KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 8. ÉVFOLYAM MEGOLDÁSOK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 8. ÉVFOLYAM MEGOLDÁSOK"

Átírás

1 KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL 8. ÉVFOLYAM MEGOLDÁSOK Algebra és számelmélet 1. a) 0, 45; b)0, 5, 5, 40, 50, 55; c) 0, 1, 4, 5, 7, 0,, 5, 9, 40, 4, 45, 48, 50, 51, 54, 55, 57; d),, 6, 8, 9, 1, 4, 7, 8, 41, 4, 44, 46, 47, 49, 5, 5, 56, 58, 59.. a) {; 4; 6; 8}; b) { 10; 8; 6; 4; ; 0; 1; ; ; 4; 5; 6; 7; 8; 9}; c) {1; ; 5; 7; 9}; d){ 9; 7; 5; ; 1}.. A B = {; 8; 1}, A B = {1; ; ; 6; 8; 1; 1; 15; 16; 18; 19}, A \ B = {1; 6; 15; 19}, B \ A = {; 1; 16; 18}. 4. Mind a két szakkörbe 5-en járnak. 5. Legalább egy táborban 1 tanuló volt. Csak egy táborban 14 tanuló volt. Mindkét táborban 7-en voltak. 8 S 7 B 6 6. A B = {; ; 7; 8}, A B = {; ; 4; 5; 6; 7; 8}, A \ B = {4; 6}, B \ A = {5}. A tengelyesen és középpontosan szimmetrikus négyszögek sorszámai:.,., 7., 8. 1

2 7. A = { 1; ; ; 4; 5; 6}, A \ B = { 1; ; 5}, (A B ) = {1; ; 5; 7; 9}, B = { 6; 4; ; 0; ; 4; 6; 8}, B = { 5; ; 1; 1; ; 5; 7; 9}. ALGEBRA ÉS SZÁMELMÉLET 8. Legalább egy szakkörre 8-an járnak. Az informatika szakkörre -en, a sportjátékok szakkörre 5-en jelentkeztek. 50 S I

3 Számok és mûveletek 1. a) 6 89; b) 6 416; c) 6 89; d) (4 + ) = = 18 4 (4 + ) = = (4 + ) + 4 = 0 4 ( 4) = = 0 (4 4) + = 1. a) ; b),; c) 5 ; d) a,5 0,7 8,9 4, ,4 b 1,9,01 1,01 0,0 0, c 44,65 1,467 8, ,7 Szabály: a b = c, c : a = b, c : b = a. 5. a) 175 4; b) 715,89498; ; d) = 44 c) 84 = = = = 47 ( ) 7 = 6 7 = 19 ( + ) 7 = = 6 7 = a) ; b) 0 75 ; c) ; d) : 17 = 460, 1,975 : = 0,059, 5,64 : 87 = 0, a) 59; b) : 1 = 890; c) d) 1. 0 ;

4 10. (18 54) : = 4 18 (54 : ) = 4 18 : 54 = 4 SZÁMOK ÉS MÛVELETEK 54 : 18 : = 1 (54 : ) 18 = 4 54 (18 : ) = a) 1; b) ; c) ; d) 1; e) 81; f) b) c) d) e) a) f) a) 1 1 ; b) ; c) ; d) , 9, 5, 1, 16 84, 768, a) 5 7 ; b) 9 ; c) 4 9 ; d) 6 5 ; e) a 1 ; f) y x + z + t. 16. a) 5 ; b) 5 ; c) 8 ; d) 6 ; e) ; f) x. 17. a) ; b) 1 ; c) a) ; b) ; c) 65; d) a) >; b) >; c) =; d) =; e) =; f) > a) 1 ; b) ; 19 c) ; a) 4 096; b) ; c) ; d) 1968 ; 187 e ) ; f ) a) 8, 6,, 4; b) 9, 7, 1, 7; c) 4, 6, 5, 6; d) 8, 6, 4,. 79 d) ; 4 e) 045,. 4

5 SZÁMOK ÉS MÛVELETEK Osztó, többszörös, oszthatóság. a b K Annak a téglalapnak a legkisebb a kerülete, amelynek oldalai egyenlõek.. 4 = 4. A 4-nek 15 osztója van: 1,,, 4, 6, 9, 1, 18, 4, 7, 6, 81, 108, 16, A = {1; ; ; 4; 6; 9; 1; 18; 6}, B = {1; ; ; 6; 9; 18; 7; 54}. A B Közös osztók: 1,,, 6, 9, 18; (6;54) = A két szám: 10 és = = 1, 60 = 5 7, = (16; 646) = 16, [16; 646] = vel -mal 4-gyel 5-tel 6-tal 10-zel 5-tel 697 I I I N I N N I I N I I I I 541 N I N N N N N 000 I N I I N I I 0. -vel -mal 6-tal 4-gyel 1-vel 15-tel 4-gyel 9 7 igen lehet lehet igen lehet nem lehet 64 lehet lehet lehet lehet lehet lehet lehet 4 1 nem lehet nem nem nem nem nem 0 igen lehet lehet lehet lehet lehet lehet 5

6 SZÁMOK ÉS MÛVELETEK 1. a) 4; b) 18; c) 10; d) 10.. A:, 5, 8; B: 0,, 6. A + B =, A + B = 8, A + B = 14.. Az ismeretlen osztó: 6. ( ) : 6 = 70 : 6 = a) Az összeg osztható, mert páros és számjegyeinek összege osztható kilenccel. b) Az összeg osztható, mert páros és számjegyeinek összege osztható hárommal. c) Az összeg osztható, mert osztható néggyel és a számjegyeinek összege osztható kilenccel. 5. a) = 9 1 = 1 = ; b) : 048 = 18 : 11 = 7 = 18; c) = 5 8 = 1 = ; d) : = 1 : 10 = = 9; e) = 6 9 = 15 = ; f) : = 6 7 : 6 5 = 6 = 6; g) = = 0 = 4 15 = ; h) : 8 19 = 0 : 1 = 7 = < 18 14, 5000 > 5 000, < a) 5; b) -1; c) 8; d) -7; e) 1; f) 9. Számok normálalakja 8. a), ; b) 4,8 10 ; c), ; d) 4,0 10 ; e) ; f), 10; g) 4, ; h), ; i), ; j), ; k) 1, 10 1 ; l) a) 1 000; b) 0,000 5; c) 5 410; d) 0, ; e) ; f) 0, ; g) ; h) 0, K = 56 dm, T = dm. 41. a = 16 dm, T = 56 dm. 4. a = 8 dm, k = dm. Számok négyzete, négyzetgyöke 6

7 4. SZÁMOK ÉS MÛVELETEK 1 < <, < 6 <, < 8 <, < 15 < 4, 4 < 4 < 5, 7 < 50 < 8, 7 < 64 = 8 < 9, 9 < 84 < 10, 14 < 00 < ( ) = 49 = 7, 5 = 5, = 4, 5 5, 4 ( ) = = = ( ) = , 5, 8, 64, 1 = 1, 100 = 10, = 100, = 1000, 10 = 10, 10 = 100, 10 = 1000, 10 = = = 1, 196 = 7 = 14, = =, 1 96 = = 6, 05 = 5 = 45, 600 = 5 = 60, 5 = 00, = 5 7 = = 7 = 56, = = = 6 94 = 6 6= 6, tehát az állítás igaz; = + 4= 7 7 5, tehát az állítás nem igaz; = 5 6 : 9 = 6 : = 6 : 9 = =, tehát az állítás igaz; 5 16 = = 1, tehát az állítás nem igaz; 64 : 4 = 4 4= 4, tehát az állítás igaz. 64 : 4 = ,4 = 1,96; 4,1 = 17,057; 5,08 = 5,806, 8,7 = 75,69; 7,9 = 6,885; 9,98 = 99, a),85 = 8,1; b) 8,5 = 81, = 8,1 10 ; c) 85 = 81 = 8, ; d) 850 = = 8, ; e) = = 8, ; f) 0,85 = 0,081 = 8,1 10 ; g) 0,08 5 = 0,00081 = 8, ; h) 0,00 85 = 0, = 8,

8 SZÁMOK ÉS MÛVELETEK 49. a) 54 = 916 = 9,16 10 ; b) 14 = = 1, ; c) 0 = = 9, ; d) = = 1, ; e) = = 76, ; f) = = 49, ; g) 0,6 = 0,969 = 9,69 10 ; h) 0,04 = 0, = 5, ; i) 0,00 6 = 0, = 1, ; j) 0, = 0, = 9, ; k) 0, = 0, = 60, ; l) 0, = 0, = 8, , 69 = 1, 64, 1, 4 =, 66, 45, 56 = 6, 75, 8, 7 = 9, 15, 1 = 1, 5 =, 4, 10 =, 16, 7 =, 65, 8 =, 8, 18 = 4, 4,, 5 = 4, 74, 0 = 5, 48. 1, 988 = 1, 41, 19, 88 = 4, 46,, 5 = 1, 8,, 5 = 5, = 4, 4, 180 = 1, 4, = 4, 4, = 14, 1, 8 = 1, 4, 0, 18 = 0, 44, 0, 018 = 0, 14, 0, 0018 = 0, = 1, 7, 1 40 = 6, 6, = 70,, =, 0, 7 = 0, 87, 0, 046 = 0, 14, 0, = 0, 068, 0, = 0, K = 1 dm, T = 10,565 dm. 55. K = 191, cm, T = 84,84 dm. 56. a = 44,5 m, T = 1980,5 m. 57. a = 1,8 dm, K = 7, dm. 58. a = 74,9 m, K = 99,6 m. 59. a = 0,005 km, K = 0,08 km. 8

9 Pitagorasz-tétel 1. a) c = 1 cm; b) y = 1 cm; c) m = 1 cm; d) c = 5,6 dm; e) y = 1,9 m; f) m = 8,57 cm.. A derékszögû háromszög átfogója 1, cm hosszú.. A derékszögû háromszög átfogója 65 dm hosszú, K = 157 dm, T = 1058 dm. 4. A derékszögû háromszög hiányzó befogója 8,1 m hosszú, K =,41 m, T = 19,11 m. 5. A négyzet átlója 16,97 cm hosszú, K = 48 cm, T = 144 cm. 6. A négyzet átlója 4,4 cm hosszú, a = cm, T = 9 cm. 7. Az egyenlõ szárú háromszög K = 4, cm, T = 7,9 cm. 8. Az egyenlõ szárú háromszög K = 6 cm, T = 8,6 cm. 9. Az egyenlõ szárú háromszög K = 46, dm, T = 46,9 dm. 10. Az egyenlõ szárú háromszög K = 6 cm, T = 60 cm. 11. A szabályos háromszög K = 54 cm, T = 140,1 cm. 1. A téglalap hiányzó oldala 15, cm hosszú, K = 56,4 cm, T = 197, cm. 1. A téglalap köré írható kör sugara 5,045 dm. 14. K = 4,4 cm, T = 70 cm. 15. K = 100 mm, T = 6, mm. 16. K = dm, T = 5,8 dm. 17. K = 80 cm, T = 10 cm. 18. K = cm, T = 44 cm. 19. A húr hossza 11, cm. 0. h 1 =,6 cm, h = 17 cm. 9

10 PITAGORASZ-TÉTEL 1. e. AO = 5, BO = 5,9, CO = 1,9.. AB = 5,8, CD = 6,7. 4. K = 6, A lapátló 11, cm, a testátló 1,86 cm. 6. A kocka felszíne 178 cm. 7. A téglatest testátlója 17 cm hosszú. 8. A leghosszabb lapátló 14,4 cm, a leghosszabb és a legrövidebb lapátló közötti különbség 4,97 cm, a téglatest testátlója 15,6 cm hosszú. 9. a) 0 cm; b),5 cm; c) 6,4 cm; d) 5,76 cm. b) < d) < c) < a) 0. Szögei szerint Pitagorasz tételének a megfordítása derékszög tompaszög derékszög hegyesszög derékszög hegyesszög tompaszög Kerület 1 cm cm 0 m 5 cm 0 dm 5 mm 7,6 dm Terület 6 cm cm 0 m 104 cm 7,5 dm 54 mm,6 dm 10

11 Algebrai kifejezések 1. a) b = a 6; b) a + b = ; c) 5a + b; d) (a b) ; e) (a + b) c; f) a 0,7 b; g) x y ; h) (x y) 5 x y ; i) c d ; j) c : 7 6; k) 1, ab ; ab ; x y ; 1,0 xyz; 1ab; xy. 6. Együttható,7 4, Változó c b x c x e x f xy 4. a-val egynemû: 0,9a, 8a; 5. ab -tel egynemû: 7ab ; 7ab 1,ab-vel egynemû: ab,, 4, ab, ba; 9 a b-vel egynemû: 7a b, 1a b. 7ab ab ; ; ab ab; 5ba; a; a b. 6. ab 5ab ; ab a b b ; ab; 5 ba a. 7. a) b) c) d) y, 7y, y, 6y, 11y ; 4 15 x, x, 8x, 17x, x ; xy, xy, xy, 1xy, xy; ab, ab,, ab, 9ab, ab. 17 ab 1 7 xy 8. 7ab, a b,,,, ab, a,, x y. ab ab 5xy 4 11

12 ALGEBRAI KIFEJEZÉSEK ab, ab a a b, 5, ab, ab, xy ab, a,, 4x y. 5xy a ) 1+ y; b ) x; c ) x + xy+ y ; d ) y x + 5x y + y. a ) ab+ ab; b ) x y xy; c ) 8x + ; d ) x + x y. a ) y 1; b ) 7x + 17y z; c ) 4, 5xy 5xz 19, yz; d ) 0, 85y + z + 0 a ) 6, 45; b ) 0; c) 0; d) a ) 5; b ) ; c ) ; d ) a ) 10; b ) ; c ) 1; d ) a ) 17; b ) ; c ) 0; d ) a ) 6a ; b ) 4a ; c ) 6x y; d ) x y. 6 5x y 4x 6x y 8x y 105x 4 y x.,5x y 4,x 4 6,x y,8x 4 y 10,5x 5 y 5 4 xy x y x y 5 xy 5x 4 y a ) a ; b ) a; c ) 4x ; d ) 0, 4yz. y 0,6x 10x x 06, y x y y x y 4x y xy 15x 40x 4 y y x 4x y 1

13 ALGEBRAI KIFEJEZÉSEK 1. a ) a ; b ) x ; c ) x ; d ) y ; e ) a ; f ) a b ; g ) a b ; h ) ab Szorzat összeggé alakítása 4. a) 6x 10x ; b) 1x 8x ; c) 1y 8y ; d) 18x 1x. 5. a) 1x 8x ; b) 1x 5 8x 4 + 4x ; c) 6x 9x + 1x; d) 6x 7x a ) 5x 19y; b ) 4x+ 10; c ) 7y 4xy+ 8y 6x; d ) 4c 6cd 8c d. 4 ab b 4,5a b 15ab 4 4 0,6a 0,6a 0,6a b a b 1 4 ab 1 5 ab 0,75a b a ) 6xya; b ) 9x 6x; c ) xy y+ x 6; d ) x x. 5 5 a ) 8( a b); b ) 5ab( 1 ab); c ) 4x ( x x + 1); d ) xy ( 1+ y 5x + xy). a ) ( ); b ) ( 6 ); c ) 7( b a + a+ b a ab+ b x xy+ y ); d ) z( 9x + 6xy+ y ). a ) 7a( 7a b+ ab ); b ) xy( 9x+ 6+ y); c ) 4( 16x 8x+ 1); d ) 17ab( ab + b). a ) E = ; b ) F = a; c ) G = xy ; d ) H = xz. a ) x+ y, alaphalmaz: és x y; b ) x y, alaphalmaz: és x y; c) x+ y, alaphalmaz: és x y; d ) x y, alaphalmaz: és x y. a a( a+ 9b). a ) x 7; b ) ; c ) ; d ). b ( a+ b) 4 9 ab 1 ab a b 5 ab 1 a 15 5 b 5 ab a 1

14 1. a) x = ; b) x = ; c) x = 1. Egyenletek, egyenlõtlenségek. a) x = 0; b) y = 0; c) azonosság; d) azonosság.. a) x = 1; b) x = 1; c) y = a) a = 9; b) b = 5; c) c = a) a = 4; b) b = ; c) x = a) a 1 = 0, a = 7; b) b 1 =, b = 5; c) c 1 = 0, c =, c = a) a1 =, a =, a = ; b) 1 b1 =, b =, b =. 8. > x. 9. x x x. 1. a ) 6 x; b ) x. 1. Azonosságok: a), c), f), g), h). 14. a) 4; b) x ; c) ; d) 4, a) a = ; b) a = 9; c) a =

15 Egyenlettel megoldható Szöveges feladatok 1. Jutkának 810 Ft-ja, Mártának 1040 Ft-ja van.. Az egyik polcon 56 befõtt, a másik polcon 74 befõtt van.. Az egyik szám 5, a másik szám Lolának 1640 Ft-ja, Balázsnak 10 Ft-ja volt eredetileg. 5. Az elsõ polcon 108, a második polcon 6, a harmadik polcon 7 könyv van. 6. Egy menü 840 Ft-ba került. 7. α = 45, β = 60, γ = α = 84, β = 60, γ = A ketrecben eredetileg 7 nyúl volt. 10. A matematikadolgozat átlaga,48 volt. 11. Laci 10 éves, édesanyja 8 éves, édesapja 40 éves. 1. Panni 9 éves, apukája 9 éves. 1. Az egyik szám 95, a másik szám A teremben 14 háromlábú és 178 négylábú szék van. 15. A parkolóban 7 motor és 15 autó van. 16. a) 11, 5 < x; b) x 64. 1, 5 15

16 17. x 10. EGYENLETTEL MEGOLDHATÓ a (cm) x 7 6 b (cm) x c (cm) x 10 9 K (cm) 9 Számok helyi értékével kapcsolatos feladatok 18. Ez a kétjegyû szám az Ezek a kétjegyû számok a 1, 4, 5, 46, 57, 68, Az eredeti kétjegyû szám a Az eredeti kétjegyû szám a 6.. Az eredeti kétjegyû szám a 8.. Az eredeti kétjegyû szám a Az eredeti kétjegyû szám a Az eredeti kétjegyû szám a Az eredeti kétjegyû szám a Az eredeti kétjegyû szám a Ez a háromjegyû szám a A betonozási munkák 4 napig tartanak Ede és Máté együtt 5 órát dolgozott Ede 8 órát dolgozott összesen. 4. Gábor összesen 7,5 napot dolgozott.. Gábor összesen 7 napot dolgozott. 9 Munkavégzéssel kapcsolatos feladatok 16

17 4. Még munkást kell beállítani. EGYENLETTEL MEGOLDHATÓ Mozgásos feladatok 5. A motor Pécstõl 8,5 km távolságra éri utol a teherautót, 5,5 óra múlva. 6. A város a falutól 6 km távolságra van. 7. Szegedtõl a kiskert 6 km távolságra van. 8. A személygépkocsi és a teherautó 9 óra 5 perckor találkozott Kistelektõl 7 km távolságra. 9. A személygépkocsi 1 óra 57 perckor Szegedtõl 57,6 km távolságra éri utol a teherautót. 40. Lolka Bolkát 70 másodperc alatt körözi le. 41. Bence és Gergõ 150 másodperc múlva találkoznak. Keveréses feladatok 4. A 80%-os oldatból 5,45 grammra van szükség. 4. A 5%-os oldatból,5 kg-ra, a 45%-os oldatból 1,75 kg-ra van szükség. 44. A 10%-os ecetsavból 0 grammra, a 0%-os ecetsavból 90 grammra van szükség. 45. A 80%-os oldatból 0 grammra, a 50%-os oldatból 50 grammra van szükség. 46. A keverék elkészítésével 56 százalékos oldatot kapunk. 47. A szükséges töménység eléréséhez 600 gramm vizet öntsünk a sóoldathoz. 48. A keverék hõmérséklete 50 C lesz. 49. A közös hõmérséklet 60 C lesz. 50. A 90 C-os vízbõl 4,15 kilogrammra van szükség. 51. A 0 C-osból 8 kilogramm, a 80 C-osból 0 kilogramm víz szükséges. 17

18 Geometriai ismétlés Alapfogalmak, alapszerkesztések

19 GEOMETRIAI ISMÉTLÉS. a) b) c) d) 19

20 GEOMETRIAI ISMÉTLÉS 4. Ha az egyenes érinti a körvonalat, akkor ilyen pont van. Ha az egyenes és körvonal távolsága cm-nél kisebb, akkor p 4 ilyen pont van. Ha az egyenes és körvonal távolsága cm, akkor 1 ilyen pont van. Ha az egyenes és körvonal távolsága cm-nél nagyobb, akkor 0 ilyen pont van. 5. A sík azon pontjai, amelyek e-tõl cm-nél nem nagyobb és P-tõl 1 cm-nél nem kisebb távolságra vannak Két megoldás esetén a pont és egyenes távolsága: d(p, e) < 6 cm. Egy megoldás esetén a pont és egyenes távolsága: 6 cm. Nincs megoldása a feladatnak, ha a pont és egyenes távolsága: d > 6 cm. 0

21 GEOMETRIAI ISMÉTLÉS 8. Ha a feladatnak nincs megoldása, akkor a három pont egy egyenesen van

22 GEOMETRIAI ISMÉTLÉS 1. Szerkeszd meg az adott szögeket! Mekkora a megszerkesztett szög mellékszöge? α =15 β =10 γ =157,5 δ =150 ϕ =45 μ =105 λ =15 ω = a) b) α = β α = γ c) d) α + δ = 180 α + ϕ = 180

23 GEOMETRIAI ISMÉTLÉS a) lehet; b) biztos, 1; c) lehet, 1; d) biztos. 16. nem; páros; és tengelyesen is; a tengelyek metszéspontja. 17. a) b)

24 18. a) cm < harmadik oldal hossza < 15 cm. 19. Háromszögek b) Marcsi háromszögének a. oldala 10,8 cm. Karcsi háromszögének a. oldala 6,7 cm. c) Pali háromszögének a. oldala 6 cm. d) Vali háromszögének a. oldala 9 cm. GEOMETRIAI ISMÉTLÉS 0. γ = 7 ; α = 45, β = 55 ; α = 75, β = 41, γ = Egy egyenlõ szárú háromszög egyik szöge 70. a) b) Ha az egyenlõ szárú háromszög egyik szöge 90, a feladatnak csak egy megoldása van.. α = 6, α = 7, α = 45, α = 90.. BAC = 55, ABC = 56, BCA = 69. 4

25 4. Egyenlõ szakaszok: AF = FB, CE = EF, BE = EA, BC = BF. Egyenlõ szögek: CEB = 60, BEF = 60, FEA = 60, EAF = 0, β = ϕ = Vázlat: GEOMETRIAI ISMÉTLÉS A két magasságvonal által bezárt szög: δ = Szerkesztés: 5

26 8. a) T = 0 cm ; b) K = 0 cm; c) m a = 1 cm, m b = 5 cm, d)s a = 1,6 cm, s b = 7,81 cm; e) r = cm. GEOMETRIAI ISMÉTLÉS m c = cm; 9. Négyszögek 0. H, I, I, H, I, I, H, H, I, H, I. 1. Rombusz: β = 18, γ = 4, δ = 18 ; paralelogramma: α = 74, β = 106, γ = 74, δ = 106 ; trapéz: α = 44, β = 55, γ = 15 ; deltoid: α = 110, γ = 0, δ = α = 98, β = 89 ; α = 75, β = 11 ; α = 9,5, β = 9,5.. K = cm, T = 44 cm. 4. K = 66 cm, T = 5 cm. 5. K = 4 cm, T = 18 cm. 6. b = 5,66 cm, K = 5, cm, T = 8 cm. Szerkesztés menete: 1. 7 cm-es szakasz felvétele.. Egyik végpontjába 45 -os szög szerkesztése.. 7 cm-es oldallal 4 cm távolságra párhuzamos egyenes szerkesztése. 4. Ahol a 45 -os szög szára metszi a párhuzamost, onnan a 7 cm-es szakasz mérjük. 5. A kapott két végpont összekötése. 6

27 GEOMETRIAI ISMÉTLÉS 7. b = 8,54 cm, K = 7,08 cm, f = 1 cm, f** = 4 cm, T = 6 cm. Szerkesztés menete: 1. e átló felvétele.. a oldallal, mint szárral e alappal egyenlõszárú háromszög szerkesztése.. e felezõmerõlegesének megszerkesztése. 4. e felezõpontjából rámérem f*-ot. 5. A kapott pontot összekötöm e végpontjaival. Szerkesztés: 7

28 8. Egy csúcsból húzható átlók száma Az egy csúcsból húzott átlók ennyi háromszögre bontják a sokszöget GEOMETRIAI ISMÉTLÉS Sokszögek háromszög négyszög ötszög hatszög hétszög tízszög tizenhatszög n-szög n n Összes átlók száma ( n ) n Belsõ szögeinek összege (n ) 180 Külsõ szögeinek összege a) 65; b) 1980 ; c) a) 15; b) 880 ; c) a) A sokszög 6 oldalú. b) A sokszög 1 oldalú. c) A sokszög 4 oldalú. 4. a) A sokszög 7 oldalú. b) A sokszög 14 oldalú. c) A sokszög 0 oldalú. 4. a) A sokszög belsõ szögeinek összege 160. b) A sokszög belsõ szögeinek összege 060. c) A sokszög belsõ szögeinek összege a) A sokszög 8 oldalú. b) A sokszög 15 oldalú. c) A sokszög 17 oldalú. d) A sokszög 1 oldalú. 45. T 1 = 5 cm, T = 5 cm, T = 4 cm, T = 11 cm, a = 7,8 cm, b = 8,06 cm, K = 5,4 cm. 46. háromszög négyszög ötszög hatszög hétszög tízszög tizenhatszög n-szög 46. Középponti szögének nagysága Egy belsõ szögének nagysága Egy külsõ szögének nagysága Szimmetriatengelyeinek száma , ,5 6,5 60 n ( n ) 180 n 60 n n Középpontosan szimmetrikus-e? nem igen nem igen nem igen igen 8

29 47. a) 9; b) 140 ; c) 40 ; d) 9; e) nem. 48. a) 1; b) 150 ; c) 0 ; d) 1; e) igen. 49. a) A szabályos sokszög 18 oldalú. b) A szabályos sokszög 4 oldalú. c) A szabályos sokszög 6 oldalú. 50. a) A szabályos sokszög 18 oldalú b) A szabályos sokszög 5 oldalú. c) A szabályos sokszög 0 oldalú. GEOMETRIAI ISMÉTLÉS 51. K = 18 cm, m, 6 cm, T =, 9 cm, T =, 4 cm. a háromszög hatszög Szerkesztés: 5. a=, cm, K = 18, 4 cm, T =, 1855 cm, T = 5, háromszög nyolcszög 48 cm. Szerkesztés: 5. A kör 9

30 54. K = 7,68 cm, T = 11,04 cm. 55. A kerék átmérõje 0,64 m. 56. A körív hossza 75,6 cm, a körcikk kerülete 111,6 cm, a körcikk területe 60,88 cm. 57. A körív hossza 6,8 cm, a körcikk kerülete 5, cm, a körcikk területe 6,17 cm. 58. A pálya kerülete 57 m, a területe 696,5 m. 59. A keresett terület 40,19 cm A körszelet területe 41,04 dm. 6. A körszelet területe 45,5 cm. GEOMETRIAI ISMÉTLÉS R r d K T a) 7 cm cm 4 cm 6,8 cm 15,6 cm b) 9 cm 6 cm cm 94, cm 141, cm c) 10 cm 7 cm cm 106,76 cm 160,14 cm d) 8 cm 5 cm cm 81,64 cm 1,46 cm 6. A hulladék területe 4,05 cm, ez 1,5 százaléka a háromszög területének. 0

31 Térgeometria 1. A lapok száma 5, a csúcsok száma 6, az élek száma 9.. A hasábnak 9 lapja, 14 csúcsa és 1 éle van.. A hasábnak 1 lapja, 4 csúcsa és 6 éle van. 4. a) 7; b) 11; c) 10; d) a) 10; b) 8; c) 8; d) a) 0,7; b) 400; c) 56; d) m ; e) 80; f) mm ; g) 57; h) cm ; i) 8 000; j) dm. 7. a) 0,145; b) mm ; c),1 m ; d) cm ; e) 0,065; f) 0,46; g) 0, ; h) 1,; i) 750; j) 6,8. 8. A = 98 cm, V = 1080 (cm ). 9. A hasáb alapéle 4,5 dm, oldaléle 1,5 dm hosszú. A hasáb térfogata 7,75 dm. 10. A téglatest élei 1,8 dm,,7 dm, 4,5 dm hosszúak. Az edény térfogata 1,87 dm. Ebbe az edénybe 1,87 liter folyadék fér. 11. A hasáb felszíne 1 dm, térfogata 16 dm. 1. A hasáb felszíne 119,68 cm, térfogata 11cm. 1. A hasáb felszíne 148 cm, térfogata 10 cm. 14. Az edénybe 5,88 liter víz fér. 15. A tartály térfogata 156 dm, magassága 16 dm, a tartály felszíne 659,4 dm. 16. A henger felszíne 1507, dm, térfogata 617,8 dm. 17. A henger felszíne 1884 dm, térfogata 680 dm. 18. A két test felszínének aránya A 1 : A = 70,6 : 57,96, térfogatának aránya V 1 : V = 16 : A hulladék térfogata 1 85 cm, ez a rönk térfogatának 6, százaléka. 1

32 TÉRGEOMETRIA A gúla 0. A gúlának 8 lapja, 8 csúcsa és 14 éle van. 1. A gúlának 11 lapja, 11 csúcsa és 0 éle van.. A gúla éleinek a száma 5-nél nagyobb páros természetes szám lehet.. a) 10; b) 18; c) 9; d) a) 11; b) 15; c) 1; d) a) A gúla felszíne 96 cm, térfogata 48 cm. b) A gúla felszíne 1,96 dm, térfogata 1,78 dm. c) A gúla felszíne 84,56 cm, térfogata 1408 cm. 6. A gúla felszíne 110,4 cm. 7. A test felszíne 74 cm, térfogata 1 cm. 8. A test felszíne 194,88 cm, térfogata 188,16 cm. Az egyenes körkúp 9. a) A kúp felszíne 6,76 cm. b) A kúp felszíne 45,7184 dm. 0. a) A kúp felszíne 10,64 cm. b) A kúp térfogata 46 dm. 1. A kúp felszíne 565, cm, térfogata 401,9 cm.

33 . a) A = 1808,64 cm, V = 15,6 cm ; b) A = 105,76 cm, V = 411,5 cm.. A két kúp térfogatának aránya :. TÉRGEOMETRIA 4. A két kúp térfogatának aránya V 1 : V = 4 : A keletkezett test felszíne 149,464 cm, térfogata 18,5 cm. 6. A keletkezett test felszíne 8,6 mm, térfogata 14 mm. 7. A = 01,44 cm, V = 01,44 cm, a keletkezett hulladék térfogata 60,88 cm. 8. A keletkezett test felszíne ,5 cm, térfogata cm. 9. a) A test felszíne 44,9 cm, térfogata 9,0 cm. b) A test felszíne 0,8 cm, térfogata 9,7 cm.

34 Felvételire készülünk 1. x = 8, y = 10, z = 0,, w = 9.. 6,5, 19,5, 15, 1, 10, feladatsor. a) 0,0544; b) 500; c) 7; d) 0,44; e) a) Paliék 400 forintot fizettek. b) A eset = B eset. c) A esetben: 17,8 Ft, B esetben: 14 Ft. 5. a) Lekváros; b) db; c) 0%; d) 7 ; e) 167 db. 6. a) A boltba kötet érkezett. b) Az elsõ nap 576 kötetet adtak el. c) A második nap az eredeti készlet 4 százaléka fogyott el. 1 d) A negyedik napra a készlet része maradt meg a) 8-féle háromszög készíthetõ. b) 8-féle egyenlõ szárú háromszög készíthetõ. c) Az egyenlõ szárú háromszög készítésének nagyobb a valószínûsége. d) Annak, hogy a készített háromszög különbözõ oldalú, a valószínûsége a) Lehet, hogy igaz; b) lehetetlen; c) biztosan igaz; d) lehet, hogy igaz; e) biztosan igaz. 9. a) A háromszög oldalainak hossza a = 1 cm, b = 10 cm. b) Az alaphoz tartozó magasság 8 centiméter. c) A háromszög területe 48 cm. 10. V = 88 cm, A = 15 cm. 5 lapja piros:, 4 lapja piros:, lapja piros: 4, lapja piros:. 4

35 . feladatsor 1. A = 155, B = 156, C = 90. Növekvõ sorrend: 90 < 155 < 156. C < A < B.. 1. I,. H,. I, 4. I, 5. I.. Tóni apukája forint adót fizetett , 1 +, 1 +, 1 + 4, 1 + 5, 1 + 6, +, +, + 4, + 5, + 6, +, + 4, + 5, + 6, 4 + 4, 4 + 5, 4 + 6, 5 + 5, 5 + 6, FELVÉTELIRE KÉSZÜLÜNK Kata: 1 +, + ; Laci: 1 + 6, + 5, + 4; Juli: + 6, dobások esetén gyõz. Lacinak van legnagyobb esélye a gyõzelemre. Katának van a legnehezebb dolga az utolsó dobáskor. 5

36 6. a) 1970 és 1980 között volt a legnagyobb változás. b) A lakóinak száma kb. 8%-kal csökkent. c) Átlagosan 107 lakója volt a településnek. 7. α = 0. FELVÉTELIRE KÉSZÜLÜNK 8. a) Az ötödik nap percig tornázott Ede. b) A napi maximális edzésidõ 40 perc. c) Az egy hónap során 105 percet, azaz 17,5 órát edzett. 9. a) Az üzlet 17,5 kg barackot kapott. b) Az elsõ nap 9,5 kg, a második nap 7 kg barack volt az eladott mennyiség. c) A barack eredeti ára 80 Ft/kg. d) A barack eladásából az üzlet bevétele 7 40 forint volt. 10. a) A kocka éle 14 centiméter. b) A kocka : A téglatest = 1176 : 60 = 94 : 565 c) A kisebb téglatest élei 6 cm, 14 cm hosszúak. A nagyobb téglatest élei 11 cm, 14 cm, 0 cm hosszúak. d) V kocka = 744 cm, V kisebb téglatest = cm. A két térfogat közötti eltérés cm. 6

37 Függvények, sorozatok Hozzárendelések 1. I) Nyíldiagrammal: II) Táblázattal: III) Szabállyal: x x IV) Grafikonnal: V) Egyenlettel: x = y. Az A elemei A K elemei Szabály: x x + 7

38 FÜGGVÉNYEK, SOROZATOK. A elemei (x) K elemei (y = x + ) A elemei (x) K elemei (y) Szabály: x x 5. a) Ez a hozzárendelés függvény, mert minden számhoz egy számot rendelünk. b) Ez a hozzárendelés függvény, mert minden sokszögnek egyetlen kerülete van. c) Ez a hozzárendelés nem függvény, mert lehet valakinek több testvére is. d) Ez a hozzárendelés nem függvény, mert egy számhoz több számot rendelünk. 8

39 e) Ez a hozzárendelés függvény, mert egy természetes számhoz egy természetes számot rendelünk. f) Ez a hozzárendelés függvény, mert egy ponthoz egyetlen pontot rendelünk. 6. Szabály: x x 1 FÜGGVÉNYEK, SOROZATOK 7. a) Z N, x x, y = x, g(x) = x ; b) Z Z, x x, y = x, f(x) = x; c) Z Z, x x +, y = x +, f(x) = x + ; d) Q Q, x x, y = x, f(x) = x; e) Q Q, x x, y = x, f(x) = x ; f) Q + 0 Q, x x, y = x, f(x) = x ; g) Z Z, x x, y = x, f(x) = x. 8. x g(x)

40 FÜGGVÉNYEK, SOROZATOK x f (x) x g(x) f( x)= x+ g(x) = x 1, y = x a) b) c) x 1 y =, ax ( ) = x; 1 1 y x, b( x) x; y< 1 1 x, c( x) < x. y 1 x y = 1 x y< 1 x 40

41 FÜGGVÉNYEK, SOROZATOK 5 1. a) y(x) < x + 5; b) yx ( )< x+ ; c) y(x) > x x f(x) x g(x) x h(x) x x x f(x) g(x) h(x)

42 FÜGGVÉNYEK, SOROZATOK 15. x x x f(x) g(x) h(x) A három grafikon egymással párhuzamos. Megegyeznek az együtthatóikban, különböznek a konstansokban m f =, m g =, m h = 4, m i = 6, m k = =, m l =. f(x) grafikonja a k(x) grafikonjával, g(x) grafikonja a l(x) grafikonjával a 1 (x) = 4x, a (x) = 4x + 5, a (x) = 4x +1, b 1 (x) = x, b (x) = x + 7, b (x) = x, c1 ( x)= x, c( x)= x, c( x)= x+. 4 4

43 FÜGGVÉNYEK, SOROZATOK 18. x f(x) 1 1 x g(x) 0 4 x h(x) A g(x) és h(x) függvények grafikonjai egymást metszik. A g(x) és f(x) függvények grafikonjai egymásra merõlegesek. A h(x) és g(x) függvények grafikonjai egymást metszik. 19. x x x f(x) g(x) h(x) A három grafikon az y tengelyt a 1 pontban metszi. A h(x) függvény grafikonja zár be nagyobb szöget az x tengellyel. A g(x) függvénynek nagyobb a meredeksége. 4

44 FÜGGVÉNYEK, SOROZATOK 0. P f (0; 4) Q f (1; 1), P g (0; 0) Q g (1; 4). 1.. Pe(;), 0 Qe 1;, Pf(; 0 -), Qf 1;

45 FÜGGVÉNYEK, SOROZATOK. 1 1 a ) ex ( ) = x ; b ) f( x) = x+ 1 ; c ) gx ( ) = x+ ; d ) hx ( ) =. 4. ax ( ) = x+ 5, bx ( ) = x, cx ( ) =, 1 dx ( ) = x, ex ( ) = x 5,, f( x) = 5 x +, 4 gx ( ) = x, hx ( ) = e(x) = x +, f(x) = x +, g(x) = x, h(x) = x, ix ( )= x 1. 45

46 FÜGGVÉNYEK, SOROZATOK 6. x f(x) g(x) h(x) A g(x)-et megkaphatjuk, ha az f(x)-et eltoljuk az y tengely mentén egységgel fölfelé. A h(x)-et megkaphatjuk, ha az f(x)-et eltoljuk az x tengely mentén 1 egységgel balra. g(x): a függvény értéket növelem -vel. h(x): a változót növelem 1-gyel. 7. x f(x) g(x) h(x) A g(x)-et megkaphatjuk, ha az f(x)-et eltoljuk az y tengely mentén egységgel lefelé. A h(x)-et megkaphatjuk, ha az f(x)-et eltoljuk az x tengely mentén egységgel jobbra. g(x): a függvény értéket csökkentem -vel. h(x): a változót csökkentem -vel. 8. x e(x) f(x) g(x) e(x) minimumhely: x = 0, minimumérték: y = 0, f(x) minimumhely: x =, minimumérték: y = 0, g(x) minimumhely: x =, minimumérték: y =. 46

47 FÜGGVÉNYEK, SOROZATOK 9. x f(x) g(x) h(x) Az f(x) grafikonjából a g(x) grafikonját megkaphatjuk, ha az f(x) grafikont eltoljuk az y tengely mentén 1 egységgel fölfelé. Az f(x) grafikonjából a h(x) grafikonját megkaphatjuk, ha az f(x) grafikont eltoljuk az x tengely mentén egységgel balra. 0. x a(x) b(x) c(x) a(x) grafikonjából b(x) grafikonját megkaphatjuk, ha a(x) grafikont eltoljuk az y tengely mentén egységgel lefelé. a(x) grafikonjából c(x) grafikonját megkaphatjuk, ha a(x)grafikont eltoljuk az x tengely mentén 1 egységgel jobbra. 1. x e(x) f(x) g(x) e(x)= x, f(x)= (x +), g(x)= (x + ). 47

48 FÜGGVÉNYEK, SOROZATOK e(x) minimumhely: x = 0, minimumérték: y = 0, f(x) minimumhely: x =, minimumérték: y = 0, g(x) minimumhely: x =, minimumérték: y =.. x e(x) f(x) g(x) h(x) e(x): minimumhely: x =, minimumérték: y = 0, f(x): maximumhely: x = 0, maximumérték: y = 1, g(x): maximumhely: x = 0, maximumérték: y =, h(x): maximumhely: x =, maximumérték: y = 0. 48

49 FÜGGVÉNYEK, SOROZATOK. Értelmezési tartomány: R. Értékkészlet: y [ 4; [; R. Minimumhely: x = 0. Minimumérték: y = 4. Menete: csökkenõ, x ] ; 0], növekvõ, x [0; [. Az f(x) függvény grafikonja az x = 4; 4 pontban metszi az x tengelyt. 4. Értelmezési tartomány: R. Értékkészlet: y. Minimumhely: x =. Minimumérték: y =. Menete: csökkenõ, ] ; ], növekvõ, [ ; [. Zérushely(ek): x = 5; Értelmezési tartomány: R. Értékkészlet: y 4. Minimumhely: x =. Minimumérték: y = 4. Menete: csökkenõ, ] ; ]. növekvõ, [; [. Zérushely(ek): x = 1; 5. 49

50 FÜGGVÉNYEK, SOROZATOK Egyenletek grafikus megoldása 6. x =, y = 1, M (;1) 7. Megoldások: M 1 ( 1; 0); M (; 8) f( x) = x+, g( x) = x. Megoldások: M 1 (0; ); M (6; 4). 50

51 9. Megoldások: M 1 ( ; 0); M (; 4). FÜGGVÉNYEK, SOROZATOK 40. A két kerékpáros 9 órakor találkozott, az A településtõl 0 kilométer távolságra. Szöveges feladatok megoldása grafikusan 41. Az elsõ órában 4 km-t tettek meg; pihentek, játszottak órát; hazaindultak 14 órakor; hazaértek 17 órakor; a túra km hosszú volt; összesen 9 órán át túráztak. 51

52 FÜGGVÉNYEK, SOROZATOK 4. A két társaság 10,6 órakor találkozott órakor indultak. A B jármû tartott pihenõt. A B jármûnek volt nagyobb az átlagsebessége. 10 óra 7,5 perckor találkoztak. Az A jármû 17,5 km, a B jármû 11,5 km utat tett meg a találkozásig. Az A-nak 4 óra; B-nek,5 óra volt az útja. 5

53 Sorozatok 1. a) 11, 14, 17,... ; b),,,... ; c) 11, 15, 0,... ; d) 1, 15, 18,..... A kapott sorozat: 0, 1,,, 4, 5, 0, 1,,.... a ) a = 1, a = 1, 1 a = 5, a 4 = 7; b ) b 1 =, b = 6, b = 11, b 4 = 18; c ) c 1 = 0, c = 1, c =, c 4 = 6; d ) d 1 = 4, d = 1, d = 1, d 4 = a) a n = a 1 + (n 1) 5; b) b n = b 1 ( ) n 1 ; c) c n = c 1 + (n 1) ; d) d n = d 1 + (n 1) ( ). Számtani sorozatok: a), c), d). 5. a 0 = 11, S 0 = Mindenkit le tudtak ültetni. Az utolsó sorba 4 szék került. 7. a 4 = 504, S 4 = a 0 = 1571,1, S 0 =

54 SOROZATOK 9. a a a a a a a a a = 8, = 7, = 6, = 5, = 4, =, =, = 1, = 0, a a = 6d, 9 0 6= 6d d = A keresett összeg a) 108,5 kg; b) 80 kg; c) 6 kg. Elemérnek ezek alapján a c) fogyókúrás receptet ajánlom. 1. Az 1. év végére Ft-ja, a. év végére Ft-ja, a. év végére Ft-ja, a 4. év végére Ft-ja lesz. Minden hányados azonos, 1,1 értékû. 1. Az elsõ év végén Ft volt az értéke. A második év végére Ft volt az értéke. Most Ft az értéke. Minden hányados azonos, 0,8 értékû a 7 = a 1 =, a = 6, a = 18, a 4 = 54, a 5 = 16, a 6 = 486. Összegük: Számtani sorozat lehet: c), f), e). Mértani sorozat lehet: a), d) a ),,...; b) 5, 4, 8...; c ) 1, 6,...; d ),, a) = ; b) = ; c) a 1 = 84; d) a 1 = 1. a 1 9 a 1 54

55 SOROZATOK 18. a = 9, illetve a = a) nem eleme; b) nem eleme. 0. Húsz év múlva a település lakóinak a száma 11 1 lesz. A település lakóinak a száma 4 év múlva lesz kevesebb nél. 55

56 Geometriai transzformáció, hasonlóság 1. H, I, I, I, H, I.. a) b). a) deltoid b) I, H, I, H, I, I. 4. a) b) A keletkezett síkidom deltoid. Szimmetriatengelye AC egyenese. A keletkezett síkidom egyenlõ szárú háromszög. Szimmetriatengelye AB egyenese. 56

57 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 5. Vázlat: 6. a) Ez a négyszög egyenlõ szárú trapéz. b) I, H, I, H, I, I. 7. Vázlat: Szerkesztés: Szerkesztés menete: 1. a alap felvétele.. a felezõmerõlegesének megszerkesztése.. m rámérése a felezõmerõlegesre. 4. A kapott pontban párhuzamost szerkesztek a-val. 5. A párhuzamos egyenesre rámérem a felezõmerõlegestõl jobbra és balra a c felét. 6. A kapott pontokat összekötöm a végpontjaival. 57

58 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 8. Három megoldás. Középpontos tükrözés 9. a) I; b) I; c) H; d) I A négyszög paralelogramma. Eltolás 1. Párhuzamosak: d, e, f; Egyenlõk: e; a ellentett vektora: d. Adott pont eltolása adott vektorral 1. egyenlõ, párhuzamos, egyenlõ, azonos, egybevágó 58

59 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG Az eltolás vektora egyenlõ az A-ból A -be mutató irányított szakasszal. 59

60 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG Hasonlósági transzformáció 19. a) I; b) H; c) I; d) I. Háromszögek hasonlósága 0. A B C λ a b c a b c = = a b c 4 4, ,75 10, ,5 1,5 10,5 1,5 60

61 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 1... Szakasz adott részekre osztása 4. 61

62 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 5. A középpontos hasonlóság transzformációja 6. a) b) 7. a) b) 6

63 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 8. a) b) 9. a) b) 6

64 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 0. a) b) 1. 64

65 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG.. a) b) 4. 65

66 GEOMETRIAI TRANSZFORMÁCIÓ, HASONLÓSÁG 5. 66

67 Kombinatorika, valószínûség 1. A lehetséges sorrendek száma: JAD, JDA, ADJ, AJD, DAJ, DJA.. Péter 4 1 = 4-féle sorrendben készülhet fel a másnapi órákra.. Összesen 10 ötjegyû számot készíthetünk. a) 4; b) 48; c) 4; d) Összesen 600 hatjegyû számot készíthetünk. a) 96; b) 19; c)10; d)7. 5. A hat golyót 60-féleképpen állíthatjuk sorba héten keresztül tarthat a kártyacsata az adott feltételek mellett. 7. Az origóból A-ba 79-féle módon juthatunk el. 8. a) 5-féle módon; b) 1-féle módon; c) 5-féle módon; d) 18-féle módon. 9. A maratoni versenyen féle befutási sorrend lehetséges. 10. A megadott feltételnek 70 szám felel meg. Kiválasztási feladatok (a sorrend is számít) 11. A szigetnek legfeljebb lakosa lehet. 1. Az utakon különbözõ rendszámú autó futhat. 1. Az adott feltételnek 90 ötjegyû szám felel meg , 6 4, 6 5, Az elsõ három helyezés 6-féleképpen lehetséges. Kiválasztási feladatok (a sorrend nem számít) 16. Zsófinak 105-ször kell fagylaltot vennie a nyáron. 17. Az osztály tanulói közül a diáktanács tagjait 19-féle módon választhatták ki. 67

68 KOMBINATORIKA, VALÓSZÍNÛSÉG 18. Az a) esetben 495, a b) esetben 10-féle választási lehetõség van. 19. A buszjegyen 84-féle különbözõ lyukasztás lehetséges. 0. a) 150 módon; b) 100 módon; c) 15 módon; d) 65 módon lehetséges. 1. Tíz csoki vásárlása 1001-féleképpen lehetséges. 68

69 Valószínûség a) ; b) a) ; b) ; c) a ) ; b) ;. c) a ) ; 6 5 b) ; 6 1 c) a) ; b) ; c) A kiválasztott három szakaszból valószínûséggel szerkeszthetünk háromszöget a) ; b) ; c) 0; d) ; e) a) ; b) ; c) ; d) ; e) a) ; b) ; c) ; d) ; e) a) ; b) a) ; b) ; c) ; d) ; e) ; f)

70 VALÓSZÍNÛSÉG 1. Az öt piros golyóhoz 0 fehéret kell tenni, hogy a feltétel teljesüljön Annak a valószínûsége, hogy a légy a csempe fehér színû részére száll:. 4 Statisztika 14. a) b),7; c) ; d). 15. a) x = 8; b) x =. 16. a) 199; b) 1998; c) 16,9; d) 000 elõtt. 17. a) 148,4; b) 157,; c) 15,85; d) egyenlõ; e) a) 17; b) 19,; c) 17; d) 4; e) igen. 19. a) b) 5; c) ; d) 4,5. 70

71 Év végi tudáspróba 1. feladatsor 1. a) {0; 5; 6; 40; 4; 45; 48}; b){4}; c) {5; 40; 45}; d){5; 4}.. a) 5,48; b) 1.. a) gx ( )= x 4; b) hx ( )= x x = Az alaphoz tartozó magassága 4 cm. A háromszög területe 168 cm. 6. a) 85; b) 5; c) A keverék hõmérséklete C lesz. A víz magassága 5 cm órakor találkoznak. A motorosnak még 79, km-t kell megtenni, hogy Dunaföldvárra érjen Együtt,6 óra alatt lesznek kész a) számtani; b) a 6 = 80; d = ; n = 69; c) 0; d)

72 1. a (b c) a b + c (a + b) c ÉV VÉGI TUDÁSPRÓBA = 4 7. feladatsor 18 7 a b = 4 7 1,4 1,4 74,65, = 9, 1 9 = a) X Y = {1; ; 4; 6; 7; 8; 0; ; ; 6; 8; 9; 40; 4; 44; 45; 46; 50}; b)y \ Z = {4; 7; 0; ; 9; 45; 48}; c) Y X = {4; 0; 4; 48}; d)(x Y) \ Z = {; 4; 6; 7; 0; ; ; 6; 8; 9; 40; 44; 45; 46; 50} = x 7

73 4. a) Menete: csökkenõ függvény. É. t.: R. É. k.: R. b) Menete: csökkenõ x [0; [; növekvõ x ] ; 0]. É. t.: R. É. k.: y. c) Menete: csökkenõ x ] ; ]; növekvõ x [; [. É. t.: R. É. k.: y 0. ÉV VÉGI TUDÁSPRÓBA 5. Az egyenlõ szárú háromszög területe 6 cm. 6. a) A 10%-os ecetbõl 4 liter %-os ecet készíthetõ. b) A 0%-os ecetbõl 9 liter %-os ecet készíthetõ. A 0%-os ecet vétele a gazdaságosabb, mert az abból készített %-os ecetbõl 1 liter 1 Ftba kerül. 7. Jenõ 9 éves és Benõ éves. 8. A két brigád együtt 5 napot dolgozott. 9. Pápától 144,5 km távolságra, 11 óra 40 perckor. 10. a) A szabályos sokszög 14 oldalú. b) Egy belsõ szöge 154, fokos. 7

74 ÉV VÉGI TUDÁSPRÓBA. feladatsor 1. a) 4 650,68; b) 4,696.. x.. Nóri most 4 éves. 4. Péter onnan tudta, hogy rossz a végösszeg, hogy a 545 nem osztható hárommal. 5. Milán a 9-es számra gondolt. 6. É. t.: R, É. k.: y 8. Menete: csökkenõ: x [1; [, növekvõ: x ] ; 1]. Szélsõérték: maximuma van, hely: x = 1, érték: y = Az számítógép eredeti ára Ft. 8. Az elsõ sorban 8 ülõhely van. A huszonegyedik sorban 108 ülõhely van. A nézõtéren 148 ülõhely van. 9. Még munkást kell beállítani, hogy kész legyenek 10 nap alatt a festéssel. 10. A belsõ tárolótér 18,4 dm. A bevonásra 87,6 dm anyag szükséges. 74

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész Kisérettségi feladatsorok matematikából I. rész. Egy deltoid két szomszédos szöge 7 és 0. Mekkora lehet a hiányzó két szög? pont. Hozza egyszerűbb alakra a kifejezést, majd számolja ki az értékét, ha a=

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van! 1. Melyik a nagyobb? a) 6 5 vagy 5 7 b) vagy 11 10 vagy Gyökvonás 5 11 vagy 6 8 55 e) 7 vagy 60 16 1. Hozd egyszerűbb alakra a következő kifejezéseket! a) 7 18 b) 1 5 75 8 160 810 650 8a 5 a 7a e) 15a

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat 1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer

Részletesebben

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1

3 függvény. Számítsd ki az f 4 f 3 f 3 f 4. egyenlet valós megoldásait! 3 1, 3 és 5 3 1 Érettségi, M, I-es feladatsor, természettudomány.. Számítsd ki a C! összeget! log 4. Határozd meg a. Számítsd ki az egyenlet valós megoldásait! összeg értékét, ha és az 4. Adott az f : 0,, f. Adottak az

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 12.E ÉS 13.A OSZTÁLY HETI 4 ÓRA 31 HÉT/ ÖSSZ 124 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

3. a) 64; b) 32; c) 81; d) 1854; e) 8; f) 8; g) 1; h) 1; i) 1; j) 81 5 ; k) 1

3. a) 64; b) 32; c) 81; d) 1854; e) 8; f) 8; g) 1; h) 1; i) 1; j) 81 5 ; k) 1 KOMPETENCIA ALAPÚ FELADATGYÛJTEMÉNY MATEMATIKÁBÓL. ÉVFOLYAM MEGOLDÁSOK Számok és mûveletek Hatványozás. a) 6 ; b),4 4 ; c) (0,6) ; d) () ; e) ;f) 9 9 ;g)b 8 ; h) (y) ;i) c ;j) x.. a) ; b),,,; c) 8; d)

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2

Pitagorasz-tétel. A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! 2 2 2 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Pitagorasz-tétel A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója?

Feladatok. 1. a) Mekkora egy 5 cm oldalú négyzet átlója? Feladatok 1. a) Mekkora egy 5 cm oldalú négyzet átlója? A háromszög derékszögű, ezért írjuk fel a Pitagorasz-tételt! e 5 5 50 e 50 7,07 cm b) Mekkora egy a oldalú négyzet átlója? e a a a e a. Egy négyzet

Részletesebben

4. A kézfogások száma pont Összesen: 2 pont

4. A kézfogások száma pont Összesen: 2 pont I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes

Részletesebben

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! 1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Síkgeometria. Ponthalmazok

Síkgeometria.  Ponthalmazok Síkgeometria http://zanza.tv/matematika/geometria Ponthalmazok Alapfogalmak: pont egyenes sík (nincs kiterjedése; általában nagy betűvel jelöljük) (végtelen hosszú; általában kis betűvel jelöljük) (végtelen

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al: Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet

Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok. Algebra és számelmélet Az alapvetı tudnivalók jegyzéke matematikából 9. évf. Halmazok halmaz halmaz megadása, jelölésmód üres halmaz véges halmaz végtelen halmaz halmazok egyenlısége részhalmaz, valódi részhalmaz halmazok uniója

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

Református Iskolák XX. Országos Matematikaversenye osztály

Református Iskolák XX. Országos Matematikaversenye osztály 1. Pisti beledobott egy kezdetben üres - kosárba valahány piros és kék labdát, amelyeknek legalább 90%-a piros. Jenő találomra kivett 50 labdát, közöttük 49 piros volt. Julcsi megnézte a kosárban maradt

Részletesebben

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) Matematika javítóvizsga témakörök 10.B (kompetencia alapú ) 1. A négyzetgyök fogalma, a négyzetgyökvonás művelete 2. A négyzetgyökvonás azonosságai 3. Műveletek négyzetgyökökkel 4. A nevező gyöktelenítése

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6

PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6 Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica

Részletesebben

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél.

Az írásbeli eredménye 75%-ban, a szóbeli eredménye 25%-ban számít a végső értékelésnél. Matematika A vizsga leírása: írásbeli és szóbeli vizsgarészből áll. A matematika írásbeli vizsga egy 45 perces feladatlap írásbeli megoldásából áll. Az írásbeli feladatlap tartalmi jellemzői az alábbiak:

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z 146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró

Részletesebben

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI

TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI TRIGONOMETRIA ISMÉTLÉS DERÉKSZÖGŰ HÁROMSZÖG ÉS A HEGYESSZÖGEK SZÖGFÜGGVÉNYEI http://zanza.tv/matematika/geometria/thalesz-tetele http://zanza.tv/matematika/geometria/pitagorasz-tetel http://zanza.tv/matematika/geometria/nevezetes-tetelek-derekszogu-haromszogben

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

MATEMATIKA. Szakközépiskola

MATEMATIKA. Szakközépiskola MATEMATIKA Szakközépiskola Az osztályozóvizsga írásbeli feladatlap. Az osztályozó vizsgán az osztályzás a munkaközösség által elfogadott egységes követelményrendszer alapján történik. A tanuló az osztályozó

Részletesebben

A függvényekről tanultak összefoglalása /9. évfolyam/

A függvényekről tanultak összefoglalása /9. évfolyam/ A függvényekről tanultak összefoglalása /9. évfolyam/ Készítette: Almási István almasi84@gmail.com Lineáris függvény A függvény általános alakja: f (x):= m 1 m 2 x+b m a meredekség b a tengelymetszet 2/42

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Síkgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben