A geometriai transzformációk egy speciális esete, a külső tájékozás
|
|
- Nóra Tóthné
- 6 évvel ezelőtt
- Látták:
Átírás
1 DIMENIÓK Mtemtk Kölemének II. kötet 4 A geometr trnsormáók eg seáls esete külső táékoás ávot Jóse MTA CSFK GGI vot@ggk.hu ÖSSEFOGLALÓ. A geometr külső táékoás rméteret ontok kékoordnátá és hoáuk trtoó tárg- vg terekoordnáták köött ennálló mtemtk össeüggésől lehet meghtáron. A eldt megoldásár gkorltn már ól evált köelítő módsereket létenek. Eek mtemtk modellek évtedek ót hsnáltn vnnk. Een kken vsltot tesünk eldt eg úserű egkt megoldásár. ABSTRACT. The rmeters o geometr eteror orentton n e determned rom the mthemtl relton etween the mge oordntes o the onts nd the oet or terrn oordntes elongng to them. There est romton methods or the soluton o ths rolem whh hve or dedes een suessull led n the rte. In ths work we roose new nd et soluton o the rolem.. Beveetés A terméseten léteő össeüggéseket törvéneket áltlán nemlneárs egenletekkel lehet leírn meleket gkorltn lnerálv teráóvl sokás megoldn. A mtemtk rolémák lnerálásár teráóvl történő megoldásár sámtln éldát tlálunk ávot 999 dolgotán. Bonos eseteken előordulht hog nemlneárs eldtokr egkt korrekt megoldásokt lehet dn lnerálás nélkül s. Awnge és Grrend tnulmánkn D 7 rméteres hsonlóság trnsormáór dtk egkt nemlneárs megoldást melet ávot 5 és ávot és Jnsó 6 kkek módosítv továelestettek. Btth és ávot 9 9 tová nemlneárs geodé eldtokt oldottk meg nltkusn. A geometr külső táékoás nemlneárs megoldásávl Jnsó és ávot ávot és Frtsh tnulmán s ogllkotk.. A külső táékoás mtemtk modelle A geometr külső táékoás térel kékoordnát-rendserének tárgkoordnátrendsere történő trnsormáó ht rméterrel roekós köont koordnátá és tengel körül elorgtás söge dhtó meg. Eg kéontnk ersektív lekéése tárgkoordnát-rendsere Luhmnn lán lá egenlettel írhtó le R
2 4 ávot J. hol - [ ] T tárgont koordnátá - [ ] T vetítés köont koordnátá - mnden ontr eged smeretlen méretrán - R ϕ ω κ orgtás mátr - [ ] T kévektor és kmerállndó - [ ] T redukált kéont-koordnáták hol kéőont koordnátá. A R orgtás mátr három üggetlen értékkel rméterehető mel három koordnát-tengel körül smeretlen sögekkel történő elorgtásól dódk. A Awnge és Grrend tnulmánukn D 7 rméteres hsonlóság trnsormáó megoldás során R orgtás mátrot erdén smmetrkus S mátr elhsnálásávl követkeő módon eeték k I S I S R hol I D egségmátr. A S mátr és rméterekkel lá módon rmetrálhtó S. A és össeüggéseket een tnulmánn s elhsnáluk.. A méretrán-téneők meghtároás A smeretlen rméterek megoldását három léésen kívánuk elvégen elsőként méretrán-téneőket htárouk meg. A össeüggés gelemevételével egenletet lról I S mátrsl lról sorov dódk követkeő ormul A 4 össeüggést íruk el különöő ontr.. 4
3 A geometr trnsormáók eg seáls esete külső táékoás Össesen vn klen smeretlenünk és klen egenletünk íg eldt megoldhtónk tűnk. A nehéség n relk hog eldt smeretleneket tekntve nem lneárs. A megoldás olmán sorotosn elmnáluk smeretleneket. A vetítés köont koordnátát megelelő egenletek kvonásávl kküsöölhetük hol lá elöléseket veettük e ; mod. 7 A egenletekől rmétert lletve egenletekől rmétert keeve dódnk lá kéletek [ ] [ ] [ ] [ ] / / ; mod. 8 A egenleteket íg írhtuk el ; mod. 9 Helettesítsük 8 egenleteket 9 össeüggéseke néhán elem átlkítás után követkeő ormulákho utunk [ ] [ ] [ ] ; mod. Tová egserűsítések után lá egenletek dódnk ; mod.
4 6 ávot J. A össeüggéseket résletesen kírv lá homogén másodokú egenletrendser oldndó meg és smeretlenekre. A egenletrendsert vg nltkusn vg numerkusn kell megoldn. Plán kkéen egenletrendser megoldását árt lkn állított elő. Btth és ávot 9 tnulmán Slvester-reultáns elhsnálásávl dt meg hsonló serkeetű nemlneárs egenletrendser megoldását. Numerkus lgortmussl éldául Mthemt rogrmrendserrel megoldások megkhtók. Tová nehéség merülhet el egenletrendser nemlnertás mtt egserre tö megoldás s dódht. Tö megoldás esetén rméterek elentése mtt komle gököket és negtív megoldásokt k lehet árn. A nemlneárs egenletrendser otív göke köül heles megoldás kválstás seáls geometr meggondolásokt génel. Külön tnulmán og tárgln módser áltlánosítását tetsőleges sámú ontr. 4. A orgtás mátr rméterenek meghtároás Másodk léésen orgtás mátr rméterenek megoldását íruk le. Ennek megelelően een eeet külső táékoás normálegenletenek leveetését tárgl. Mután smeretlenekre eg nemlneárs egenletrendsert veettünk le és egenletrendsert numerkusn megoldottuk követkeőken méretrán-téneőket smertnek teknthetük. Eel külső táékoás eldtot lneárs egenletekre veettük vss. A 6 össeüggések elhsnálásávl smeretlen rméterekre elírhtók lá követítő egenletek [ ] [ ] [ ]. A ent egenletek lán külső táékoás normálmátránk elemet lá kéletekkel dhtuk meg
5 A geometr trnsormáók eg seáls esete külső táékoás 7 [ mod mod mod mod mod ] mod mod mod mod mod mod mod mod mod mod mod [ mod mod mod mod mod ] mod mod mod mod mod [ mod mod mod mod mod mod ] Ismert hog normálmátr smmetrkus. A külső táékoás eldtáho trtoó normálvektor mátr-elmélet megontolásokkl hsonló módon állíthtó elő [ mod mod mod mod mod ] [ mod mod mod mod mod ] [ ] mod mod mod mod mod mod A normálegenlet-rendser megoldásár sámos módser smert skrodlomn. A gkorlt sámítások során sngulárs értékek dekomoóán luló sngulr vlue deomoston SVD módser megelelőnek onult megoldás előállításár A vetítés köont koordnátánk meghtároás A hrmdk léésen vetítés köont koordnátát htárouk meg. A vetítés köont még smeretlen [ ] T rméteret s méretrán-téneő és orgtás mátr és már meghtároott értékevel össeüggés elhsnálásávl nerhetük. s s s s s s A 6 össeüggésen s nde mnd kékoordnáták mnd tárgkoordnáták esetéen dtrendser súlontár vontkok. Vlóán mndhárom ontr 6 egenleteket megolduk és koordnátákr kott értékek átlgát vessük. Vlmenn rméter megdásávl külső táékoás leldt megoldottnk teknthető. 6
6 8 ávot J. 6. Össeoglló A tnulmánn megdtunk eg ú mtemtk megoldást külső táékoás rméterenek meghtároásár. Ahog hgomános elárásnál s megoldás ontok kékoordnátá és hoáuk trtoó tárg- vg terekoordnáták köött ennálló lekéeés össeüggésenek elhsnálásán nugsk úg ú megoldásnk s l ontok kékoordnátá és hoáuk trtoó tárg- vg terekoordnáták köött ennálló ksolt. A tnulmánn tárglt elárás hgomános megoldás módser helett ú mtemtk megoldás menetet d meg. Fő eltérés ú és hgomános módser köött méretránténeők keeléséen vn míg rég módser ndrekt keel nem hsnál méretránokt ú módser mnden ont esetén elte meghtáro eged méretránténeőket. A külső táékoásr úonnn kdolgoott elárás hgomános megoldás módsereknél htékon gors lgortmusr éül rég módser nehéséget kküsööl nem génel sem Tlor-soretést sem köelítő értékeket sem teráót. A módser továelestése külső táékoás evonhtó ontok sámánk növelése érdekéen nemlneárs egenletrendserek megoldásánk keeléséen kéelhető el. Irodlomegék [] Awnge JL. Grrend EW. Lnered Lest Squres nd nonlner Guss-Jo omntorl lgorthm led to the 7 rmeter dtum trnsormton C7 rolem etshrt ür Vermessungswesen [] Awnge JL. Grrend EW. Closed orm soluton o the overdetermned nonlner 7 rmeter dtum trnsormton Allgemene Vermessungsnhrhten [] Btth L. ávot J. Soluton o the nterseton rolem the Slvester-resultnt nd omrson o two solutons o the D smlrt trnsormton At Geod. Geoh. Hung [4] Btth L. ávot J. A előmetsés rolém és D hsonlóság trnsormáó Geomtk Kölemének II [5] Jnsó T. Külső táékoás elemek meghtároás követlen nltkus módserrel Geodé és Krtográ [6] Jnsó T. Durvh-sűrés otogrmmetr hátrmetsés kegenlítése előtt kedőértékek megdás nélkül Geomtk Kölemének VII [7] Luhmnn T. Nherehshotogmmetre Herert-Whmnn Verlg Hedelerg 57. [8] Plán B. Don-reultáns lklmás otogrmmetr külső táékoás megoldás során Geomtk Kölemének V [9] ávot J. A geodé korserű mtemtk módsere Geomtk Kölemének II [] ávot J. A 7 rméteres D trnsormáó egkt megoldás Geomtk Kölemének VIII [] ávot J. Jnsó T. The soluton o the 7-rmeter dtum trnsormton rolem wth- nd wthout the Gröner ss At Geod. Geoh. Hung [] ávot J. A otogrmmetr külső táékoás eg ú lterntív megoldás Geomtk Kölemének IV/ [] ávot J. Frtsh D. A rst ttemt t new lger soluton o the eteror orentton o hotogrmmetr Geod. Geoh. Hung
Matematikai Közlemények. II. kötet
Mtemtk Kölemének II. kötet NmE EMK Mtemtk Intéet Sopron udós ársság 4 Mtemtk Okttás és KUttás Semnárum MOKUS 4 Konerenckötet NmE EMK Mtemtk Intéet Sopron udós ársság Serkestők: Dr. Závot Jóse egetem tnár
A lecke célja: A tananyag felhasználója megismerje az erőrendszerek egyenértékűségének és egyensúlyának feltételeit.
modul: Erőrendserek lecke: Erőrendserek egenértékűsége és egensúl lecke célj: tnng felhsnálój megsmerje erőrendserek egenértékűségének és egensúlánk feltételet Követelmének: Ön kkor sjátított el megfelelően
- Anyagi pontrendszer: anyagi pontok halmaza / összessége.
2 LPFGLK mechnk fk egk (klsskus) résterülete mechnk tárg: testek (ng pontok ng pontrendserek) heletváltottó mogásnk és eeket létrehoó htásoknk (erőknek) vsgált vsgált testek hlmállpot sernt besélhetünk:
Matematikai összefoglaló
Mtemt össefoglló Vetoro Ngon so oln mennség vn, mel nem ellemehető egetlen sámml. A len mennségre legegserű és mnden áltl ól smert péld, vlmel pontn helete téren. Amor táéoódun és eg pont heletét meg ru
- Anyagi pontrendszer: anyagi pontok halmaza / összessége.
LFGLK mechnk fk egk (klsskus) résterülete mechnk tárg: testek (ng pontok ng pontrendserek) heletváltottó mogásnk és eeket létrehoó htásoknk (erőknek) vsgált vsgált testek hlmállpot sernt besélhetünk: -
1. Algebra x. x + értéke? x
Alger I Feldtok Bonts fel két 0-nél ngo sám sortár követkeő sámokt: ) ) ) d) e) f) g) h) i) j) k) Alkíts lson foksámú polinomok sortává lái polinomokt: ) i) ) j) 7 ) k) d) l) 0 6 e) m) 0 6 f) n) g) o)
XI. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
XI. FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolosvár, 6. márcus 4-5. A PÉTRVÁR-I CSAVAR TAGJAI POZICIÓJÁNAK GHATÁROZÁSA KÉNYSZRGYNLTK SGÍTSÉGÉVL Gergel Attla-Levente Astract Ths paper refl presents a mathod
2. Koordináta-transzformációk
Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,
A lecke célja: A tananyag felhasználója megismerje az erő, a nyomaték és erőrendszerek jellemzőit.
2 modul: Erőrendserek 21 lecke: Erő és nomték lecke célj: tnng felhsnálój megismerje erő, nomték és erőrendserek jellemőit Követelmének: Ön kkor sjátított el megfelelően tnngot, h sját svivl meg tudj htároni
KOORDINÁTATRANSZFORMÁCIÓK MEGOLDÁSA SZÁMÍTÓGÉPES
BUDAPESTI MŰSAKI ÉS GADASÁGTUDOMÁNI EGETEM ÉPÍTŐMÉRNÖKI KAR ÁLTALÁNOS- ÉS FELSŐGEODÉIA TANSÉK KOORDINÁTATRANSFORMÁCIÓK MEGOLDÁSA SÁMÍTÓGÉPES ALGEBRA ÉS NEURÁLIS ÁLÓATOK FELASNÁLÁSÁVAL Ph.D. értekeés ALETNIK
Tengelyek lehajlásának számítása Oktatási segédlet
Németh Gé djunktus Tengelyek lehjlásánk sámítás Okttási segédlet iskolci Egyetem Gép és termékterveési Intéet iskolc, 4. március. - - Tengelyek lehjlásánk sámítás A tengelyeket kéttámsú trtóként modelleve,
F.I.1. Vektorok és vektorműveletek
FI FÜGGELÉK: FI Vektorok és vektorműveletek MATEMATIKAI ÖSSZEFOGLALÓ Skláris menniség: oln geometrii vg fiiki menniség melet ngság (előjel) és mértékegség jelleme Vektor menniség: iránított geometrii vg
A fenti egyenletek képezik a 3D, 7 paraméteres Helmert transzformáció algebrai megoldásának alapját.
Geomtk Közleméyek XVII 4 NÉHÁNY ALENAÍV MEGOLDÁSI LEHEŐSÉG A D NEMLINEÁIS HASONLÓSÁGI DÁUM- ANSZFOMÁIÓ ALKALMAZÁSÁA A BUSA-WOLF MODELL VISZONYLAÁBAN Závot Józef Klmár Jáo Some ltertve olte for the oluto
Alkalmazott matematika, II. félév Összefoglaló feladatok I.
lklmott mtemtik II. félé Össefoglló feldtok I. Műeletek mátriokkl determináns meghtároás mátri foglm. Neeetes mátriok. Mátriok egenlősége. Műeletek mátriokkl (össedás sklárrl ló sorás mátriok lineáris
2. Koordináta-transzformációk
Koordnáta-transformácók. Koordnáta-transformácók Geometra, sámítógép graka feladatok során gakran van arra sükség, hog eg alakatot eg ú koordnáta-rendserben, vag a elenleg koordnáta rendserben, de elmogatva,
MECHANIKA I. - STATIKA. BSc-s hallgatók számára
ECHNK. - STTK BSc-s hllgtók sámár ECHNK. - STTK Tnkönv és jeget BSc-s hllgtók résére - - Dr. Glmbos rges echnk. Sttk tnkönv és jeget BSc-s hllgtók résére Írt és serkestette: Dr. Glmbos rges és Sándor
1. MÁSODRENDŰ NYOMATÉK
Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016
Lineáris programozás 2 Algebrai megoldás
Lineáris progrmoás Algeri megoldás Késítette: Dr. Árhám István A lineáris progrmoási feldtok mátriritmetiki lkji A LP feldtok lgeri megoldás függ feldt típsától. Tekintsük át eeket! Normál feldt A ( )
9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!
HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem
A végeselem programrendszer általános felépítése (ismétlés)
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kdolgozta: Szüle Veronka eg. ts.) IX. előadás A végeselem rogramrendszer általános feléítése (smétlés) A végeselem
Projektív ábrázoló geometria, centrálaxonometria
Projektív ábráoló geometria, centrálaonometria Ennél a leképeésnél a projektív teret seretnénk úg megjeleníteni eg képsíkon, hog a aonometrikus leképeést (paralel aonometriát) speciális esetként megkaphassuk.
15. Többváltozós függvények differenciálszámítása
5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =
Együttdolgozó acél-beton lemezek
Egüttdolgozó cél-eton lemezek számítógées tevezése D. Köllő Gáo 1, Oán Zsolt, Godj Teodo 3, Muesn Olmu 4 1 Kolozsvá Műszk Egetem, PFT. Kolozsvá, 3 ALMAA Kft. Kolozsvá, 4 DUME Kft. Kolozsvá 1. Bevezetés
AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok I.
GRÁRMÉRNÖK SZK lklmott mtemtik II. félé Össefoglló feldtok I. Műeletek mátriokkl determináns meghtároás mátri foglm. Neeetes mátriok. Mátriok egenlősége. Műeletek mátriokkl (össedás sklárrl ló sorás mátriok
9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek
. Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <
Matematikai összefoglaló
Mtemt össefolló etoro Non so oln mennsé vn, mel nem ellemehető eetlen sámml. len mennsére leeserű és mnden áltl ól smert péld, vlmel pontn helete téren. mor táéoódun és e pont heletét me ru htáron, or
Ideális kristályszerkezet február 27.
Ideális kristályserkeet 00. február 7. Térrács fglm: Kiterjedés nélküli pntk sbálys rendje térben. Elemi cell: térrács n legkisebb egysége, mely dtt serkeet vlmennyi gemetrii törvényserűségét mgán hrd.
2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e)
. Egenletek I. Feldtok. Oldj meg z lábbi egenleteket egenletrendszereket vlós számok hlmzán. ) b) ( ) ( ) 8 Klmár László Mtemtik Versen döntője 99. 8. osztál c) ( ) ( ) ( ) ( ) OKTV II. ktegóri. forduló
GEODÉZIAI DÁTUMTRANSZFORMÁCIÓ ITERÁCIÓS MEGOLDÁSA KVATERNIÓVAL
GEODÉZIAI DÁUMRANSZFORMÁIÓ IERÁIÓS MEGOLDÁSA KVAERNIÓVAL Sent István Egetem Yl Mklós Éítéstudomán Kar ÖSSZEFOGLALÁS A dátumtransformácó a egk leggakraan előforduló feladat a geodéáan forogrammetráan térnformatkáan
hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.
5 RÚDELADATOK 51 íkgörbe rudk Grhof 1 -féle elmélete íkgörbe rúd: rúd köépvonl ( ponti ál) íkgörbe e P n e t Jelöléek: A köépvonl mentén pontokt ívkoordinátávl onoítjuk Pl P pont A P pontbn (P pontho trtoó
823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.
Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (
Műveletek komplex számokkal
Műveletek komplex sámokkl A komplex sámok lklmás nyn eyserűsíti sámos műski prolém meoldását, különös tekintettel elektrotechniki, rendserelméleti és reéstni feldtokr. A követkeőken csk műski lklmások
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri
σ = = (y', z' ) = EI (z') y'
178 5.4.. Váltoó kerestmetsetű rudak tsta hajlítása Enhén váltoó kerestmetsetű, tsta hajlításra génbevett rúdnál a eges pontok fesültség állapota - a váltoó kerestmetsetű rudak tsta nomásáho vag húásáho
Héj / lemez hajlítási elméletek, felületi feszültségek / élerők és élnyomatékok
Héj / leme hajlítási elméletek felületi fesültségek / élerők és élnomatékok Tevékenség: Olvassa el a bekedést! Jegee meg a héj és a leme definícióját! Tanulja meg a superpoíció elvét és a membrán állapot
EXPONENCIÁLIS EGYENLETEK
Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok
3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül
alkalmazott hő-h szimuláci
Buderus Rosenberg sakmai napok Visegrád, 008.május.6-7. A légtechnikai l fejlestések sek során alkalmaott hő-h és áramlástani simuláci ciós s eljárások Sekeres GáborG Okl.gépésmérnök Beeetés Numerikus
Egzakt következtetés (poli-)fa Bayes-hálókban
gakt követketetés pol-fa Baes-hálókban Outlne Tpes of nference B method: exact, stochastc B purpose: dagnostc sngle-step, sequental DSS, explanaton generaton Hardness of exact nference xact nference n
9. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
LKLZOTT EHNIK TNSZÉK 9 EHNIK-SZILÁRDSÁGTN GYKORLT (kidolgot: dr Ng Zoltán eg djunktus; ojtár Gergel eg Ts; Trni Gábor mérnöktnár) 9 Fjlgos núlás htároás núlásmérő béleggel érőeskö: 6 -os núlásmérő béleg
Robottechnika II. 1. Bevezetés, ismétlés. Ballagi Áron Automatizálási Tanszék
Robottechnika II. 1. Beveetés, ismétlés Ballagi Áron Automatiálási Tansék Bemutatkoás Dr. Ballagi Áron tansékveető-helettes, egetemi docens Automatiálási Ts. C71, 3461 Autonóm és Intelligens Robotok Laboratórium
Frissítve: Síkidomok másodrendű nyomatékai. Egy kis elmélet 1 / 21
Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki Eg kis elmélet 1 / 21 Frissíte: 2015.02.16. Síkidomok másodrendű nomtéki 1. péld: Számítsk ki súlponti és tengelekre számított másodrendű nomtékokt! Megjegzés:
EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
Az EM tér energiája és impulzusa kovariáns alakban. P t
LDIN 4- A té enegá és mpls ováns lbn β ε δ β BBβ β μ (, β,,) μ B ( g) P t t ( ε ) S A negtív előelne töténelm o vnn S μ B g S ε B ε μ B ésesé nnsene elen tében P ε g t S t Cs eletomágneses teet ttlm 4-es
VI. Deriválható függvények tulajdonságai
1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn
Skolem forma. Skolem tétel Tetszőleges A formulához megszerkeszthető egy x x K 1 2
eolúció Skolem orm Deiníció A K 2 n A lkú ormulát univerális Skolem-ormánk neveük A kvntormentes ormul Skolem-orm mgj vg mátri. H Skolemorm mgj konjunktív normálorm kkor ormulát univerális Skolemnormálormánk
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA
l.ch TÖBBVÁLTOZÓS FÜGGVÉNYEK HATÁRÉRTÉKE ÉS DIFFERENCIÁLHATÓSÁGA A kétváltozós függvének két vlós számhoz rendelnek hozzá eg hrmdik vlós számot, másként foglmzv számpárokhoz rendelnek hozzá eg hrmdik számot.
A tiszta hajlítás fogalma. A hajlítás tipikus esetei a mérnöki gyakorlatban
13. HAJLÍTÁ I. A tist hjlítás foglm A rúd kerestmetsetére htó erőrendser eredője kerestmetseti síkn fekvő erőpár (másképpen: kerestmetset egetlen nemérus igénevétele hjlítónomték). A hjlítás tipikus esetei
1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok
/0 SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gábor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgebri összefoglló:
Statika Feladatok 22/1
Sttik eldtok /. Vektornlíi. Vektor értelmeée, tuljdonági, megdá. Műveletek vektorokkl, külön hngúlt fektetve oráokr (klárrl vló, klári, vektoriáli, kétere vektoriáli, vege orá). (; 0; 5) [m]; ( ; 4; 0)
MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG
Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről
2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:
Az összetett hajlítás képleteiről
A össetett hajlítás képleteiről Beveetés A elemi silárdságtan ismereteit a tankönvek serői általában igekenek úg kifejteni, hog a kedő sámára se okoanak komolabb matematikai nehéségeket. A húásra / nomásra
1. El szó. Kecskemét, 2005. február 23. K házi-kis Ambrus
. Elsó olgoat témájául solgáló utatásoat egrést még a buaesti Silártestfiiai Kutatóintéet munatársaént etem maj eg utatással fejlestéssel foglaloó magáncég (& Ultrafast asers Kft.) olgoójaént jelenleg
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
Tartóprofilok Raktári program
Tartóproflok Raktár program ThenKrupp Ferroglou ThenKrupp Nolcadk kadá 6. áprl Ötvözetlen é alacon ötvözéú lemeztermékek Betonacélok Szerzámacélok Melegen hengerelt rúdacélok Könnú - é zínefémek Rozdamente
A folyamatműszerezés érzékelői
R E P E A A folamatműsereés érékelő Energaátalakulások slárd testekben peo- és proelektromos átalakítók 1. Dr. Fock Károl A érékelők működésének alapat a energaátalakulások képek. A ckksoroat most kedődő
2, 1. annyi, hogy merőleges legyen a másik két vektorra, például választható egész koordinátájú vektor is:
Grm-Shmitortogonliáió. köetkeő független ektorokól Grm-Shmit móserrel állítson elő ortogonális áist!mj kpott ektorokól állítson elő ortonormált áist!. Normáljk kpott ektorokt: e mert e könne sámolás égett
y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja: z x iy,
SZÉCHENYI ISVÁN EGYEEM ALKALMAZO MECHANIKA ANSZÉK MECHANIKA-REZGÉSAN GYAKORLA (kdolgota: Fehér Lajos, eg ts; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek
STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)
STATIKA A minimum test kérdései a gépésmérnöki sak hallgatói résére (2003/2004 tavasi félév) Statika Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése (1) 3. A merev test fogalma (1) 4. A
Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Statika. Készítette: Nándori Frigyes, Szirbik Sándor Mechanikai Tanszék, 3515 Miskolc-Egyetemváros
iskolci Egetem GÉPÉSZÉRNÖKI ÉS INORTIKI KR Sttik (Okttási segédlet Gépésmérnöki és Informtiki Kr sc leveleős hllgtói résére) Késítette: Nándori riges, Sirbik Sándor echniki Tnsék, 3515 iskolc-egetemváros
GEODÉZIA ÉS KARTOGRÁFIA
GEODÉZIA ÉS KARTOGRÁFIA 57. ÉVFOLYAM 5 5. SZÁM A Eötvös-nga mérések geodéa célú hasnosításának helete Magarorságon Dr. Völges Lajos egetem docens,, dr. Tóth Gula egetem docens, dr. Csapó Géa saktanácsadó
y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja:, z x iy x
SZÉCHENYI ISVÁN EGYEEM LKLMZO MECHNIK NSZÉK MECHNIK-REZGÉSN GYKORL (kdolgota: Fehér Lajos, tas m; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek Komle
A ferde hajlítás alapképleteiről
ferde hajlítás alapképleteiről Beveetés régebbi silárdságtani sakirodalomban [ 1 ], [ ] más típusú leveetések, más alakú képletek voltak forgalomban a egenes tengelű rudak ferde hajlításával kapcsolatban,
Az Eötvös-inga mérések geodéziai célú hasznosításának helyzete Magyarországon
A Eötvös-nga mérések geodéa célú hasnosításának helete Magarorságon Dr. Völges Lajos egetem docens,, dr. Tóth Gula egetem docens, dr. Csapó Géa saktanácsadó 3 Sabó Zoltán saktanácsadó 3, BME Általános-
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek lineáris elsőfokú, z ismeretlenek ( i -k) elsőfokon szerepelnek. + + n n + + n n m + m +m n n m m n n mn n m (m n)(n )m A A: együtthtó mátri Megoldás: milyen értékeket vehetnek
Mechanika. III. előadás március 11. Mechanika III. előadás március / 30
Mechanika III. előadás 2019. március 11. Mechanika III. előadás 2019. március 11. 1 / 30 7. Serkeetek statikája 7.2. Rácsos serkeet hidak, daruk, távveeték tartó oslopok, stb. 3 kn C 4 m 2 4 8 5 3 7 1
Koordináta-geometria alapozó feladatok
Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).
A szilárdságtan 2D feladatainak az feladatok értelmezése
A silárdságtan D feladatainak a feladatok értelmeése Olvassa el a ekedést! Jegee meg a silárdságtan D feladatainak csoportosítását! A silárdságtan (rugalmasságtan) kétdimeniós vag kétméretű (D) feladatai
VI. Kétismeretlenes egyenletrendszerek
Mtemtik A 9. évfolm 7. modul: EGYENLETEK Tnári kézikönv VI. Kétismeretlenes egenletrendszerek Behelettesít módszer Mintpéld Két testvér érletpénztárnál jeget vásárol. Az egik vonljegért és eg átszálló
Kovács Judit ELEKTRO TEC HNIKA-ELEKTRONIKA 137
ELEKTROTECHNIKA-ELEKTRONIKA Kovács Judit A LINEÁRIS EGYENLETRENDSZEREK GAUSS-FÉLE ELIMINÁCIÓVAL TÖRTÉNŐ MEGOLDÁSÁNAK SZEREPE A VILLAMOSMÉRNÖK SZAKOS HALLGATÓK MATEMATIKA OKTATÁSÁBAN ON THE ROLE OF GAUSSIAN
1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 1 MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összefoglló 11 Mátrilgeri összefoglló: ) Mátri értelmezése, jelölése: Mátri:
A lecke célja: A tananyag felhasználója megismerje a rugalmasságtan 2D feladatainak elméleti alapjait.
9 modul: A rugalmasságtan D feladatai 9 lecke: A D feladatok definíciója és egenletei A lecke célja: A tananag felhasnálója megismerje a rugalmasságtan D feladatainak elméleti alapjait Követelmének: Ön
Emelt szintő érettségi tételek. 19. tétel: Vektorok. Szakaszok a koordinátasíkon. Irányított szakasz, melynek állása, iránya és hossza van.
19. tétel: Vektrk. Szkszk krdinátsíkn. Vektr: Iráníttt szksz, melnek állás, irán és hssz vn. Jele: v = AB Vektr bszlút értéke: A vektrt meghtárzó iráníttt szksz ngság. Jele: v = AB Vektrk kölcsönös helzete:
Numerikus módszerek 3. Lineáris algebrai problémák közelítő megoldása
umerius módsere. Lieáris lgeri prolémá öelítő megoldás Lieáris egeletredsere Diret módsere Iterációs módsere Sátértéfeldto Áltláosított iver Lieáris egeletredsere Lege M dott reguláris mátri, egelet: R
1. MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. ts.) Matematikai összefoglaló
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK MECHANIKA-MOZGÁSTAN GYAKORLAT (kidolgozt: Szüle Veronik, eg ts) Mtemtiki összeoglló Mátrilgeri összeoglló: ) Mátri értelmezése, jelölése: Mátri: skláris
Nemlineáris függvények illesztésének néhány kérdése
Mûhel Tóth Zoltán docens, Károl Róbert Főskola E-mal: zol@karolrobert.hu Nemlneárs függvének llesztésének néhán kérdése A nemlneárs regresszós és trendfüggvének llesztésekor számos esetben alkalmazzuk
6. RUDAK ÖSSZETETT IGÉNYBEVÉTELEI
RUK ÖZETETT GÉNYBEVÉTELE Tönkremeneteli elméletek a) peiális eset: a fesültségi tenornak sak eg eleme nem nulla (pl rudak egserű igénbevételeinél), ϕ tt nins probléma, mert a anagjellemők eekre a egserű
A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.
A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása
A VÉGESELEM-MÓDSZER ALAPJAI
A VÉGESEEM-MÓDSZER AAPJAI A projekt címe: Egségesített Jármű- és mobilgépek képés- és tananagfejlestés A megvalósítás érdekében létrehoott konorcium réstvevői: KECSKEMÉI FŐISKOA BUDAPESI MŰSZAKI ÉS GAZDASÁGUDOMÁNYI
. Vonatkoztatási rendszer z pálya
1. Knemaka alapfogalmak. A pála, a sebesség és a gorsulás defnícója. Sebesség, és gorsulás lokáls koordnáá. Mogás leírása különböő koordnáa-rendserekben. A knemaka a mogás maemaka leírása, a ok felárása
Megjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként
A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni
ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL. Oktatási segédlet
ANYAGJELLEMZŐK MEGHATÁROZÁSA ERŐ- ÉS NYÚLÁSMÉRÉSSEL Oktatási segédlet a Rugalmasságtan és Alkalmaott mechanika laboratóriumi mérési gakorlatokho a egetemi mesterképésben (MSc) réstvevő mérnökhallgatók
Szilárdtestek elektronszerkezete feladatok
Szilárdtestek elektronszerkezete feladatok Csősz Gábor 8. január.. feladat A feladatban az alábbi mátriot kell diagonizálni. ε B,F,G (k) V V H = V ε B,F,G (k) V V V ε B,F,G (k) Kihasználva a rács szimmetriáját
PROJEKTÍV GEOMETRIA mobidiák könyvtár
Bácsó Sándor - Ppp Ildkó - Szbó József PROJETÍV GEOMETRIA mobdiá könyvtár Bácsó Sándor - Ppp Ildkó - Szbó József PROJETÍV GEOMETRIA mobdiá könyvtár SOROZATSZERESZTÖ Fzeks István Bácsó Sándor - Ppp Ildkó
Dr. Égert János Dr. Nagy Zoltán ALKALMAZOTT RUGALMASSÁGTAN
Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN Dr Égert János Dr Nag Zoltán ALALMAZOTT UGALMASSÁGTAN UNIVESITAS-GYŐ Nonprofit ft Gőr 9 SZÉCHENYI ISTVÁN EGYETEM GYŐ Írta: Dr Égert János Dr Nag Zoltán
Mérés és jelfeldolgozás,
érés és elfeldolgoás 38 Vált érés és elfeldolgoás r Pdul Zoltá érés hbá sttst semotból Alo Sűrűségfüggvé Eloslásfüggvé Várhtó érté Sórás Sttst mt Átlg tuldoság ormáls eloslás Budest űs és Gdságtudomá Egetem
10. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. Ts.; Tarnai Gábor mérnöktanár.
10.1. Ferde hjlítás 10. ECHNK-ZLÁRDÁGTN GYKORLT (kidolgot: dr. Ng Zoltán eg. djunktus; ojtár Gergel eg. Ts.; Trni Gábor mérnöktnár.) dott: b 60 b 20 mm, mm, ( 40 j 120 k ) knm. Feldt: ) Htáro meg és sámíts
Műszaki Mechanika I. A legfontosabb statikai fogalmak a gépészmérnöki kar mérnök menedzser hallgatói részére (2008/2009 őszi félév)
Műsaki Mechanika I. A legfontosabb statikai fogalmak a gépésmérnöki kar mérnök menedser hallgatói résére (2008/2009 ősi félév) Műsaki Mechanika I. Pontsám 1. A modell definíciója (2) 2. A silárd test értelmeése
Máté: Számítógépes grafika alapjai
VETÍTÉSEK Vetítések fajtái / Trasformációk amelek -imeiós objektumokat kisebb imeiós terekbe visek át. Pl. 3D 2D Vetítés köéotja ersektívikus A A B Vetítési B Vetítés köéotja a végtelebe árhuamos A A B
A 3D Helmert transzformáció méretarány-tényezőjének és forgatási mátrixának becslései
DIMENZIÓK 9 Mtemtk Közleméyek II. kötet, 4 A D Helmert trzformáó méretráy-téyezőjéek é forgtá mátrxák elée Závot Józef MA CSFK GGI zvot@ggk.hu Klmár Jáo MA CSFK GGI klmr@ggk.hu ÖSSZEFOGLALÓ. A tulmáy geometr
A REPÜL GÉP SZIMULÁTOROK ÉS TRENÁZS BERENDEZÉSEK MATEMATIKAI MODELLEZÉSÉNEK JELLEMZ I
A REPÜL GÉP SZIMULÁTOROK ÉS TRENÁZS BERENDEZÉSEK MATEMATIKAI MODELLEZÉSÉNEK JELLEMZ I Békési Lásló mk. eredes Egyetemi adjunktus Dr. Sabó Lásló mk. aleredes egyetemi adjunktus Zrínyi Miklós Nemetvédelmi
Szilárdságtan. Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR
Miskolci Egetem GÉÉMÉRNÖKI É INORMTIKI KR ilárságtan (Oktatási segélet a Gépésmérnöki és Informatikai Kar sc leveleős hallgatói résére) Késítette: Nánori riges, irbik ánor Miskolc, 2008. Een kéirat a Gépésmérnöki
A rögzített tengely körül forgó test csapágyreakcióinak meghatározása a forgástengely ferde helyzete esetében. Bevezetés
A rögített tengel körül forgó test csapágreakcióinak meghatároása a forgástengel ferde helete esetében Beveetés A előő dolgoatokban nem esett só a forgástengel ferde heletének esetéről. Aokban a ábrák
Kalkulus II., harmadik házi feladat
Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség
Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. fejezet
2011/2012 tvsi félév 7. ór Elektródpotenciálok, Stndrd elektródpotenciál foglm Egyserű fémelektródok, oxelektródok (pl. Sn 2+ /Sn 4+ ) ph-függő redoxelektródok (pl. Mn 2+ /MnO 4, Cr 3+ /Cr 2 O 7 2 ) Másodfjú
Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek
Bevezetés progrmozásb 3. Elődás Algortmusok, tételek ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet
Dr. Batta Gyula: A modern NMR módszerek elméleti alapjai. A modern NMR módszerek elméleti háttere:
A modern NMR módserek elmélet háttere: Ajánlott rodalom: Slág Lásló-jeget: Beveetés és elsőrendű spektrum elemés A.Derome: Technka aspektusok, vektormodell, alapkísérletek Modern NMR technques for chemstr
1. téma Közelítő (numerikus) számítások, hibaforrások, hibabecslések
. tém Köelítő umerus sámításo, horráso, hecslése Beeetés deeelőtt t sereté tstá, hogy mért süség oly lgortmuso dolgoásár, melye egy dott mtemt prolém megoldását cs öelít. ért em oly elárásol ogllou, melyeel