A 3D Helmert transzformáció méretarány-tényezőjének és forgatási mátrixának becslései

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A 3D Helmert transzformáció méretarány-tényezőjének és forgatási mátrixának becslései"

Átírás

1 DIMENZIÓK 9 Mtemtk Közleméyek II. kötet, 4 A D Helmert trzformáó méretráy-téyezőjéek é forgtá mátrxák elée Závot Józef MA CSFK GGI zvot@ggk.hu Klmár Jáo MA CSFK GGI klmr@ggk.hu ÖSSZEFOGLALÓ. A tulmáy geometr egyk foto elmélet rolémáját tárgylj: két térel koordát redzer között kereük mtemtk özefüggét két redzere koordátákkl megdott közö otárok felhzáláávl. A térkéézete, geometrá két koordát-redzer között áttéré orá legáltláo hzált eljárá D, 7 rmétere Helmert trzformáó lklmzá. ABSAC. he reet work del wth mortt theoretl rolem of geometry: we re lookg for mthemtl deedey etwee two tl oordte ytem utlzg ommo r of ot whoe oordte re gve oth ytem. I rtogrhy d geometry the mot ofte ued roedure to move from oe oordte ytem to the other the D, 7 rmeter Helmert trformto.. Bevezeté A D, 7 rmétere Helmert dtum trzformáó zámítógée lger redzerekkel törtéő tárgyláá Awge é Grfred (,,, ) éveke megjelet tulmáy új ráyt dtk tém kuttáák, Awge et l. (4) tulmáy kterjeztette megoldá módokt. A hz zkrodlom Závot (5) tulmáy z elő lger megközelítée feldt megoldáák, mely egyúttl mtemtk modell jvítáár jvltot tett. A Závot é Jó (6) tulmáy jó lötletet dott emleár rolém leárr törtéő vzvezetéére, mt Závot () kk dolgozott k rézleteee. Az zolút tájékozá rolém kvterókkl törtéő megoldáát Hor (987) tulmáy z elők között tárgylt, megoldá eltér Závot () kke leírtktól. A Klmár é Závot () tulmáy jól özefogllt két megoldá külöözőégét.

2 Závot J. Klmár J.. A D, 7 rmétere holóág trzformáó mtemtk modellje együk fel, hogy dott két külööző koordátredzere mért közö ot koordátákkl. A D, 7-rmétere (Helmert) térel túlhtározott holóág trzformáó következő modellel dhtó meg: Eukldéz tére kereük z elődlege (él) (X, Y, Z)- é máodlgo (tárgy) (x, y, z) koordát-redzerek között lekéezét z lá formá: t,,,...,, () hol X, Y, Z élotok koordát értéke, - [ ] - t [, Y Z ] X, z meretle eltolá-vektor, - z meretle méretráy-téyező, - ( α, β, γ ) forgtá mátrx, - [ x, y, z ] tárgyotok koordát értéke. Az forgá mátrxot három tegely körül elforgtá zöge defálj. A D, 7 rmétere Helmert trzformáó lger megoldá érdekée Awge é Grfred () z forgtá mátrxot ferdé zmmetrku C mátrx (5) evezetéével következő módo írt fel: ( I C ) ( I C ), () hol I három dmezó egyégmátrx, é C mátrx z, é rméterekkel meghtározott: C. () H z () egyeletet (4) özefüggé ljá z ( I C ) kkor következő lk dódk: X Y Z X Y Z mátrxzl lról zorozzuk, x y,,,...,. (4) z A fet egyeletek kéezk D, 7 rmétere Helmert trzformáó közvetítő egyeletet, melyek elletmodát z lger megoldá orá mmlzál kell.. A méretráy-téyező elée Závot () tulmáyá úlyot koordáták evezetéével megdt z eltolá rméterek elmáláák módját. Igzolt, hogy túlhtározott egyeletredzer megoldá orá z, é rméterek kküzööléével eze rméterek keek é rméterre egy meretlee, máodfokú, túlhtározott egyeletredzer áll elő z lá formá: ( x y z ) X Y Z,,,...,, (5)

3 A D Helmert trzformáó méretráy-téyezőjéek é forgtá mátrxák elée hol X X X, Y Y Y, Z Z Z x x x, y y y z z z,,...,,,,,...,. (Megjegyezzük, hogy Awge é Grfred () tulmáyá méretráytéyezőre egy egyedfokú egyelet dódott.) A (5) egyeletredzer túlhtározott, megoldá tö féle módo megdhtó... I. Megoldá: A fet egyeletredzert lkítuk zorzttá következő módo: ( x y z X Y Z )( x y z X Y Z ),,,...,. (6) ektük (6) formulá zerelő zorztok elő téyezőt. Megolddó z lá egyeletredzer: x y z X Y Z,,...,. (7) Adjuk öze vlmey egyeletet! Ekkor túlhtározott egyeletredzer megoldá orá méretráy-téyező értékére z lá, Závot () kke megdott, tztltól mert özefüggé dódk: X Y Z. (8) x y z A zkrodlom Alertz é Krelg (975) ulkáój ljá mert, hogy méretráy-téyező zámolhtó otok úlyot redzerel távolágok özegeek háydokét. ehát (5) máodfokú egyeleteket előfokú egyeletekre vezettük vz... II. Megoldá ektük mételte (5) egyeletredzert é djuk öze vlmey egyeletet. Így z lá özefüggé dódk: ( x y z ) ( X Y Z ) (9) A fet egyelet zorzttá lkítá élkül egyzerűe megoldhtó. A méretráytéyező értékére zámukr fzk jeletéel író oztív gyök ljá z lá, Hor (987) tulmáyá kvterókkl levezetett özefüggé dódk, mely Závot () ljá Bur-Wolf modell megoldá : ( X Y Z ) ( ). x y z () ehát jele eete méretráy-téyezőt máodfokú egyeletekől egyértelműe meghtározhtjuk zkrodlomól mert (Awge é Grfred ()) egyedfokú olom gyökeek oyolult zétválztá eljáráávl zeme.

4 Závot J. Klmár J... III. Megoldá érjük át úlyot koordátákr: ( két koordát redzere é úlyotot jelöl):, (). Vzírv trzformáó () kéletée kjuk: Átredezé utá dódk: ( ) t.,,...,. () t.,,...,. () A () kélet közee elhgyhtó, mert z () özefüggé z é úlyotokr gz, így mrd:.,,...,. (4) Az meretle t eltolá-vektortól így átmeetleg megzdultuk, mrdk még é z változók. Az () formul ljá Bur-Wolf modelle t eltolá-vektort átlgolál ktuk: t (5) Áttérve méretráy-téyező vzgáltár, z egyzerű özeholíthtóág végett ktulzáljuk (8) kéletet Bur-Wolf modell jelöléevel:. (6) A méretráy-téyező eléére () é (6) özefüggéek ljá v egy léyege külöég: (6) kélete elő v gyökvoá, é utá özegzé, míg () formulá fordítv ezért megállíthtjuk, hogy () é (6) özefüggéek em ekvvleek, vgy méretráy-téyezőre két kélet émleg eltérő értéket zámolht. Vzot () é (6) kéletek egyrát ttztk eléek méretráy-téyezőre (eltéréük hegyeletek felírááól zármzk), mert fxotjuk megegyezk. Iduljuk k ugy ól, hogy z deál Helmert trzformáó orá mde távolág é kééek háydo fx () m gz úlyot koordátákr, ugy trzformáó orá úlyotot áthelyeztük, vgy úlyot koordátákól úlyottól vló távolágok levezethetők:,,,,...,, (7) é távolágok között özefüggét méretráy-téyezővel írhtjuk fel hmete eete:,,,...,. (8) Ezt követőe eláthtó, hogy (8) özefüggé ehelyetteítée (8) kélete, lletve (6) formulá zooághoz vezet, vgy két ttztk elé fxotj (z elmélet méretráy) megegyezk. Ameye (8) kélet ljá felírjuk közvetleül hegyeleteket: ν,,,...,, (9) kkor kegyelíté z lá (de ugyzo fxotú), koráktól eltérő ttztk eléhez vezet:

5 A D Helmert trzformáó méretráy-téyezőjéek é forgtá mátrxák elée ( ) ( ). () A fetek ljá megállíthtjuk, hogy (6) é () kéletek ljá gz következő özefüggé:. ().4. IV. Megoldá Htározzuk meg (4) formul mrdék vektort: ν,,...,,. () ektük következő otmlzálá feldtot: ν ν,, m m. () Mvel ortogoál mátrx ( I ), z egyelet következő lk felírhtó:, m. (4) A élfüggvéy zélőértékét zert rál dervált eltűée eeté vez fel, így kjuk, hogy. (5) Márézt (4) kélet mtt teljeül,,...,,. (6) Ezért (5) özefüggé felírhtó (7) lk, mől zkrodlom mert Hor-féle kélet dódk:. (8) ehát megdtuk égy levezetét D, 7 rmétere Helmert trzformáó méretráy-téyezőjéek megoldáár.

6 4 Závot J. Klmár J. 4. A Grfred-féle é Bur-Wolf-féle modell forgtá mátrxák kolt Az C ferdé zmmetrku mátrx z () kélete ljá, () özefüggéel defált forgtá mátrx következő lk írhtó fel:. (9) Márézről forgtá mátrx é kvteró között z lá özefüggé v (She é Che, 6): ( ) C I. () A () formulát rézletee következő formá írhtjuk fel:. () Felmerülhet z kérdé, hogy (9) é () kéletekkel dott forgtá mátrxok mlye eete egyezek meg? Legye,,. () Helyetteítük () özefüggéekkel dott, é rmétereket (9) formulá, z lá özefüggéekhez jutuk:. () A () kélete z forgtá mátrx vlmey eleméek evezőjéől kemelve értéket, mátrx klárzorzóják zámlálóját értékkel egyzerűítve, é felhzálv, hogy, ée () özefüggéel dott zooághoz jutuk, zz (9) özefüggéől () formulát ktuk meg. Legye mot,,. (4) Ekkor z ( ) (5)

7 A D Helmert trzformáó méretráy-téyezőjéek é forgtá mátrxák elée 5 egyeletől kjuk z lá egyelőéget: ±. (6) Helyetteítük mot (4) é (6) özefüggéeket () formulá, kkor z forgtá mátrxr z lá lk dódk:, (7) mely láthtólg megegyezk (9) özefüggéel. ehát özefogllv, Bur-Wolf,, é kvteró komoeek é ferdé zmmetrku C mátrx, é rmétere között z. tálázt özefogllt özefüggéek állk fe. ˆG > Š > > ˆ- ˆG ˆ> ˆGŠ ˆv ˆG ˆ- ˆG Š ˆ> ˆG ˆv ˆG. tálázt. Özefüggéek kvterók é z, é rméterek között 5. Özefoglló ulmáyuk D, 7-rmétere (Helmert) térel emleár holóág trzformáó tárgylá orá megdtuk egy oly áltláo modellt, melye külööző módo levezethető trzformáó méreteráy-téyezője é Bur-Wolf modellt eál eetkét trtlmzz. A módzer léyege méretráy-téyezőre levezetett túlhtározott egyeletredzer má-má elve törtéő megoldáá rejlk. A kdolgozott modell előye, hogy méretráy-téyező meghtározáávl z eredetleg emleár rolém leár feldt megoldáár vezethető vz. Megmutttuk zt, hogy Bur-Wolf modelle evezetett kvterók é z Awge- Grfred zerzők áltl evezetett ferdé zmmetrku mátrx eleme között fukoál kolt v.

8 6 Závot J. Klmár J. Irodlomjegyzék [] Alertz, J., Krelg, W., Photogrmmetr Gude, Herert Whm Verlg, Krlruhe, (975) [] Awge, J. L., Grfred, E. W., Lerzed Let Sure d oler Gu-Jo omtorl lgorthm led to the 7 rmeter dtum trformto C7() rolem, Zethrft für Vermeugwee, 7 () 9-6. [] Awge, J. L., Grfred, E.W., Cloed form oluto of the overdetermed oler 7 rmeter dtum trformto, Allgemee Vermeughrhte, () -49. [4] Awge, J. L., Grfred, E. W., Exlt Soluto of the Overdetermed hree-dmeol eeto rolem, Jourl of Geodey, 76 () [5] Awge, J. L., Grfred, E. W., Poloml Otmzto of the 7-Prmeter Dtum rformto Prolem whe Oly hree Stto Both Sytem re Gve, Zethrft für Vermeugwee, 8 () [6] Awge, J. L., Grfred, E. W., Fukud, Y., Ext oluto of the oler 7-rmeter dtum trformto y Groeer, Bul. d Geode e Seze Aff, 6 (4) 7-7. [7] Hor, B.K.P., Cloed form oluto of olute oretto ug ut utero, Jourl of the Otl Soety of Amer, 4 (987) [8] Klmár, J., Závot, J., A D, 7-rmétere dátum trzformáó megoldá Gröer-áz é Bur-Wolf modelle, Dmezók Mtemtk Közleméyek I () [9] Závot, J., A 7 rmétere D trzformáó egzkt megoldá, Geomtk Közleméyek 8 (5) 5-6. [] Závot, J., Jó,., he oluto of the 7-rmeter dtum trformto rolem wth- d wthout the Gröer, At Geod. Geoh. Hug., 4() (6) 87-. [] She, Y.Z., Che, Y., Zheg, D. H., A utero-ed geodet dtum trformto lgorthm, J Geod 8, (6) 9 [] Závot, J., Frth, D., A frt ttemt t ew lger oluto of the exteror oretto of hotogrmmetry, At Geod. Geoh. Hug., 46 () 7-5. [] Závot, J., A mle roof of the oluto of the Helmert- d the overdetermed oler 7-rmeter dtum trformto, At Geod. Geoh. Hug., 47(4) () [4] Závot, J., A D é D emleár holóág (Helmert) trzformáók megoldáák új levezetée. Geomtk Közleméyek, 6 () 7-6.

A fenti egyenletek képezik a 3D, 7 paraméteres Helmert transzformáció algebrai megoldásának alapját.

A fenti egyenletek képezik a 3D, 7 paraméteres Helmert transzformáció algebrai megoldásának alapját. Geomtk Közleméyek XVII 4 NÉHÁNY ALENAÍV MEGOLDÁSI LEHEŐSÉG A D NEMLINEÁIS HASONLÓSÁGI DÁUM- ANSZFOMÁIÓ ALKALMAZÁSÁA A BUSA-WOLF MODELL VISZONYLAÁBAN Závot Józef Klmár Jáo Some ltertve olte for the oluto

Részletesebben

A síkbeli projektív transzformáció matematikai modelljei

A síkbeli projektív transzformáció matematikai modelljei DIENZIÓK 4 temtk Közleméek IV. kötet 6 do:./dm.6.6 íkel rojektí trzformáó mtemtk modellje Záot Józef NE KTK Közgzdág é ódzert Itézet zot.jozef@ktk.me.hu Özefoglló. Ez kk D rojektí trzformáó rmétereek eléét

Részletesebben

A 2D és 3D NEMLINEÁRIS HASONLÓSÁGI (HELMERT) TRANSZFORMÁCIÓK MEGOLDÁSÁNAK ÚJ LEVEZETÉSE

A 2D és 3D NEMLINEÁRIS HASONLÓSÁGI (HELMERT) TRANSZFORMÁCIÓK MEGOLDÁSÁNAK ÚJ LEVEZETÉSE Geomtk Köleméek VI A D é D NEMLINEÁRIS HASONLÓSÁGI (HELMERT TRANSFORMÁCIÓK MEGOLDÁSÁNAK ÚJ LEVEETÉSE áot Jóe * New tretmet o the oluto o D d D o-ler mlrt (Helmert trormto - The lw o ture geerl d the relto

Részletesebben

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése

Síkbeli csuklós szerkezetek kiegyensúlyozásának néhány kérdése íbel culó zeezete egyeúlyozáá éáy édée íbel culó zeezete egyeúlyozáá éáy édée DR BENKŐJÁNO gátudoáy Egyete Gödöllő Mg Gépt Itézet gyoozgáú gépzeezete tevezéée foto lépée z egyelete, ezgéete üzeet bztoító

Részletesebben

Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra

Közelítő és szimbolikus számítások haladóknak. 9. előadás Numerikus integrálás, Gauss-kvadratúra Közelítő és szimolikus számítások hldókk 9. elődás Numerikus itegrálás, Guss-kvdrtúr Numerikus itegrálás Numerikus itegrálás Newto-Leiiz szály def I f f d F F Htározott Riem-itegrálok umerikus módszerekkel

Részletesebben

ξ i = i-ik mérés valószínségi változója

ξ i = i-ik mérés valószínségi változója EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív

Részletesebben

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825.

823. A helyesen kitöltött keresztrejtvény: 823. ábra. 823. A prímek összege: 2+ 5+ 2= 9; 824. a) 2 1, 2 4, 5 3, 3 5, 2$ 825. Egész kitevôjû htváok 7 8 A helese kitöltött keresztrejtvé: 8 ár 8 A rímek összege: + + 9 8 ) $ $ 8 ) $ $ 9$ $ 7 $ $ 0 c) $ ( + ) ( + ) 8 ) $ $ k ( - ) - - - ) r s - 7 m k l ( + ) 7 8 ( - ) 8 ( + ) 7 (

Részletesebben

n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix.

n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix. Vektorok, átrok dezós átr: egy soról és oszlopól álló szátálázt. L L Jelölés: A A, L hol z -edk sor -edk elee. dezós (oszlop)vektor egy soról és oszlopól álló átr. Jelölés: u u,...,, hol z -edk koordát.

Részletesebben

Denavit-Hartenberg (D-H) feladat megoldás: Készítette: Dévényi Péter (2011)

Denavit-Hartenberg (D-H) feladat megoldás: Készítette: Dévényi Péter (2011) envit-hrtenberg (-H felt megolá: Kézítette: événi Péter ( otáió mátri meghtározá -ben: Aott eg O origójú koorinátrenzer, melben ott P(,. Aott koorinátrenzer α zöggel történő elforgtá. Az elforgtott koorinátrenzerben

Részletesebben

A Gauss elimináció ... ... ... ... M [ ]...

A Gauss elimináció ... ... ... ... M [ ]... A Guss elimiáció Tekitsük egy lieáris egyeletredszert, mely m egyeletet és ismeretlet trtlmz: A feti egyeletredszer együtthtómátri és kibővített mátri: A Guss elimiációs módszer tetszőleges lieáris egyeletredszer

Részletesebben

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert:

2. Gauss elimináció. 2.1 Oldjuk meg Gauss-Jordan eliminációval a következő egyenletrendszert: . Guss elimináció.1 Oldjuk meg Guss-Jordn eliminációvl következő egyenletrendszert: x - x + x + x5 = -5 x1-7x + 8x - 5x = 9 x1-9x + 1x - 9x = 15. A t prméter mely értékeire nincs z egyenletrendszernek

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

FELVÉTELI VIZSGA, július 15.

FELVÉTELI VIZSGA, július 15. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 8. július. Írásbeli vizsg MATEMATIKÁBÓL FONTOS TUDNIVALÓK: ) A feleletválsztós feldtok (,,A rész) esetén egy vgy

Részletesebben

Í Í É Ó Ö Í Ó Ó ű Í Í Ó ű Ó Ó Ö Ö Ó Ö ű Ó Ó Ö ű ű ű Ö Ö Ó Ó Ó Ö Í Ö Ö Ö É Ó Ó Ö Ó Ő Ö Ó Ő Ö Í Ö ű ű Í Í ű ű É Í ű Í Ö Ö Í Í É Ö Ö Í Ö Ö Ö ű Ö Ö Ö Í ű ű Í Í ű Ő Í Ö Í Í Í Ö É Ö Ö Ű Í Ö Ó Í Í Í Í Í Ö ű Ö

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!

Részletesebben

A geometriai transzformációk egy speciális esete, a külső tájékozás

A geometriai transzformációk egy speciális esete, a külső tájékozás DIMENIÓK Mtemtk Kölemének II. kötet 4 A geometr trnsormáók eg seáls esete külső táékoás ávot Jóse MTA CSFK GGI vot@ggk.hu ÖSSEFOGLALÓ. A geometr külső táékoás rméteret ontok kékoordnátá és hoáuk trtoó

Részletesebben

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet

Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma

Részletesebben

Energetikai gazdaságtan 3. gyakorlat Gazdasági mutatók

Energetikai gazdaságtan 3. gyakorlat Gazdasági mutatók Eergetk gzdságt 3. gykorlt Gzdság muttók GAZDASÁGTAN, PÉNZÜGY JELLEMZŐK A gykorlt célj, hogy hllgtók A. elsjátítsák gzdálkodásb szokásos pézügytechk meységek között összefüggéseket; B. egyszerű gzdságosság

Részletesebben

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA

9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA 9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.

Részletesebben

Készségszint-mérés és - fejlesztés a matematika kompetencia területén

Készségszint-mérés és - fejlesztés a matematika kompetencia területén Kis Tigris Gimázium és Szkiskol Készségszit-mérés és - fejlesztés mtemtik kompeteci területé Vlj Máté 0. Bevezetés A Második Esély A Második Esély elevezés egy oly okttási strtégiát tkr, melyek egyik legfő

Részletesebben

A PIV - hajtásról II.

A PIV - hajtásról II. A PIV - hjtáról II. A PIV - hjtál foglkozó házi dolgoztunk I. rézében egy - két feltevé lján kéletet állítottunk fel z áttételre vontkozón. Mot előzör megvizgáljuk hogy e feltevéek egyike vlóbn érvénye

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január

MUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január MUNAGAZDASÁGTAN ézült a TÁMOP-4..-8//A/MR-9-4pályázat proekt keretébe Tartalomfelezté az ETE TáT Szocálpoltka Tazéké az ETE özgazdaágtdomáy Tazék, az MTA özgazdaágtdomáy Itézet é a Bala adó közreműködéével

Részletesebben

2.4. Vektor és mátrixnormák

2.4. Vektor és mátrixnormák 4 Vektor és mátrormák következõkbe összefoglluk témkörhöz felhszálásr kerülõ már tult smeretgot s Defícó : IK IR, ( IN, I K vlós vg komle számok hlmzát elöl) többváltozós függvét vektorormák evezzük, h

Részletesebben

Regresszióanalízis. Lineáris regresszió

Regresszióanalízis. Lineáris regresszió Regrezóanalíz Lneár regrezó REGRESSZIÓ 1 Modell: Valamely (pl. fzka) törvényzerûég értelméen az x független változó zonyo értékénél a függõ változó értéke Y ϕ (x). Y helyett y értéket mérünk, E(y x) Y,

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.

Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr. Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 10. Monopólium űszki folymtok közgzdsági elemzése Elődásvázlt 3 októer onoólium A tökéletesen versenyző válllt számár ici ár dottság, így teljes evétele termékmennyiség esetén TR () = ínálti monoólium: egyetlen termelő

Részletesebben

19. Függvények rekurzív megadása, a mester módszer

19. Függvények rekurzív megadása, a mester módszer 19. Függvéyek rekurzív megdás, mester módszer Algoritmusok futási idejéek számítás gykr vezet rekurzív egyelethez, külööse kkor, h z lgoritmus rekurzív. Tekitsük például h z összefésülő redezés lábbi lgoritmusát.

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MKOLC EGYETEM Gzáguoá K Üzl oácógzáloá é Móz éz Üzl z é Előlzé éz Tzé VZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ Vzozáo. V, V, V. l, b 3. l l... l l b Π 4. - b b 5. V : V : TTZTK KÉPLETGYŰJTEMÉNY É TÁLÁZTOK Nöélboá

Részletesebben

Laplace transzformáció

Laplace transzformáció Laplace tranzformáció 27. márciu 19. 1. Bevezeté Definíció: Legyen f :, R. Az F ) = f t) e t dt függvényt az f függvény Laplace-tranzformáltjának nevezzük, ha a fenti impropriu integrál valamilyen R zámokra

Részletesebben

Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!

Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen! 0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

Szoldatics József, Dunakeszi

Szoldatics József, Dunakeszi Kstérség tehetséggodozás Rekurzív soroztok Szoldtcs József, Dukesz Npjkb egyre több verseye jelek meg rekurzív sorozt. Ezek megoldásához d ötleteket ez z elődás, A feldtok csoportosítv vk megoldás módszerek

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása

Országos Középiskolai Tanulmányi Verseny 2010/2011 Matematika I. kategória (SZAKKÖZÉPISKOLA) Az 1. forduló feladatainak megoldása Okttási Hivtl Országos Középiskoli Tnulmányi Verseny 00/0 Mtemtik I ktegóri (SZAKKÖZÉPISKOLA) Az forduló feldtink megoldás Az x vlós számr teljesül hogy Htározz meg sin x értékét! 6 sin x os x + 6 = 0

Részletesebben

1. Hibaszámítás Hibaforrások A gépi számok

1. Hibaszámítás Hibaforrások A gépi számok Hiszámítás Hiforráso feldto megoldás sorá ülöféle hiforrásol tlálozu Modellhi mior vlóság egy özelítését hszálju feldt mtemtii ljá felírásához Pl egy fizii törvéyeel leírt modellt Mérési vgy örölött hi

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C )

A + B = B + A A B = B A ( A + B ) + C = A + ( B + C ) ( A B ) C = A ( B C ) A ( B + C ) = ( A B ) + ( A C ) A + ( B C ) = ( A + B ) ( A + C ) Hlmzelmélet Kojukció: (és) (csk kkor igz h midkét állítás igz) Diszjukció: (vgy) (csk kkor hmis h midkét állítás hmis) Implikáció: A B (kkor és csk kkor hmis h A igz és B hmis) Ekvivleci: A B (kkor és

Részletesebben

é é ő ü é ó é é ő ü í ő ő ő é é é é é é í é ő Á é é é ő í é é é é é é ő í ó ő é é ű ő ü é ó ú ó ű é é ő é í ő ő ő é é é é é ő í é í é é é é é é é ú ő é ő ő é é é ő ő é é ő ü é é é í é é ü é ű é é é é é

Részletesebben

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK

ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK ARITMETIKA ÉS ALGEBRA I. TERMÉSZETES SZÁMOK 1. MŐVELETEK TERMÉSZETES SZÁMOKKAL ) Összedás: + = c és - összeddók, c - összeg A feldtok yivl gyo (tö). Az összedás tuljdosági: 1) kommuttív (felcserélhetı):

Részletesebben

Orosz Gyula: Külföldi középiskolai matematikai versenyek. Elemi algebra 1. útmutatások. x arányt, vagy

Orosz Gyula: Külföldi középiskolai matematikai versenyek. Elemi algebra 1. útmutatások. x arányt, vagy Elem lgebr. útmuttások A.. Négyzetre emeléssel szmmetrkussá tehetjük törtet. Más megoldás lehetőségek: A homogé másodfokú egyeletből megkphtjuk z y ráyt, vgy lklmzhtuk prméterezést: + y y = p prméterezéssel

Részletesebben

Egyenáramú motor kaszkád szabályozása

Egyenáramú motor kaszkád szabályozása Egyeáramú motor kazkád zabályozáa. gyakorlat élja z egyeáramú motor modellje alajá kazkád zabályozó terezée. zabályozá kör feléítée Smulk köryezetbe. zmuláó eredméyek feldolgozáa.. Elmélet beezet a az

Részletesebben

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)

Volumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet) oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a

Részletesebben

Ptolemaios-tétele, Casey-tétel, feladatok

Ptolemaios-tétele, Casey-tétel, feladatok Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor

Részletesebben

Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat

Házi feladatok megoldása. Veremautomaták. Házi feladatok megoldása. Házi feladatok megoldása. Formális nyelvek, 12. gyakorlat Veremutomták Formális nyelvek, 12. gykorlt Házi feldtok megoldás 1. feldt Oldjuk meg következő egyenletrendszert! X () Y = X X Y = Y Célj: A környezet-független nyelvek hsználtávl kpsoltos lpfeldtok egykorlás

Részletesebben

x + 3 sorozat első hat tagját, ha

x + 3 sorozat első hat tagját, ha Soroztok, soroztok megdás rekurzív módo.. Az ( ) soroztot rekurzív módo dtuk meg 7 -, sorozt első két tgj ( < ) egybe gyökei következő egyeletek: sorozt első öt tgját. y.adott ( ). Írd fel ( ) x 0 x. Htározd

Részletesebben

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok

Az átviteli (transzfer) függvény, átviteli karakterisztika, Bode diagrammok Elektronka. Bode dagramok, éldák /9 Az átvtel (tranzfer) függvény, átvtel karakterztka, Bode dagrammok.) Tku feladat: Számítuk k adott lezáráok mellett egy lneár hálózat (oerátor tartomány) u j T tranzfer

Részletesebben

Szinusz- és koszinusztétel

Szinusz- és koszinusztétel Szinusz- és koszinusztétel. Htározzuk meg z oldlk rányát, h α 0, β 60. α + β + γ 80 γ 80 α β 80 0 60 90 A szinusztételt felhsználv z oldlk rány: zz : : : sin β : sin 0 : sin 60 : sin 90 : : : : : :. Htározzuk

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

ACTA CAROLUS ROBERTUS

ACTA CAROLUS ROBERTUS ACTA CAROLUS ROBERTUS Károly Róbert Főisol tudomáyos özleméyei Alpítv: ( ACTA CAROLUS ROBERTUS ( Mtemti szeció AZ INTEGRÁLSZÁMÍTÁS OKTATÁSÁRÓL KÖRTESI PÉTER Összefogllás A htározott itegrál értelmezése

Részletesebben

1. A mozgásokról általában

1. A mozgásokról általában 1. A ozgáokról általában A világegyeteben inden ozog. Az anyag é a ozgá egyától elválazthatatlan. A ozgá időben é térben egy végbe. Néhány ozgáfora: táradali, tudati, kéiai, biológiai, echanikai. Mechanikai

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára

Zárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)

Részletesebben

1. Gyors folyamatok szabályozása

1. Gyors folyamatok szabályozása . Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál

Részletesebben

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö

ó ó é é é ó ü é é Í ő ő ó ó é ö é ó é ő ü é é ó í é é é ű ő ő ő é é ő í é í é é é ú é é é ó í é ö é ő ö é é é ö ü í é é ő é é ü é é í Ú ő ó ö é ő ö ö Á Á É é ö ö é ő ő ő é ö é é ő é é é é ő í é é é ó é é é ü ő ő ó é ő é ű ö ö ú é ü ö é é é é ó é é ü ő ö é ő é ő ü ő ő ö ö í é ő ó ó ő é ő é ó é é ő é ó é ű é é ü ö é Í ö é í é ő ó ö é ő é ú í ö é é é ö

Részletesebben

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1

PPKE ITK Algebra és diszkrét matematika DETERMINÁNSOK. Bércesné Novák Ágnes 1 PPKE ITK Algebr és diszkrét mtemtik = DETERMINÁNSOK = 13 = + + 13 13 Bércesé Novák Áges 1 PPKE ITK Algebr és diszkrét mtemtik DETERMINÁNSOK Defiíció: z sorb és m oszlopb elredezett x m (vlós vgy képzetes)

Részletesebben

Aktív lengéscsillapítás. A modell validációja

Aktív lengéscsillapítás. A modell validációja tív legécllpítá. odell vldácój. gyorlt célj z eletro árör eleeel egvlóított legredzer odellezée. Vló dej dtegyjté zotver ejleztée, ely egítégével éré dto Mtl áltl eldolgozhtó álloáy ethete el.. Elélet

Részletesebben

Tevékenység: Tanulmányozza, mi okozza a ráncosodást mélyhúzásnál! Gyűjtse ki, tanulja meg, milyen esetekben szükséges ráncgátló alkalmazása!

Tevékenység: Tanulmányozza, mi okozza a ráncosodást mélyhúzásnál! Gyűjtse ki, tanulja meg, milyen esetekben szükséges ráncgátló alkalmazása! Tanulányozza, i okozza a ráncooát élyhúzánál! Gyűjte ki, tanulja eg, ilyen eetekben zükége ráncgátló alkalazáa! Ráncooá, ráncgátlá A élyhúzá folyaatára jellező, hogy egy nagyobb átérőjű ík tárcából ( )

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei

7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei 7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,

Részletesebben

Arányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük.

Arányosság. törtszámot az a és a b szám arányának, egyszer en aránynak nevezzük. Arányosság Az törtszámot z és szám rányánk, egyszeren ránynk nevezzük. Az rány értéke zt ejezi ki, hogy z szám hányszor ngyo számnál, illetve szám hányszor kise z számnál. Az rányokkl végezhet két legontos

Részletesebben

RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK

RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK Sorrendbe állítjuk a vzgált értékeket (a mntaelemeket) é az aktuál érték helyett a rangzámokat haználjuk a próbatatztkák értékenek kzámítáára. Egye próbáknál

Részletesebben

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.)

Vektortér fogalma vektortér lineáris tér x, y x, y x, y, z x, y x + y) y; 7.) Dr. Vincze Szilvi Trtlomjegyzék.) Vektortér foglm.) Lineáris kombináció, lineáris függetlenség és lineáris függőség foglm 3.) Generátorrendszer, dimenzió, bázis 4.) Altér, rng, komptibilitás Vektortér

Részletesebben

Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest

Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W G v,,, G v,,, z ϕ αzf G G, ( ) ϕ zf α G G 1, ϕ αzf G

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika emelt zint 08 É RETTSÉGI VIZSGA 0. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utaítáai zerint,

Részletesebben

S ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1)

S ( ) függvényre. . Az 1), 3) feltételekbõl a feltételek száma : ( l + 1) n ( l 1) INE o egye [ ] IR I [ ] ( : és < < < z tervllum egy elosztás Deíó: Az :[ ] IR üggvéyt l eoú sple- evezzü C ( l I l Iterpoláós sple- evezzü egy ( : [ ] IR üggvéyre ( ( egjegyzés: Cs terpoláós sple-l ogu

Részletesebben

HOLTIDŐS TAGOK KÖZELÍTÉSE PADÉ SOROKKAL BEVEZETÉS

HOLTIDŐS TAGOK KÖZELÍTÉSE PADÉ SOROKKAL BEVEZETÉS Dr. habil. Szabolci Rórt HOLIDŐS AGO ÖZELÍÉSE PADÉ SOROAL BEVEZEÉS Az emr tevékeyégéek matematikai leíráa már régóta taulmáyozott, é mid a mai aig érdeke területe a zabályozái redzerek vielkedée kutatááak.

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0

Tartalom Fogalmak Törvények Képletek Lexikon 0,2 0,4 0,6 0,8 1,0 0,2 0,4 0,6 0,8 1,0 Fizikkönyv ifj Zátonyi Sándor, 16 Trtlom Foglmk Törvények Képletek Lexikon Mozgá lejtőn Láttuk, hogy tetek lejtőn gyoruló mozgát végeznek A következőkben vizgáljuk meg rézleteen ezt mozgát! Egyene lejtőre

Részletesebben

ALGEBRA. 1. Hatványozás

ALGEBRA. 1. Hatványozás ALGEBRA. Htváyozás kitevő Péld: lp H kitevő természetes szám, kkor db téyező Bármely szám első htváy ömg Bármely ullától külöböző szám ulldik htváy egy. 0 ( 0) (0 0 em értelmezett) Htváyozás számológéppel:

Részletesebben

ó ö ó őé é ü ő É ö ó ő é ű Ü ú é ü é ő ó ó ó é ő ó é é ó ö ó őé é Ü ő ó ő ú ó é ű Ü ú é ü é ó ó ö é ő ó é ó é ó ó ó ö ó ó őé é ü ő ő őé ü é ó ó ő é ű ü ú é ü é ő ó ö ó é ó é é ó ó Ó Á Á Á é é é ő ő é é

Részletesebben

Í Á ÓÉ Ú Á ö ú ö ó ö ü ö ó ö ü ö ó ö ú ú ö ú ó ó ö ó ó ó ö ó ó ű ó ö ó ö ö ú ó ó ú ö Ö ó ö Ö ö ó ó ó ö ö ú ó ö ú ó ó ó ü ó ú ó ö ö ú ó ó Á Á ú ó ü ö Ö ó ö ö ó ö ú Á ö ú ö ö ö ö ö ú ö ú ü ö ú ű ö ö ó ó

Részletesebben

Í Í Á Í Á Ü Ö ü Á ü ó Í ó ű ó ü ó ó ó ú ű ó ó ü ű ó ó ű ó ü ü ü ű Í ű ü ü ű ó ű ü ó ű ü ű ű ü ű óé ű ü ó ű ű ü ü ó ú ü ű ó ü ü É ü ó ó ű ó ó ó ú ó ü ó ü ű ü ó ü ú ó Í ó ó ó ó ó ü ü ó ó ú ó ű ü ú ú ó ü

Részletesebben

ő á ö é é í í ó ű á ő é é ő á á á é á é á é é é é ő é á á é é é é ö ö ú é íí ü é é ú ő ő é ó í é é é é ó í é é é ü ö ö á é ó é ő ó é á í ó é í ü é é á é é í é é ü é é á í ó í é ü ö ö é é ó ó é ó ó é á

Részletesebben

Ü Á É É í Ő É Ő Á Ü Ó í Á É Ü Á É É í ŐÉ Ő Á Ü ü Ó Ó ö ő ö ö ö ő ó Ó ö ű ö ő ó Ó Ó ö ö Ó í ő ü ü ü Ü Á É í ő ő ü ú í ú Ü ű ö ü ö ü ü ú Ü í í ó ó É Ö ü ő ü ö ú Ü ö ö ü ő ő í ő Á Ó Ó í Ó ú ő ó í Ö Ó ö ö

Részletesebben

ő ö é Ü ü é Ó é é ú ü ö ű é é é é í Ü Ö ö ö ö ü ö é é Ó é é ő é ű í ű ő ő é é é ő é é é Ü Ü Ö Ö ő Ö é ü ö ü ő é é é ő ő é ü í ő é ő ő é é é é é é é é ő í ö é ö ő é ő é é ő é ü ő é é é é ú ő é é ő ő é é

Részletesebben

ö ö É Ú Á í ö í ö ö öé ö í ö ö Ö Ö Ö ó ó ó ö Ö í í í ó ó Ö í Ö ű í ö ő í ő ü Ö ű í í Ö ó í ű Ö ó í í ó ó ö í Ö Ö Ö ű ó ó ő ő ő ő í ó ó í ó ű ó Ö Ö ű í ő ú ó ő Ö Ö ö Ö ü Ő ö ü ó ó í í ö ü ő Ö ü í ú ó ó

Részletesebben

ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é

ö é ö ó é é é ó é é é ő ó ü é ű é í ü é é ó é é é ö é é ó é é ü é ó é é é é ú ó é ő ő é é é ü é é é É ó í ú ü é é ő Ő é í é é é é é ő é ő ű é ó ö ö é ö é Ö é ő ü é ü ö é é ő é ü ö ö ö ő ü é ő ü é ö ó ö ö é é ő ö ő ó ő é ő Á é ő é ő ő é ő ő é í ő ó ö ő éé í ö ő é é ő í ő ö ő é í ő ó ö ö ő é ő é é é ő í é ő ő í é é ő í ó ő ö ő é í é í é é ő ő é é é ü

Részletesebben

Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés

Háromszög n egyenlő területű szakaszra osztása, számítással és szerkesztéssel. Bevezetés Háromszög egyelő területű szkszr osztás, számítássl és szerkesztéssel Bevezetés Az építészet szkrodlomb elég gykr előfordul címbel feldt, főleg kötőelemek kosztáskor. Ezek lehetek szegek, csvrok, betétek,

Részletesebben

é í ő ü í ü é é ö é Ö é ö é é é ó Ö ó é é ó ó ó ö ó í é í é ö é é í ü ö é Ö é ö é é é ó é Ö ő é ü ó í ü ú ő é ö é í é ü ő ó ó é í ö é é ő ó ó ó ő é é

é í ő ü í ü é é ö é Ö é ö é é é ó Ö ó é é ó ó ó ö ó í é í é ö é é í ü ö é Ö é ö é é é ó é Ö ő é ü ó í ü ú ő é ö é í é ü ő ó ó é í ö é é ő ó ó ó ő é é ó ö É ü ü É í ö É ó ö é Ö é ő ü é é ó í ü é é ő ő ó é é ő é ő ő ő é ü ő ó ö ö í ü é ü é é ő ö ü ő í ü é ü é ő ő é é ő ü ú ü é ó ö ő ö ü ü é ő ő é ú ő ú ó ö ö ő ő é é é é í é é í é é ü é ő ü é é ü ó é é

Részletesebben

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2 Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö

Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö ü ú ö É Á ő ő ö é Ö ő ő é Ö ö ö Á ő ő ö é é ő ü ő ő é Ö é ő ü ő ő ő é ö é Á é é é é ó ó ó é ö é é őí ü ű ö é ö ő ő é ö é ö é ó Ő Ő ö é Ö ö ö é é é ű ö ő ó ö ö Ö ó ő ő é ü ö é é ü ű ö é ő é é í ó ó ó ö

Részletesebben

Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem

Elektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W ,, G G v,, v, z, G G, αzf F ϕ, G G 1 ( α ) zf ϕ zf,,

Részletesebben

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL

FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL FEJEZETEK A HOMOGÉN FEJSOROZATOKRÓL SZAKDOLGOZAT Készítette: Kovács Blázs Mtet BSc, tár szrá Tévezető: dr Wtsche Gergel, djutus ELTE TTK, Mtettítás és Módszert Közot Eötvös Lorád Tudoáegete Terészettudoá

Részletesebben

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK...

TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I. FEJEZET. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL...5 II. FEJEZET. INTEGRÁLÁSI MÓDSZEREK... TARTALOMJEGYZÉK MATEMATIKAI ANALÍZIS I FEJEZET A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL 5 II FEJEZET INTEGRÁLÁSI MÓDSZEREK 8 III FEJEZET A HATÁROZATLAN INTEGRÁLOK ALKALMAZÁSAI86 IV FEJEZET A HATÁROZOTT

Részletesebben

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét

Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók

Részletesebben

4. Hatványozás, gyökvonás

4. Hatványozás, gyökvonás I. Nulldik ZH-bn láttuk:. Htványozás, gyökvonás. Válssz ki, hogy z lábbik közül melyikkel egyezik meg következő kifejezés, h, y és z pozitív számok! 7 y z z y (A) 7 8 y z (B) 7 8 y z (C) 9 9 8 y z (D)

Részletesebben

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják.

Az ABCD köré írható kör egyenlete: ( x- 3) + ( y- 5) = 85. ahol O az origó. OB(; 912). Legyen y = 0, egyenletrendszer gyökei adják. 5 egyes feldtok Az dott körök k : x + ( y- ) = és k : ( x- ) + y = K (; 0), r, K (; 0), r K K = 0 > +, két körnek nincs közös pontj Legyen (; ) Az egyenlô hosszú érintôszkszokr felírhtjuk következô egyenletet:

Részletesebben

A táblázat a, b, c és d oszlopai a válaszlehetőségeket jelölik, a n oszlop pedig azt, hányan nem válaszoltak az adott kérdésre.

A táblázat a, b, c és d oszlopai a válaszlehetőségeket jelölik, a n oszlop pedig azt, hányan nem válaszoltak az adott kérdésre. Kiértékelés Közvéleméy kuttás élj: A Gudel Károly TISZK közvéleméy kuttásák élj, hogy következő, gykorlti képző helyekkel kpsoltos kérdésekre válszt kpjo: meyire tájékozottk z egyes gykorlti képző helyek

Részletesebben

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA

Széchenyi István Egyetem MTK Szerkezetépítési és Geotechnikai Tanszék Tartók statikája I. Dr. Papp Ferenc RÚDAK CSAVARÁSA Széchenyi Itván Egyetem MTK Szerkezetépítéi é Geotechnikai Tanzék Tartók tatikája I. 1. Prizmatiku rúdelem cavaráa r. Papp Ferenc RÚAK CSAVARÁSA Egyene tengelyű é állandó kereztmetzetű (prizmatiku) rúdelem

Részletesebben

í é ó í ö ö ő é é é é é é í é é é é í ő é é é é é ó í é é é é é é é ö ö é é é é é é é é é ö é é ó é ú é í í í é ö í é í ö é ő ú í ö é ö ú é í ö ő ú é

í é ó í ö ö ő é é é é é é í é é é é í ő é é é é é ó í é é é é é é é ö ö é é é é é é é é é ö é é ó é ú é í í í é ö í é í ö é ő ú í ö é ö ú é í ö ő ú é Á ó Á Á é ó ö ű é ö é ö ő ő ő é ö é é é ó ű ó ű ö é é ő é ó ó ó é Ó ö é é ö í é ó é í é é é é ő é ó é ó é é ű é é é é é é é é É é é é ő ö ö ő é ö ű é é é é é é é é ö é é é ó é é é é Ü é é é é é é ő é é

Részletesebben

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok

1. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: Szüle Veronika, egy. Ts; Tarnai Gábor mérnöktanár.) Matematikai összefoglaló, kiinduló feladatok SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK MECHNIK-SZILÁRDSÁGTN GYKORLT (kidolgozt: Szüle Veronik, eg Ts; Trni Gáor mérnöktnár) Mtemtiki összefoglló, kiinduló feldtok Mátrilgeri összefoglló: ) Mátri

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben