHIC STATISTICS Tóth Attila 1*, Csáky Atal 2, 1 Pedagógusképző Itézet, Közép-európai Taulmáyok Kara, Nyitra, Szlovákia 2 Pedagógusképző Itézet, Közép-európai Taulmáyok Kara, Nyitra, Szlovákia Kulcsszavak: Tredvoal. Demográfiai statisztika. Keywords: Tredlie. Demographic statistics. Cikktörtéet: Beérkezett 218. július 1. Átdolgozva 218. augusztus 15. Elfogadva 218. október 1. Összefoglalás A difereciálszámítás alkalmazható a demográfiai számításokba, a tredvoalak meghatározására alkalmas, segítségével a csekélyebb változások sebessége is kimutatható. A változások sebességéek változása a szociális itézkedésekkel, megélhetési küszöbbel determiált, összehasolítható a szomszédos országokba. Abstract Differetial calculatios ca be applicated i demographic calculatios. Ca ot be used oly for defiig trie lie, but also for measurig speed of the chages. The speed of the chages is determiated by social dispositios ad livig tresholds; the data ca be compared with data of eighborig coutries. 1. Bevezetés A mukába rámutatuk arra, hogya alkalmazható a difereciálszámítás a demográfiai számításokba. A deriválás emcsak a tredvoal levezetésére alkalmas, haem segítségével a csekélyebb változások sebessége is kimutatható. A változások sebességéek változása a szociális itézkedésekkel, megélhetési küszöbbel determiált, összehasolítható a szomszédos országokba. A kutatás tartalmaz egy tredvoal aomáliát is. Végsősorba rávilágítuk arra, hogy a családpolitikára érdemes odafigyeli, hisze a épesség mértékéek változása a sebességgel yomba kimutathatók. 2. Deriválás a tredvoalak levezetéséhez A tredvoalak meghatározásáál em a véletleszerű, haem a meghatározó jellegű, determiisztikus kompoessel számolak. Miszerit y i = η i + ε i (1). * Tóth Attila. Tel.: cím: atoth2@ukf.sk 258
2 A difereciálszámítás alkalmazása a demográfiai statisztikába Ha a véletleszerű kompoes ics olya agy befolyással az eseméyeikre, akkor a legjobba befolyásoló téyező a feltehetőe lieáris iráyál a következő egyelettel jellemezhető: η i = β + β 1 x i, (2) illetve az idősorokál az x helyett a t idő található. A tred bizoyos szempotból a jellegzetes közép voal. A matematikába és más műszaki ágazatokba általába a szóráségyzettel dolgozak, így a szóráségyzetet számítják ki a valós potok, és a hozzájuk tartozó tredvoal potjaiak a külöbségére, amit reziduumokak (becsült maradéktag) evezük. Ha lieáris tredvoalról va szó, akkor gyakorlatilag a b az aalitikus geometriába az eltolás, a b 1 pedig az iráytéyező, tehát, hogy milye iráyba halad az idősor vizsgált értékei, ha em változak a körülméyek, a tred. A szóráségyzetet a következő egyelettel írhatjuk fel: S = S(b, b 1 )= i=1 (y i y i ) 2 = i=1(y i b b 1 x i ) 2 (3), ahol y i a tredvoal potjait jeleti. Mikor kapjuk a legkisebb távolságot az összes pottól? Ha alkalmazzuk a difereciálszámítás azo tulajdoságát, hogy a szélsőértéket a derivált -helyé kell keresi: eszerit S = illetve S =. (4) b b 1 Az eltolás és iráytéyező szeriti deriválás segítségével kapjuk meg a legkisebb távolságokat a valós potoktól, hisze a második deriváció midkét esetbe egatív előjelű. A deriváció szabályaiak megfelelőe a következő egyeleteket kapjuk: illetve S = 2 b i=1 (y i b b 1 x i )( 1) = (5); S = 2 b i=1 (y i b b 1 x i )( x i ) = (6), 1 amelyekből két egyeletet kapuk, két ismeretleel, ha adottak az, y i, x i adatok: i=1 y i = b + b 1 x i i=1 y i x i = b i=1 x i + b 1 (x i ) 2 i=1 (7) i=1 (8) eze egyeletekbe az y függését vizsgáljuk az x-től, illetve az idősorok esetébe az x helyett t va, tehát időbeli függőségről va szó. Difereciálszámítással va tehát levezetve a legkisebb szóráségyzet, és eszerit számítják a lieáris tredvoalakat. A kvadratikus tredvoalak számítására pedig már a görbületet is beszámítják, ahol három egyeletet kapuk, három ismeretleel. Az idősorokra így ezt kapjuk: i=1 y i = T b + b 1 i=1 t i + b 2 (t i ) 2 i=1 y i t i = b i=1 t i + b 1 i=1 (t i ) 2 +b 2 (t i ) 3 i=1 (9) i=1 (1) i=1 y i t 2 i = b i=1 (t i ) 2 + b 1 i=1 (t i ) 3 +b 2 i=1 (t i ) 4 (11) A számítások akkor a legpotosabbak, ha a reziduumoktól való eltérés ulla, vagy a ullához közeli érték, ε i=1 = y i y i =. i=1 (12) 259
3 Tóth Attila, Csáky Atal 3. Az idősorok tredvoalaiak az alkalmazása a demográfiai számításokba Néháy gyakorlati példába bemutatjuk a tredvoalak klasszikus számítását a demográfiai statisztikába A ők születésekor várható átlagos életkora A ők a lieáris tredoal alapjá em érik meg a 1 éves kort ábra. A szlovák statisztikai hivatal adatai alapjá számított lieáris tredvoal és progózis Az 1. ábrá jól látható, hogy a ők a születéskor számított átlagos életkora,amely övekedő tedeciát mutat. A progózis szerit azoba ez a övekedés lassú, 4-5 év múlva lépi túl a kilecvees küszöböt A férfiak születéskor várható életkora Kvadratikus tredvoal, elérhető a százéves kor ábra A szlovák statisztikai hivatal adatai alapjá számított kvadratikus tredvoal és progózis A második ábra szerit, míg midezidáig a férfiak a statisztika alapjá belehaltak feleségük elvesztésébe, úgy éz ki a progózis szerit, hogy megedződek és így megelőzik a ők átlagos életkorát, és túlélik őket. A második ábra bal oldalá jól látható, hogy parabolikus a tred, tehát yilvá kvadratikus tredvoal számításával próbálkozuk. A számítások potossága az ötévekét 12 megadott adathalmazra i=1 ε = a férfiak esetébe, 12 i=1 ε = 3,61 1 a ők esetébe. Megkérdőjelezedő azoba az, hogy a tred valósa megmarad-e. Húsz évvel ezelőtt még fel sem tételeztük vola a mára már elért magas életkort, az orvostudomáy fejlődése azoba erre rácáfolt. 4. A deriváció alkalmazása a változások mérésére Az előzőekbe rámutattuk a lieáris tred és kvadratikus tred külöbözőségére, amit a demográfiai számítások átlagos életkorra voatkozó adatok alapjá dolgoztuk fel. A következőkbe pedig bemutatjuk azokat a számításokat, amelyek em várt eredméyeket hoztak a kvadratikus egyeletsor megoldásakét. Érdekes módo éppe a Szlovákiába hivatalosa tartózkodó vedégmukások esetébe a yilvátartottak száma a 3. ábra szerit másodfokú poliom függvéyre eged következteti. A számítások viszot erre rácáfoltak, hisze egy fordított parabola jeleik meg, ahol az eltolás egatív előjelű, va kicsúcsosodás, majd hayatlás is. Ha jól 26
4 A difereciálszámítás alkalmazása a demográfiai statisztikába belegodoluk eek az iterpretációjába, akkor talá azt várák el, hogy a gazdasági célból útak eredt fiatalok egyszer csak a saját hazájukba is találak majd megfelelő mukahelyet, ami a megélhetésüket is biztosítja. Az adatsor viszot, ha em vesszük figyelembe a kezdeti értékeket övekedő típusú parabolát mutat, az elvártat. Illetve politikailag em elvártat. A szerbiai fiatal férfiak a yelvrokoság miatt is vozóak találják Szlovákiát. Hisze az lee a jó, ha mideki a saját hazájába találá meg megélhetését, odahaza alapítaa családot. Ugyaez megvizsgálható a magyar fiatalok esetébe is, akik az agolokál találtak sokkal jobba kifizetődő mukát. Pedig em mideki tud megfelelő szite agolul. Megfigyeledő, hogy a magyar fiatalok jeleléte Nagy-Britaiába is fordított tredvoalat mutat, tehát meg kellee keresi a módját aak, hogy ottho maradjaak. Az okok keresését pedig az útak idulásuk okát kellee megkeresi. Ezt pedig úgy találhaták meg, ha megézék az akkori politikai itézkedéseket, mukaerő piaci helyzetet, és sok kis apró más befolyásoló téyezőt. Talá ezekbe az esetekbe em lehet figyelme kívül hagyi a véletleszerű hibafaktort (ε i ). Ha alkalmazzuk a difereciálszámítást geometriailag is, akkor a baloldali görbe derivációjával kapjuk a változás mértékét, ami gyakorlatilag évekéti változás. A kivádorlás sebességéek a görbéjéből potosa kiolvasható mikor volt potosa övekedő, illetve mikor volt csökkeő tedeciájú. Tehát a tredvoalak is a difereciálszámítás eredméyekét alkalmazhatóak a demográfiai statisztikába, de a változás mértéke (umerikusa számítva a statisztikába lehet bázis idex is, amelyet a kívát évhez hasolítuk potos időtartamokba) alkalmazva a görbére rögtözött sebességet mutat. 