Termékdifferenciálás és piaci. Termékdifferenciálás és piaci erő. Termékdifferenciálás és piaci. Termékdifferenciálás. Modern piacelmélet
|
|
- Ottó Borbély
- 9 évvel ezelőtt
- Látták:
Átírás
1 Moder acelmélet Moder acelmélet Termékdfferecálá ELTE TáTK Közgazdaágtudomáy Tazék Sele Adre ELTE TáTK Közgazdaágtudomáy Tazék Kézítette: Hd Jáo A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma Alaítváy támogatáával kézült az ELTE TáTK Közgazdaágtudomáy Tazékéek közreműködéével A taayag a Gazdaág Vereyhvatal Vereykultúra Közota é a Tudá-Ökoóma Alaítváy támogatáával kézült az ELTE TáTK Közgazdaágtudomáy Tazékéek közreműködéével Termékdfferecálá é ac erő A ac erő egyk oka az hogy egy vállalat terméke em tökéletee helyetteíthetők egy mákéval Ilyekor a vállalat árazt tárköltége fölött aélkül hogy elvezíteé mde vevőét Például a bakbetétek acá ahol a termék maga vzoylag homogé eletőe külöböző Lerer-dexeket mértek: USA: 3% Jaá: 0% EU: 5% Termékdfferecálá é ac erő Mre vezethetők vza a külöbégek?.a vállalatok magatartáára dötéere: Marketg mx: Prce - Product - Promoto Árazá: tratéga aektua vaak Termék: dfferecálá (l. teret bak ATM hálózat tb.) Reklámozá Termékdfferecálá é ac erő Mre vezethetők vza a külöbégek?.a ac aátoágokra: Fogyaztók eheze váltaak zolgáltatót Például mert em eléggé formáltak Vagy mert magaak a váltá költégek Termékdfferecálá A termékdfferecálá:. Egyrézt eyhít az árvereyt (em tökélete helyetteítők a termékek így egye fogyaztók ladók többet fzet az adott varácóért). Márézt zűkít az adott vállalat vevő körét (em fog mdekek tetze az adott varácó)
2 Termékdfferecálá A termékdfferecálá:. Egyrézt lehet horzotál: mdegyk varácó valakek a kedvece Pl. zí tílu forma alaá. Márézt lehet vertkál: mdek referála az egyk varácót a mákkal zembe Pl. a tartóabb terméket mdek referála Termékdfferecálá A horzotál é vertkál termékdfferecálá formála:. Horzotál azoo árak mellett a fogyaztók külöböző varácókat válaztaak. Vertkál azoo árak mellett mdek ugyaazt a varácót referála a mákkal zembe Termékdfferecálá térbel elhelyezkedé modelle A termékdfferecálá modellezééhez az egyk legegyzerűbb feltevé hogy a termékek cak egy tuladoágukba külöbözek Ez legye egy mérhető tuladoág amely azoba em befolyáola a termelé költéget Köyebb zemléltet ez a tuladoág a térbel elhelyezkedé l. boltok eeté a vevők lakhelyétől való távolág Termékdfferecálá térbel elhelyezkedé modelle A vevő em zeret gyalogol A gyaloglá tárköltégét a τ mér Termékdfferecálá térbel elhelyezkedé modelle Kezdetbe tegyük fel hogy az ár rögzített (l. zabályozott ára úág) A vállalatokak arról kell döteük hogy hogya ozícoálák a terméket a terméktérbe azaz aak a bzoyo mérhető tuladoágak mlye értékét válazák A térbel éldákba: hova helyezzék az úágo l l 0 bódéukat egy leár vároba [ ] Termékdfferecálá térbel elhelyezkedé modelle A fogyaztók elhelyezkedée (x) a leár vároba egyelete a [0] tervallumo A térbel elhelyezkedéük megmutata hogy referecák alaá hol vaak a terméktérbe azaz hogy mely termékvarácó a kedvecük Ha em ot kedvec varácóukat kaák akkor zoáguk az deáltól való távolággal aráyoa cökke ( gyaloglá/zállítá költég ) Mde fogyaztó legfelebb egy egyéget váárol
3 Termékdfferecálá térbel elhelyezkedé modelle Az x fogyaztóak az termékből eredő zoága v (x): v ( x) r τ x l Az a fogyaztó lez közömbö a két varácó között ak ée a kettő között va félúto: ( l + l )/ l l x ˆ < Termékdfferecálá térbel elhelyezkedé modelle Ekkor a két vállalat terméke rát kerelet a következőkée alakul: Q Q ( l l ) ( l + l )/ ( l l ) ( l + l )/ Termékdfferecálá térbel elhelyezkedé modelle A két vállalat roftot maxmalzál termékéek térbel helyéek megtározáá kereztül adottak véve vereytáráak dötéét: ( l l ) ( c)( l + l ) ( c) ( c) [ ( l + l )/ ] / / l < l l l l > l Termékdfferecálá térbel elhelyezkedé modelle Eek a átékak az egyetle Nahegyeúlya: l l / Ez azt elet hogy az ár rögzített é így a két vállalat cak a termék térbel elhelyezkedéébe vereyez akkor ugyaazt a helyet válazták vagy em dfferecálák terméküket ( mdkette közére lőek ) Termékdfferecálá térbel elhelyezkedé modelle Táradalm zemotból ez em otmál hze a leár váro két végé lévő fogyaztóktól túl távol ek a termék Otmál az lee hogy a termékteret ( leár várot ) elkéező zakaz egyedéél é háromegyedéél lee a két termék (ez mmalzálá a zállítá költégeket): l / 4 l 3/ 4 A Hotellg-modell (99) A Hotellg-modell ugyaaz mt az eddg térbel elhelyezkedé modell ahol a vállalatok két dötét hozak:.kválazták a térbel helyet (hozú távú döté).megtározzák az árat (rövd távú döté)
4 A Hotellg-modell (99) Ha feltezük hogy a két zélő otot válazták akkor a közömbö fogyaztó elhelyezkedée (ízlée): x + τ A Hotellg-modell (99) Ekkor a vállalat célfüggvéy: max c + τ ERF alaá a legobb válaz függvéy: + c +τ Az egyeúly árak edg: c +τ A Hotellg-modell (99) Ha edg az egyeúly ár c +τ akkor láttuk hogy mél agyobb a zállítá költég azaz mél agyobb zoágvezteéggel ár a kedvec varácótól való eltávolodá aál agyobb lez a vállalatok ac eree (a Lerer-dex zert mérve) A Hotellg-modell (99) Mot olduk fel azt a feltevét hogy a vállalatok a két zélő otot válazták A tárköltégük kota c em függ a térbel helytől Előbb döteek a árról mad az l helyről a [0] tervallumo belül A fogyaztók zoága: v ( x) r τ x l A Hotellg-modell (99) Legye a zámozá olya hogy l l Ha az árkülöbég em túl agy akkor létezk egy közömbö fogyaztó az [l l ] tervallumo: r τ l xˆ ( xˆ l ) r τ ( l xˆ ) + l τ A Hotellg-modell (99) Az árkülöbég em túl agy : xˆ l xˆ l + τ τ ( l l ) ( l l )
5 A Hotellg-modell (99) A Hotellg-modell (99) Ha az árkülöbég túl agy akkor: > + τ l l eeté az. vállalatak em lez egyetle vevőe em eeté az. vállalatak < + τ l l em lez egyetle vevőe em A Hotellg-modell (99) Az. vállalat roft függvéye tehát: ( ; l l ) ( l l ) l + l ( c)( + ) τ ( l l ) 0 + τ ( c) < τ ( l l ). τ > A Hotellg-modell (99) Két lokál maxmum Nem bzto hogy létezk egyeúly ár (akkor fordul elő túl közel vaak egymához) A Hotellg-modell (99) Adott árakhoz kválazták a térbel helyet Bzoyo térbel elhelyezkedéek eeté azoba c egyeúly ár Ha egy adott térbel elhelyezkedéhez va egyeúly ár akkor a vállalatok gyekezek elmozdul oda ahol c hogy magaabb roftot éreek el A verey tehát tabl lez: A Hotellg-modell (99) Bár a termékdfferecálá gyegít az árvereyt a vállalatokak érdekébe állt vereytárukhoz közelebb helyetteítőket kíál hogy így övelék a kereletet (vevőkörüket) Ezzel detablzálva a vereyt
6 A Salo-modell A termékdfferecálá mák térbel modelle a Salo-modell amely leár utca helyett egy körö helyez el a termékeket (felfogtó úgy mt egy végtele egyee) Tektük egy kört melyek kerülete egyégy é az vállalat egymától azoo távolágra helyezkedk el A fogyaztók legfelebb egy terméket váárolak attól a vállalattól amely zámukra a legolcóbb fgyelembevéve hogy a zállítá költég egyégy távolágra: τ Az é az + vállalat között közömbö fogyaztóak a körö lévő elhelyezkedéét úgy kauk hogy özeolítuk a tele zoágát a két vállalattól törtéő váárlá eeté: r τ xˆ + ( xˆ ) r τ ( xˆ ) τ A Salo-modell + + xˆ + + x ˆ Az vállalat kerelete a két közömbö fogyaztó között zakazo lévő fogyaztók kerelete A Salo-modell Tektük a zmmetrku eetet amkor a vállalatok költége azooak Az egyeúly ár levezetééhez íruk fel az vállalat célfüggvéyét: max( c) Q( ) ( c) + τ Azaz vereytáraak árával azoo árat tároz meg akkor a tele ac / háyadát zerz meg Ha ettől eltér akkor ac rézeedée a τ zállítá költéggel aráyoa övekzk vagy cökke A Salo-modell A fet otmalzálá feladat előredű feltétele: + ( + c) τ 0 Amely alaá a zmmetrku eetbe: τ c + Ha ő a vállalatok záma akkor erőödk a verey az egyeúly ár edg cökke; végő eetbe a tökélete vereyző egyeúlyhoz tartva Vertkál termékdfferecálá A fogyaztók egyetérteek abba hogy ezek között a termékek között melyek referáltak é melyek em vagy mdek egyetért abba hogy melyk a obb mőégű é melyk a rozabb Az termék mőégét elöl A termék mőégére voatkozó referecát a araméter mér elozláa egyelete [ ] [ ] Vertkál termékdfferecálá Mde fogyaztó egy egyéget váárol az egyk termékből A araméterű fogyaztó zoága az termékből: r + A két vállalat előbb az mőégről döt Mad a árakról Határköltégük kota c 0
7 Vertkál termékdfferecálá Ármegtározá: Legye < A közömbö fogyaztó helyét az ár- é mőégkülöbég aráya tározza meg: [ ] ˆ ˆ ˆ ˆ + + r r Vertkál termékdfferecálá A roftfüggvéy ezeetbe: *. * 0 ; < < < > Vertkál termékdfferecálá Vertkál termékdfferecálá Ha megolduk az ERF egyeletredzert: Vegyük ézre hogy a mőégkülöbég öveléével a rozabb mőégű változat ára övekzk (eyhül a vereyből eredő yomá) hogy feltéve 3 * 3 * > Vertkál termékdfferecálá A mőég kválaztáa Helyetteítük be az egyeúly árakat a roft függvéybe: Mdkét vállalat rofta övekzk ő a mőégbel külöbég 9 9 ~ ~ Vertkál termékdfferecálá Az egyeúly mőég ztek: Abba az eetbe zmultá döteek: Ha zekvecála döteek akkor az elő válazta a maga mőéget vagy A vertkála dfferecáltó acoko a vállalatok azért kíálak külöböző mőég zteket hogy eyhíték az árvereyt
8 Áttektő kérdéek Mlye arágakba va foto zeree a termékdfferecáláak? Moduk éldákat. Mért érdeme a vállalatokak a terméktérbe egymá közelébe me? É mért érdeme távolod? Mkor kerül or vertkál termékdffereecálára? Godoluk tt a kerelet é költég ellemzőkre egyarát.
Wilcoxon-féle előjel-próba. A rangok. Ismert eloszlás. A nullhipotézis megfogalmazása H 1 : m 0 0. A medián 0! Az eltérés csak véletlen!
0.0.4. Wlcoxo-féle előel-próba ragok Példa: Va-e hatáa egy zórakoztató flm megtektééek, a páceek együttműködé halamára? ( zámok potértékek) orzám előtte utáa külöbég 0 0 3 3-4 4 5 3 6 3 3 0 7 4 3 8 5 4
RészletesebbenMérések, hibák. 11. mérés. 1. Bevezető
11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i
Részletesebbenξ i = i-ik mérés valószínségi változója
EGYENESILLESZTÉS: A LEGKISEBB NÉGYZETEK MÓDSZERE Kíérleteket elvégeztük. Dolgozzuk fel az adatokat! Cél: mért változók (T, p, I, U ) között kapcolat felderítée. 1. zóródá dagram {x, y } ábra. kvattatív
Részletesebben9. LINEÁRIS TRANSZFORMÁCIÓK NORMÁLALAKJA
9. LINÁRIS TRANSZFORMÁCIÓK NORMÁLALAKA Az 5. fejezetbe már megmeredtü a leár trazformácóal mt a leár leépezée egy ülölege típuával a 6. fejezetbe pedg megvzgáltu a leár trazformácó mátr-reprezetácóját.
RészletesebbenFeladatok és megoldások a 11. heti gyakorlathoz
Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.
RészletesebbenAzonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága
Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba
RészletesebbenMűszaki folyamatok közgazdasági elemzése Előadásvázlat 2014. november 06. A közgazdaságtan játékelméleti megközelítései
Műzak folyamatok közgazdaág elemzée Előadávázlat 04. november 06. A közgazdaágtan átékelmélet megközelítée a Története: - Táraátékok elmélete (Zermelo - Neumann Jáno (mnmax-tétel, azaz mkor létezk megoldá
RészletesebbenTartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése
3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés
Részletesebben1. Gyors folyamatok szabályozása
. Gyor olyamatok zabályozáa Gyor zabályozá redzerekrl akkor bezélük, ha az ráyított olyamat dálladó máoder, agy az alatt agyágredek. gyor olyamatok eetébe a holtd általába az ráyítá algortmu megalóítááál
RészletesebbenMUNKAGAZDASÁGTAN. Készítette: Köllő János. Szakmai felelős: Köllő János január
MUNAGAZDASÁGTAN ézült a TÁMOP-4..-8//A/MR-9-4pályázat proekt keretébe Tartalomfelezté az ETE TáT Szocálpoltka Tazéké az ETE özgazdaágtdomáy Tazék, az MTA özgazdaágtdomáy Itézet é a Bala adó közreműködéével
Részletesebben6. MÉRÉS ASZINKRON GÉPEK
6. MÉRÉS ASZINKRON GÉPEK A techikai fejlettég mai zívoalá az azikro motor a legelterjedtebb villamo gép, amely a villamo eergiából mechaikai eergiát (forgó mozgát) állít elő. Térhódítáát a háromfáziú váltakozó
RészletesebbenMottó: "Ne rakj minden tojást ugyanabba a kosárba!." (angol közmondás) Mi a hosszú távú befektetés? Az elrontott rövid távú. (spekuláns tapasztalat)
Mottó: "Ne akj de toját ugyaabba a koába!." (agol közodá) M a hozú távú befekteté? z elotott övd távú. (ekulá taaztalat) 4. Fejezet otfóló-elélet fejezet célja, beutat:. eutat a hozazáítá fajtát. Ietet
RészletesebbenEgyenáramú motor kaszkád szabályozása
Egyeáramú motor kazkád zabályozáa. gyakorlat élja z egyeáramú motor modellje alajá kazkád zabályozó terezée. zabályozá kör feléítée Smulk köryezetbe. zmuláó eredméyek feldolgozáa.. Elmélet beezet a az
RészletesebbenVolumetrikus elven működő gépek, hidraulikus hajtások (17. és 18. fejezet)
oluetriku elve űködő gépek hidrauliku hajtáok (17 é 18 fejezet) 1 Függőlege tegelyű ukaheger dugattyúja 700 kg töegű terhet tart aelyet legfeljebb 6 / ebeéggel zabad üllyeztei A heger belő átérője 50 a
RészletesebbenPopuláció nagyságának felmérése, becslése
http:/zeu.yf.hu/~zept/kuzuok.htm Populáció agyágáak felméée, beclée Becült paaméteek: - az adott populáció telje agyága (egyed, pá, tb) D- dezitá (űűég), egyégyi felülete/téfogata zámított egyedzám (egyed/m,
Részletesebbenképzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal
5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve
RészletesebbenZárthelyi dolgozat 2014 B... GEVEE037B tárgy hallgatói számára
Zárthely dolgozat 04 B.... GEVEE037B tárgy hallgató zámára Név, Neptu kód., Néháy oro rövd léyegre törő válazokat adjo az alább kérdéekre! (5pot) a) Számítógépe mérőredzerek elépítée (rajz) (33.o.) b)
RészletesebbenA rekurzív módszer Erdős Gábor, Nagykanizsa
Maga zitű matematikai tehetéggodozá A rekurzív módzer Erdő Gábor, Nagykaiza Gyakra találkozuk olya feladatokkal, amelyekbe agy zámok zerepelek: pot, zámkártya, tb. Az ilye eetekbe kézefekvő ötlet, hogy
Részletesebben2. fejezet. Számsorozatok, számsorok
. fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk
RészletesebbenIngatlanfinanszírozás és befektetés
Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:
RészletesebbenPortfólióelmélet. Portfólió fogalma. Friedman portfólió-elmélete. A befektetés három jellemzője. A kockázat általános értelmezése (Kindler József)
ofólió fogalma ofólióelméle Ké zóeede Lai zó oae hodai, vii Fólió ügy, ia Olaz zó icéek ézácája ofólió ág éelmezée vagyoágyak özeége ofólió zűk éelmezée külöböző, őzdé jegyze éékaíok özeége Fiedma ofólió-elmélee
RészletesebbenA pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata
6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az
Részletesebben? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
RészletesebbenFüggetlen komponens analízis
Elektroiku verzió. Az eredeti cikk az ElektroNET (ISSN: 9-705X) 00 évf. 3 zám, 0 oldalá jelet meg. Függetle kompoe aalízi A függetle kompoe aalízi (Idepedet Compoet Aalyi, ICA) egy vizoylag új jelfeldolgozái
Részletesebben? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
RészletesebbenRudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása
Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai
Részletesebbenkétállószékes fedélszék tervezése
Dr. Németh Gör főikoai docen fééve feadat: kétáózéke fedézék tervezée Kétáózéke fedézék Õ SZARUÁLLÁS LLÉK SZARUÁLLÁS kézítendő feadatrézek Kereztmetzet : Statikai zámítá Terhek mehatározáa Tetőécek méretezée
RészletesebbenMegjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
RészletesebbenMINERVA TÉRINFORMATIKAI RENDSZER ELEKTROMOS HÁLÓZAT TÉRINFORMATIKAI INTEGRÁCIÓJA
M I N E R V A É R I N F O R M A I K A I R E N D S Z E R MINERVA ÉRINFORMAIKAI RENDSZER ELEKROMOS HÁLÓZA ÉRINFORMAIKAI INEGRÁCIÓJA C 1 0 O 3 M 4 P u A d tel : 1)4301720 fax:(1)4301719 a R p e S t, é Ú c
RészletesebbenKözépszintű érettségi feladatsor Fizika. Első rész. 1. Melyik sebesség-idő grafikon alapján készült el az adott út-idő grafikon? v.
Középzinű éreégi feladaor Fizika Elő réz 1. Melyik ebeég-idő grafikon alapján kézül el az ado ú-idő grafikon? v v v v A B C D m 2. A gokar gyoruláa álló helyzeből12. Melyik állíá helye? m A) 1 ala12 a
RészletesebbenGÉPÉSZETI ALAPISMERETEK
Gépézeti alapimeretek középzint 2 ÉRETTSÉGI VIZSGA 204. máju 20. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fonto tudnivalók
RészletesebbenMÉRÉSTECHNIKA. DR. HUBA ANTAL c. egy. tanár BME Mechatronika, Optika és Gépészeti Informatika Tanszék 2011
MÉRÉSTECHNIKA DR. HUBA ANTAL c. egy. taár BME Mechatroka, Optka és Gépészet Iformatka Taszék 0 Rövde a tárgyprogramról Előadások tematkája: Metrológa és műszertechka alapok Mérés adatok kértékelése Időbe
Részletesebben3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése
3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem
Részletesebben(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):
A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak
RészletesebbenFizika 112. 18. Előadás
Fizia 8. Előaá A geomeiai opia elvei I. A láhaó aomáy (EMH): 400 m < λ < 750 m Láu, hogy a íhullám egy olya azvezáli hullám, amelybe az eleomo é mágee éeőég-ompoee meőlegee egymáa é a hulláma a Poyig-veo
RészletesebbenKépletgyűjtemény a Gazdaságstatisztika tárgy A matematikai statisztika alapjai című részhez
Buaet űzak é Gazaágtuomá Egetem Gazaág- é Táaalomtuomá Ka Üzlet Tuomáok Itézet eezmet é Vállalatgazaágta Tazék Tóth Zuzaa Ezte Jóá Tamá Kéletgűtemé a Gazaágtatztka tág A matematka tatztka alaa című ézhez
RészletesebbenV. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
RészletesebbenForgó mágneses tér létrehozása
Forgó mágnee tér létrehozáa 3 f-ú tekercelé, pólupárok záma: p=1 A póluoztá: U X kivezetéekre i=io egyenáram Az indukció kerület menti elozláa: U X kivezetéekre Im=Io amplitúdójú váltakozó áram Az indukció
RészletesebbenGaray János: Viszontlátás Szegszárdon. kk s s. kz k k t. Kö - szönt-ve, szü-lı - föl-dem szép ha - tá-ra, Kö - szönt-ve tı-lem any-nyi év u-
aray János: Viszonláás Szegszáron iola Péer, 2012.=60 a 6 s s s s s so s s s 8 o nz nz nz nz nzn Ob. Blf. a 68 s C s s s s am s s n s s s s s s a s s s s s o am am C a a nz nz nz nz nz nznz nz nz nz nz
Részletesebben1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója
Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle
RészletesebbenHosszmérés finomtapintóval 2.
Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu
RészletesebbenA biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html
Részletesebben2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya
II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve
RészletesebbenIngatlanok értékelése hozamszámítással 1-2. 1
Piaci érték: Igatlaok értékelése hozamszámítással 1-2. 1 Elıadás Igatlavagyo-értékelı és közvetítı Szakképzés, Igatlakezelı Szakképzés A-. modul Az az ár, amelyért az igatla méltá- yosa,, magájogi szerzıdés
RészletesebbenPályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.
Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika
RészletesebbenDinamika. F = 8 N m 1 = 2 kg m 2 = 3 kg
Dinamika 1. Vízzinte irányú 8 N nagyágú erővel hatunk az m 1 2 kg tömegű tetre, amely egy fonállal az m 2 3 kg tömegű tethez van kötve, az ábrán látható elrendezében. Mekkora erő fezíti a fonalat, ha a
RészletesebbenIdő-ütemterv hálók - II.
Előadá:Folia1.doc Idő-ütemterv hálók - II. CPM - CPM létra : Továbbra i gond az átlaolá, a nyitott háló é a meg-nem-zakítható tevékenyég ( termeléközeli ütemtervek ) MPM time : ( METRA Potential' Method
RészletesebbenSorozatok október 15. Határozza meg a következ sorozatok határértékeit!
Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk
RészletesebbenA települési hősziget-intenzitás Kárpátalja alföldi részén 1
A települési hősziget-itezitás Kárpátalja alföldi részé Molár József, Kakas Móika, Marguca Viola A települési hőszigetek kifejlődéséek vizsgálata az urbaizáció folyamatáak előrehaladásával párhuzamosa
RészletesebbenOrosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel
Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást
RészletesebbenÁ ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
Részletesebben:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
Részletesebbenű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
Részletesebbenú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
Részletesebbenó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
RészletesebbenÜ Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
RészletesebbenÜ Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
RészletesebbenÖ Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
RészletesebbenÁ Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
RészletesebbenÉ É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
RészletesebbenFtéstechnika I. Példatár
éecha I. Példaár 8 BME Épülegépéze azé éecha I. példaár aralojegyzé. Ha özeoglaló... 3.. Hvezeé...3.. Háadá....3. Hugárzá...6.. Háoáá....5. Szgeel axál hleadáához arozó ül áér....6. Bordázo vezeé.... Sugárzá...5.
RészletesebbenVillamos gépek tantárgy tételei
Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei
Részletesebben= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14
. kategória... Adatok: h = 5 cm = 0,5 m, A = 50 m, ρ = 60 kg m 3 a) kg A hó tömege m = ρ V = ρ A h m = 0,5 m 50 m 60 3 = 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg,
RészletesebbenMatematikai statisztika
Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika
RészletesebbenSorozatok A.: Sorozatok általában
200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,
RészletesebbenI. FEJEZET BICIKLIHIÁNYBAN
I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük
RészletesebbenDIFFERENCIÁL EGYENLETRENDSZEREK DR. BENYÓ ZOLTÁN
DIFFERENCIÁL EGYENLETRENDSZEREK DR. ENYÓ ZOLTÁN be Redzer folyaat t differeciáló ódzer: Feltételezük egy értéket é ebből képezzük az elő, áodik, az -edik deriváltat. Itegráló ódzer z -edik deriváltból
RészletesebbenVI.Kombinatorika. Permutációk, variációk, kombinációk
VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti
RészletesebbenIsmérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)
Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)
RészletesebbenTENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorganizmusok számának meghatározása telepszámlálásos módszerrel
TENYÉSZTÉSES MIKROBIOLÓGIAI VIZSGÁLATOK II. 1. Mikroorgaizmusok számáak meghatározása telepszámlálásos módszerrel A telepszámlálásos módszerek esetébe a teyésztést szilárd táptalajo végezzük, így - szembe
RészletesebbenA paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab
öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést
RészletesebbenSTATISZTIKA (H 0 ) 5. Előad. lete, Nullhipotézis 2/60 1/60 3/60 4/60 5/60 6/60
Hioézi STATISZTIKA 5. Előad adá Hioéziek elmélee, lee, Közéérék-özehaolíó ezek /60 /60 Tudomáyo hioézi Nullhioézi feláll llíáa (H 0 ): Kémiá hioéziek 3/60 4/60 Mukahioézi (H a ) Nullhioézi (H 0 ) > 5/60
RészletesebbenIntuitív ADT és ADS szint:
A zkvcál adazkz olya dz pá amlyél az R lácó azív lzája lj dzé lácó. zkvcál adazkzb az gy adalmk gymá uá hlyzkdk l, va gy logka odjük. Az adaok közö gy-gy jllgű a kapcola: md adalm cak gy hlyől éhő
Részletesebben1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény
Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,
RészletesebbenMegállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
Részletesebben10.M ALGEBRA < <
0.M ALGEBRA GYÖKÖS KIFEJEZÉSEK. Mutassuk meg, hogy < + +... + < + + 008 009 + 009 008 5. Mutassuk meg, hogy va olya pozitív egész szám, amelyre 99 < + + +... + < 995. Igazoljuk, hogy bármely pozitív egész
Részletesebben5. gyakorlat Konfidencia intervallum számolás
5. gykorlt Kofdec tervllum zámolá. Feldt Cél: Normál elozlá gyor áttektée. Az IQ tezteket úgy állítják öze, hogy tezt eredméye éeége belül ormál elozlát kövee 00 ot átlggl é 5 ot zórál. A éeég háy zázlék
RészletesebbenInnen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha
. Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,
Részletesebben1. gyakorlat - Végtelen sorok
. gyakorlat - Végtele sorok 06. március.. Határozza meg az alábbi végtele sorok összegét! a) e e e 3 = e e = e e e e = e e = e e b) c) 4 = 4 + 5 6 + = 6 ) 4 + 6 6 + ) = lim N ) 5 = 6 6 + 5 6 = 7 6 N )
RészletesebbenA várható érték vizsgálata u és t statisztika segítségével
A várható érték vizgálata u é t tatiztika egítégével Feltételezzük hogy ormáli elozláú alapokaágból vett véletle mita/miták alapjá vizgáljuk hogy az imeretle várható érték milye feltételezett értékel egyel
Részletesebben1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k
Részletesebben13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai
Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk
Részletesebben7. számú mérés Kétcsatornás FFT analizátor alkalmazása
7. zámú méré Kétcatorá FFT aalzátor alalmazáa Auzta redzere átvtel jellemzőe mérée lazu módzereel, M orozatoal, Kétcatorá Gyor Fourer aalzátorral aboratórum gyaorlat Mérö Fzuo zámára Özeállította: dr.
RészletesebbenKomplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0
Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások
Részletesebben7. el adás Becslések és minta elemszámok. 7-1. fejezet Áttekintés
7. el adás Becslések és mita elemszámok 7-1. fejezet Áttekités 7-1 Áttekités 7- A populáció aráy becslése 7-3 A populáció átlag becslése: σismert 7-4 A populáció átlag becslése: σem ismert 7-5 A populáció
RészletesebbenA tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat
A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és
RészletesebbenMegoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat
Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.
Részletesebben2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...
. Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk
RészletesebbenVII. A határozatlan esetek kiküszöbölése
A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely
RészletesebbenKidolgozott minta feladatok kinematikából
Kidolgozott minta feladatok kinematikából EGYENESVONALÚ EGYNLETES MOZGÁS 1. Egy gépkoci útjának az elő felét, a máik felét ebeéggel tette meg. Mekkora volt az átlagebeége? I. Saját zavainkkal megfogalmazva:
RészletesebbenValószínűségszámítás. Ketskeméty László
Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma
RészletesebbenAz iparosodás és az infrastrukturális fejlődés típusai
Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenVillamos gépek tantárgy tételei
1. tétel Imertee a nagy aznkron motorok közvetlen ndítáának következményet! Elemezze a közvetett ndítá módokat! Kalcká motorok ndítáa Közvetlen ndítá. Az álló motor közvetlen hálózatra kapcoláa a legegyzerűbb
RészletesebbenStatisztika gyakorló feladatok
. Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.
RészletesebbenSztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától
Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported
Részletesebben