2 1 Szlovákiába egedélyezett szerb mukaerő A szerb mukaerő szlovákiai jeleléte a számítás alapjá ábra A szlovák statisztikai hivatal adatai alapjá számított kvadratikus tredvoal és progózis A harmadik ábrá megfigyelhető a külöbség, míg a program automatikus válasza a kért másodfokú poliómfüggvéyre felfelé ívelő parabolát mutat, ugyaakkor a umerikus számítás eredméyekét a jobboldali ábra jö elő. Érdekes az is, hogy az első éháy év elhagyásával a klasszikus számítás is felfelé ívelő parabolát mutat. Vizsgálgattuk a parabolikus átbilleést, azaz, hogy mikor kezd a három egyeletredszer megoldása em lefelé, haem felfelé ívelővé váli. A klasszikus számítás ugyais a baloldali ábrát úgy érzékeli, mit egy agy fordított parabola Magyar fiatalok Nagy- Britaiába /változás Magyar fiatalok Nagy- Britaiába /progózis ábra A ONS Portfolio statisztikai adatai alapjá feldolgozott változás és progózis 261
5 Tóth Attila, Csáky Atal Érdekes módo a magyar fiatalok agliai mukavállalása is ilye jeleség, hisze ha megvizsgálkjuk a 4. ábra baloldalát, akkor az utolsó 4 év elhagyásával felfelé ívelő parabolikus összefüggést sejtheték. Ha ebbe belegodoluk, a haza számára em elfogadható, hogy gyakorlatilag a végtelebe szaporodik a jobb megélhetésért kivádorlók száma. Nyilvá az ország kilépése az EU-ból valószíűleg bizoyítai fogja a jobboldali ábrá látható progózist. Érdekes megfigyeli a változás mértékét is a baloldali ábrá, ahol az alsó voal éppe a változás mértéke éháy ezres agyságredbe eléggé agyak tűik. 5. Összépességi számadatok Ha már éritőlegese foglalkoztuk a kivádorlás, bevádorlás illetve várható életkor problémakörrel vessük pillatást az összépességre. A V4 családkogresszuso publikált irodalom szerit a Magyarország jelelegi területé a lélekszám a következő ábra szerit változik Magyarország épessége (millió/év) ,5 1, , A épesség változásáak a sebessége (mill./év) 5 ábra KSH a századok statisztikája adatai alapjá feldolgozott progózis és változás Az adatokból sajos csökkeő tedeciájú parabola mutatkozik tredkét, yilvávaló, hogy midet meg kell tei azért, hogy az 1985 óta évi 2 fővel e fogyatkozzék a magyar ho. A változás mértéke a sebesség agyo jól kiolvasható az egyes időszakokba az 5. ábra jobb felé. A törtéészeik elgodolkodhatáak az egyes időszakok külöbségei Szlovákia lakossága/év (ezres agyságred) 1 5 Szlovákia épességéek a változása (ezer/év) ábra Karásek Vladimír: Vývoj osídleia Sloveska, Geografia statisztikai adatai alapjá feldolgozott progózis és változás Az egyes időszakokba a két országba jól összehasolítható a változás mértéke, az egyszerű derivált görbe segítségével. Nyilvávalóa megerősíthető az ú. baby-boom, ami a háborúk utá lei szokott (még a legutolsó szerb-horvát háború utá is kimutatható). A szlovákiai tredvoal biztatóa felfelé iráyul épességi szempotból, de aváltozás mértéke itt is lefelé iráyuló 262
6 A difereciálszámítás alkalmazása a demográfiai statisztikába tedeciát mutat. A hetvees évek Husák gyermekiből a demokrácia üres bölcsői lettek. Az utolsó egy-két évtized gyermeáldását szemlélvé ayi megállapítható, hogy stagál midkét országba A születések száma Szlovákiába stagál/deriváció Élveszületettek száma Magyarországo/változás ábra A PPT súčasý populačý vývoj v SR, és Családbarát fordulat kiadváy statisztikai adatai alapjá feldolgozva A 7. ábrá összehasolítható Magyarország és Szlovákia élveszületetteiek a száma, yilvá a szlovákiai összlakosság feleakkora agyságú (1/5 millió). 6. Zárógodolat A demográfiai statisztikába alkalmazott deriváció segítségével rámutattuk arra, hogy a deriváció segítségével meghatározott tredvoalak potjai extréme kicsi közelítéssel meghatározhatóak. A számításokba kapott rezídiumok összege 1 1 agyságredű közelítést mutat a ullához, vagy potosa. A parabolák felfelé, vagy lefelé ívelő mivoltába valószíűleg más befolyásoló téyezőket is figyelembe kell vei. Az egyes kormáyok családtámogatásához meg kell tehát vizsgáli az összes befolyásoló téyezőt, és azok befolyásolási mértékét. A deriváció másik alkalmazása a változás mértéke (ami lehet évekéti, vagy 5 1 évekéti redszerességű), ami kimutathatja az egyes itézkedések hatékoyságát. Irodalomjegyzék [1] ONS Portfolio [2] PPT súčasý populačý vývoj v SR, Ifostat 211 [3] Családbarát fordulat, Emberi Erőforrások Miisztériuma, 217 [4] Karásek Vladimír: Vývoj osídleia Sloveska, Geografia [5] Origo, Népességövekedés,, [6] Bick, Alexader «The Quatitative Role of Child Care for Female Labor Force Participatio ad Fertility.» Joural of the Europea Ecoomic Associatio, im Erscheie [7] Ifostat, Progóza stredej dĺžky života, 22 [8] Majerová Silvia, Aká bude populácia Sloveska o 3 rokov, 263
(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
V. Deriválható függvények
Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája
Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
Egy lehetséges tételsor megoldásokkal
Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe
3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.
3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.
Gyakorló feladatok II.
Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus
NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.
NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a
Hosszmérés finomtapintóval 2.
Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu
2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
Az új építőipari termelőiár-index részletes módszertani leírása
Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató
Villamos gépek tantárgy tételei
Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot
Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.
Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el
1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója
Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle
Emlékeztető: az n-dimenziós sokaság görbültségét kifejező mennyiség a Riemann-tenzor (Riemann, 1854): " ' #$ * $ ( ' $* " ' #µ
Emlékeztető: az -dimeziós sokaság görbültségét kifejező meyiség a Riema-tezor (Riema, 1854: ' ( ' $ ' #µ $ µ# ahol a ú. koexiós koefficiesek (vagy Christoffel-szimbólumok a metrikus tezor g # x $ kompoeseiből
VII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
A figurális számokról (IV.)
A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe
Ingatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,
l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f
Diszkrét matematika II., 3. előadás. Komplex számok
1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,
Optika. sin. A beeső fénysugár, a beesési merőleges és a visszavert, illetve a megtört fénysugár egy síkban van.
Optika Mi a féy? Látható elektromágeses sugárzás. Geometriai optika (modell) Féysugár: ige vékoy párhuzamos féyyaláb Ezt a modellt haszálva az optikai jeleségek széles köréek magyarázata egyszerű geometriai
1. A radioaktivitás statisztikus jellege
A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a
7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a
Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe
ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT
ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT KÍVÁNCSISÁGVEZÉRELT MATEMATIKA TANÍTÁS STÁTUS KIADÓ CSÍKSZEREDA, 010 c PRIMAS projekt c Adrás Szilárd Descrierea CIP a Bibliotecii
Függvényhatárérték-számítás
Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről
Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során
Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség
1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény
Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,
Statisztika 1. zárthelyi dolgozat március 21.
Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy
10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
A matematikai statisztika elemei
A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................
Nevezetes sorozat-határértékek
Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív
2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
Kalkulus II., második házi feladat
Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,
Területi koncentráció és bolyongás Lengyel Imre publikációs tevékenységében
Lukovics Miklós (szerk.) 204: Taulmáyok Legyel Imre professzor 60. születésapja tiszteletére. SZTE Gazdaságtudomáyi Kar, Szeged, 5-24. o. Területi kocetráció és bolyogás Legyel Imre publikációs tevékeységébe
Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai
közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet
Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Idősorok elemzése. 5. előadás. Döntéselőkészítés módszertana
Idősorok elemzése 5. előadás Dötéselőkészítés módszertaa Az idősorok elemzéséek egyszerűbb Számtai átlag eszközei: Kroológikus átlag Diamikus viszoyszám Átlagos abszolút eltérés Átlagos relatív eltérés
Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova
Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok
I. FEJEZET BICIKLIHIÁNYBAN
I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük
GAZDASÁGI MATEMATIKA 1. ANALÍZIS
SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag
VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók
A brexit-szavazás és a nagy számok törvénye
Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai
A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
Matematika I. 9. előadás
Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája
3. MINTAFELADATSOR EMELT SZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Oktatáskutató és Fejlesztő Itézet TÁMOP-3.1.1-11/1-01-0001 XXI. századi közoktatás (fejlesztés, koordiáció) II. szakasz MATEMATIKA 3. MINTAFELADATSOR EMELT SZINT 015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató
6. Elsőbbségi (prioritásos) sor
6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe
Az iparosodás és az infrastrukturális fejlődés típusai
Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa
Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA
ANALÍZIS I. TÉTELBIZONYÍTÁSOK ÍRÁSBELI VIZSGÁRA Szerkesztette: Balogh Tamás 202. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add
8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.
8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),
ezek alapján kívánunk dönteni. Ez formálisan azt jelenti, hogy ellenőrizni akarjuk,
A deceber -i gyakorlat téája A hipotézisvizsgálat fotos probléája a következő két kérdés vizsgálata. a) Egy véletle eyiség várható értékéek agyságáról va bízoyos feltevésük. Elleőrizi akarjuk e feltevés
Koordinátageometria összefoglalás. d x x y y
Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor
Sorozatok, határérték fogalma. Függvények határértéke, folytonossága
Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt
Hanka László. Fejezetek a matematikából
Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet
KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn
A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója
f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben
Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,
Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8
Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,
Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe
VÉLETLENÍTETT ALGORITMUSOK. 1.ea.
VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.
dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár
dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.
biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat
Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke
INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK
Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy
SOROK Feladatok és megoldások 1. Numerikus sorok
SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......
EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Z
Az érettségi vizsgára előkészülő taulók figyelmébe! EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a x + b y c 5. Az egyeletredszer megoldása a Z halmazo (3. rész) a x + b y c A hivatkozások köyítése
2.1. A sorozat fogalma, megadása és ábrázolása
59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,
A G miatt (3tagra) Az egyenlőtlenségek két végét továbbvizsgálva, ha mindkét oldalt hatványozzuk:
Kocsis Júlia Egyelőtleségek 1. Feladat: Bizoytsuk be, hogy tetszőleges a, b, c pozitv valósakra a a b b c c (abc) a+b+c. Megoldás: Tekitsük a, b és c számok saját magukkal súlyozott harmoikus és mértai
1. Gyökvonás komplex számból
1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)
Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise
Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu
PRÓBAÉRETTSÉGI VIZSGA február 10.
PRÓBAÉRETTSÉGI VIZSGA 08. február 0. STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA EMELT SZINTŰ PRÓBAÉRETTSÉGI VIZSGA Javítási útmutató 08. február 0. STUDIUM GENERALE MATEMATIKA SZEKCIÓ Matematika Írásbeli
( a b)( c d) 2 ab2 cd 2 abcd 2 Egyenlőség akkor és csak akkor áll fenn
Feladatok közepek közötti egyelőtleségekre (megoldások, megoldási ötletek) A továbbiakba szmk=számtai-mértai közép közötti egyelőtleség, szhk=számtaiharmoikus közép közötti egyelőtleség, míg szk= számtai-égyzetes
ANALÍZIS 1. I. VIZSGA január 11. Mérnök informatikus szak α-variáns Munkaidő: 90 perc., vagyis z 2 1p = i 1p = ( cos 3π 2 2
ANALÍZIS. I. VIZSGA. jauár. Mérök iformatikus szak α-variás Mukaidő: perc. feladat pot) Adja meg az z 4 i)z i egyelet összes megoldását. i + i) + 4i + 4 i +, vagyis z p i p cos 3 + i si ) 3 vagy z p i
Tranziens káosz nyitott biliárdasztalokon
Eötvös Lorád Tudomáyegyetem Természettudomáyi kar Vicze Gergely Trazies káosz yitott biliárdasztaloko Msc szakdolgozat Témavezető: Tél Tamás, egyetemi taár Elméleti Fizikai Taszék Budapest, 2012 1 Tartalom
A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
Statisztika 1. zárthelyi dolgozat március 18.
Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati
A statisztikai vizsgálat tárgyát képező egyedek összességét statisztikai sokaságnak nevezzük.
Statisztikai módszerek. BMEGEVGAT01 Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudomáyi Egyetem Gépészméröki Kar Hidrodiamikai Redszerek Taszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3
Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)
Elsőbbségi (prioritásos) sor
Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe
3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése
3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem
18. Differenciálszámítás
8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke
Általános taggal megadott sorozatok összegzési képletei
Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás
Mérések, hibák. 11. mérés. 1. Bevezető
11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i
24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.
24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor
A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1
A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S
megoldásvázlatok Kalkulus gyakorlat Fizika BSc I/1, 1. feladatsor 1. Rajzoljuk le a számegyenesen az alábbi halmazokat!
megoldásvázlatok Fizika BSc I/,. feladatsor. Rajzoljuk le a számegyeese az alábbi halmazokat! a { R < 5}, b { R 4}, c { Z 4}, d { Q < 4 6}, e { N 3 }.. Igazak-e az alábbi állítások? Adjuk meg az állítások
16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:
6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú
1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:
1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét
Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak
Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia
6. Számsorozat fogalma és tulajdonságai
6. Számsorozat fogalma és tulajdoságai Taulási cél: A számsorozat fogalmáak és elemi tulajdoságaiak megismerése. A mootoitás, korlátosság vizsgálatáak elsajátítása. Nevezetes sorozatok határértékéek megismerése.
Hipotézis-ellenırzés (Statisztikai próbák)
Következtetı statisztika 5. Hipotézis-elleırzés (Statisztikai próbák) 1 Egymitás próbák Átlagra, aráyra, Szórásra Hipotézis-vizsgálat Áttekités Egymitás em paraméteres próbák Függetleségvizsgálat Illeszkedésvizsgálat
1 h. 3. Hogyan szól a számtani és a mértani közép közötti összefüggést kifejező tétel?
1. Fogalmazza meg az R -beli háromszög-egyelőtleségeket!,y R (i) +y + y (ii) -y - y 2. Mit mod ki a Beroulli-egyelőtleség? (i) (1+h) 1+ h ( h>-1) ( N*) (ii) (1+h) 1+2 h 1 ( N*) h 2 3. Hogya szól a számtai
ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.
ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az
Zavar (confounding): akkor lép fel egy kísérletben, ha a kísérletet végző nem tudja megkülönböztetni az egyes faktorokat.
Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet végző em tudja megkülöbözteti az egyes faktorokat. Zavar és mita Zavar (cofoudig): akkor lép fel egy kísérletbe, ha a kísérletet
Határértékszámítás. (szerkesztés alatt) Dr. Toledo Rodolfo április A határátmenet és a műveletek 12
Határértékszámítás szerkesztés alatt) Dr. Toledo Rodolfo 207. április 23. Tartalomjegyzék. Bevezetés 2 2. Segédállítások 3 3. Nevezetes sorozatok 7 4. A határátmeet és a műveletek 2 5. Az e szám fogalma
VTŠ Subotica / VTŠ Szabadka Ispitni zadatak iz MAŠINSKIH ELEMENATA 2 / Vizsga feladatsor GÉPELEMEK 2-ből Datum ispita / Vizsga időpontja:
VTŠ Subotica / VTŠ Szabadka Ispiti zadatak iz MAŠINSKIH ELEMENATA 2 / Vizsga feladatsor GÉPELEMEK 2-ből Datum ispita / Vizsga időpotja: 2015-06-17 Za preosik, prikaza a crtežu, koji radi miro bez udara:
Matematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?
5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra