A. függelék Laplace-transzformáció és alkalmazásai

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A. függelék Laplace-transzformáció és alkalmazásai"

Átírás

1 A. függelék Laplace-traszformáció és alkalmazásai Tételezzük fel hogy az f(t),t [, ) egy olya függvéy, amely az alábbi tulajdoságokkal redelkezik: f(t) dt <, A,α R, lim t f(t)ae αt =. Jelölje L azt az itegrál traszformációt, amely az f(t) függvéyhez egy F(s),s C függvéyt redel, azaz L : f(t) F(s), ahol F(s) = f(t)e st dt, s C. (A.) Az F(s) komplex változós függvéy pozitív valós, azaz F(s) = F(s). A Laplace-traszformáció iverzét a következőképp defiiáljuk : L : F(s) f(t), f(t) = 2π σ+i Z σ i F(s)e st ds, t [, ). (A.2) A (A.) és (A.2) összefüggésekkel defiiált traszformációpárt Laplaceés iverz Laplace-traszformációak evezzük, és az L{ f(t)} = F(s), illetve L {F(s)} = f(t) szimbólumokkal jelöljük. A Laplace-traszformáció lieáris, azaz időfüggvéyek lieáris kombiációját Laplace-traszformáltjaik lieáris kombiációjába képezi le. Legye

2 256 A. Laplace-traszformáció és alkalmazásai α,α 2 R, ekkor L{ f (t)} = F (s),l{ f 2 (t)} = F 2 (s) L{α f (t)+α 2 f 2 (t)} = = α F (s)+α 2 F 2 (s). További fotos tulajdoságok, amelyeket a lieáris álladó együtthatós differeciálegyeletek megoldásáál (az LTI-redszerek időbeli viselkedéséek aalízisébe) haszáluk fel, a következők:. Egy f(t) függvéy idő szeriti deriváltját Laplace-traszformáltja s-el való szorzatába képezi le: L{ d dt f(t)} = sf(s) f(o). 2. Egy f(t) függvéy idő szeriti itegrálját Laplace-traszformáltja s -el R való szorzatába képezi le: L{ f(t)dt} = s F(s). 3. Az f(t) és g(t) függvéyek kovolúcióját Laplace-traszformáltjuk szorzatába képezi le: L{ g(t τ) f(τ)dτ} = G(s)F(s). Az alábbiakba éháy példák mutatuk a Laplace-traszformáció közvetle kiszámítására. A.4. PÉLDA. Legye f(t) = δ(t) a Dirac-deltafüggvéy. Ekkor L{δ(t)} = δ(t)e st dt = e st =. A.5. PÉLDA. Legye f(t) = (t) az egységugrás függvéy. Ekkor L{(t)} = e st dt = [ e st s ] e st = lim t s lim t A.6. PÉLDA. Legye f(t) = e at. A Laplace-traszformált: L{e at (t)} = e at e st dt = e (s a)t dt = [ e (s a)t (s a) e st s = s. ] = s a.

3 A. Laplace-traszformáció és alkalmazásai 257 A.7. PÉLDA. Vizsgáljuk a f(t) = e iωt függvéyt. [ L{e iωt } = e iωt e st dt = e (s iω)t e (s iω)t dt = (s iω) = s+iω s 2 + ω 2 = ] = s iω s s 2 + ω 2 + i ω s 2 + ω 2 = L{cosωt}+iL{siωt}. A.8. PÉLDA. A deriválásra voatkozó szabályok alkalmazásával kapjuk az alábbi függvéyek Laplace-traszformáltjait: Legye f(t) = t(t) az egységsebességugrás-függvéy. Ha f(t) = t, t >, akkor dt dt =, t >, és mivel L{ d dt f(t)} = sf(s) f(), f( ) =, következik, hogy s = sl{t(t)}, amiből kapjuk, hogy Hasolóképp kapjuk, hogy L{t(t)} = s 2. L{t 2 (t)} = 2 s 3. Általába pedig L{t (t)} =! s +. Eltolási tételek Legye F(s) = f(t)e st dt, s C Re{s} > α. Legye a C, amelyre Re{s a} > α. Ekkor F(s a) = = f(t)e (s a)t dt f(t)e st e at dt = L{e at f(t)}. Ez azt jeleti, hogy ha egy f(t) függvéyt e at -vel szorzuk, akkor a Laplacetraszformáltjá a-val való eltolást kell elvégezi.

4 258 A. Laplace-traszformáció és alkalmazásai A.9. PÉLDA. Vizsgáljuk a f(t) = (t τ) függvéy Laplace-traszformáltját: L{(t)} = e st dt = A.2. PÉLDA. L{e αt cosωt} = τ = = [ e st s ] τ e st = lim t e αt e st cosωtdt = 2 e (α+s iω)t dt + [ ] 2 e (α+s iω)t (α+s iω) s lim t τ + e st s = s e sτ. e αt e st eiωt + e iωt dt 2 2 e (α+s+iω)t dt [ ] 2 e (α+s+iω)t (α+s+iω) 2 = α+s iω + 2 α+s+iω = s+α (s+α) 2 + ω 2 Ha egy f(t) függvéye végzük eltolást az időtegely meté τ idővel jobbra, akkor hasolóa belátható, hogy Laplace-traszformáltját az e sτ függvéyel kell szorozi: Kezdetiérték- és végértéktételek L{ f(t τ)} = e sτ F(s). Belátható, hogy az idő- és operátorfüggvéyek s tartomáybeli kezdeti és ú. végértékei között feállak az alábbi összefüggések: lim f(t) = lim sf(s), t s lim t f(t) = lim s sf(s) Ezek a tételek ige haszosak a Laplace iverz Laplace-traszformációk számításáál az eredméyek elleőrzése szempotjából.

5 A. Laplace-traszformáció és alkalmazásai 259 Az iverz Laplace-traszformáció kiszámítása Az iverz Laplace-traszformációt az alábbi improprius itegrállal defiiáltuk: f(t) = 2π σ+i Z σ i F(s)e st ds, t [, ). Legyeek az F(s) függvéyek egyszeres pólusai: P = {p,..., p }, és legye σ > Re{p i },i =,...,. Ekkor a feti improprius itegrált helyettesíthetjük egy olya zárt görbe meti itegrállal, amelyet a képzetes tegellyel párhuzamos, attól balra σ távolságra haladó egyees és egy R sugarú félkör alkot. Az F(s) pólusai eze a zárt görbé belül helyezkedek el. Belátható, hogy az e st függvéy pólusai mid a jobb félsíkra esek. Ha R, akkor az itegrált az ú. rezidumtétellel számíthatjuk ki: f(t) = p i P Res pi F(s)e st = Ha az F(s) racioális törtfüggvéy, azaz i= F(s) = b(s) a(s) = Πm j= (s z i) Π i= (s p i), lim(s p i )F(s)e st. s p i ahol Z = {z,...,z m } a zérusok, P = {p,..., p } pedig a pólusok, akkor az előző összefüggés alapjá ahol az f(t) = i= lim(s p i )F(s)e st = s p i a a(s) (s) = lim s pi (s p i ) lim s p i= i b(s) e st, a(s) (s p i ) határérték az a(s) poliom deriváltja az s = p i helye. Ezzel megkaptuk az ú. kifejtési tételt, amely szerit egyszeres pólusokra az F(s) függvéy iverz Laplace-traszformáltja : f(t) = L {F(s)} = i= ahol a (s) az a(s) poliom s szeriti deriváltja. b(s) a (s) est s=pi,

6 26 A. Laplace-traszformáció és alkalmazásai A.2. PÉLDA. Legye F(s) = s a. Az F(s) pólusa p = a, b(s) =, a(s) = s a, a (s) =. A kifejtési tétellel: f(t) = lim s a e st = e at. Az iverz Laplace-traszformált kiszámítása parciális törtekre botással Egyszeres pólusok eseté az F(s) függvéyt parciális törtekre bothatjuk: F(s) = i= R i s p i, ahol R i,i =,..., az F(s) rezidumai a p i,i =,..., helyeke. Ekkor az iverz Laplace-traszformált egyszerű összeg alakba írható: f(t) = i= R i lim(s p i ) e st = s p i s p i A.22. PÉLDA. F(s) = 5 s+2, f(t) = 5e 2t A.23. PÉLDA. F(s) = s+3 (s+)(s+5), A.24. PÉLDA. F(s) = s+3 (s+ 5i)(s++5i) i= f(t) = 2 e t + 2 e 5t R i e p it. f(t) = lim (s+ 5i) s+3 s +5i (s+ 5i)(s++5i) est + lim (s++5i) s+3 s 5i (s+ 5i)(s++5i) est =.2ie t (e 5it e 5it )+.5e t (e 5it + e 5it ) =.4e t si(5t)+e t cos(5t). A gyakra haszált Laplace-traszformációs összefüggések az A.. táblázatba találhatók.

7 A. Laplace-traszformáció és alkalmazásai 26 A.. táblázat. Gyakra haszált Laplace-traszformációs összefüggések Laplace-traszformált, L(s) Időfüggvéy, f(t), t [, ) δ(t) e sτ δ(t τ) s (t) t s 2 t s ( )! s πt s+α s +βs (s+α) 2 e αt β δ(t) e β 2 β t te αt α s(s+α) e αt α s(s α) α + α eαt (s+α)(s+β) β α (e αt e βt ) (+αt)e αt s(s+α) 2 α 2 α 2 s α (s+α)(s+β) α β e αt + β β α e βt s+a A α (s+α)(s+β) β α e αt + A β α β e βt s ( αt)e αt (s+α) 2 + s 2 (s+α) α 2 α t + e αt α 2 s(s+α) 2 α 2 α te αt e αt α 2 e αt + (s+α) 2 (s+β) (β α) 2 β α te αt + e βt (β α) 2 s β e αt + α (s+α) 2 (s+β) (β α) 2 α β te αt β e βt (α β) 2 s(s+α)(s+β) α(α β) e αt + β(β α) e βt + (αβ) e αt (s+α)(s+β)(s+γ) (β α)(γ α) + e βt (γ α)(α β) + e γt (α γ)(β γ) s+a (A α)e αt (s+α)(s+β)(s+γ) (β α)(γ α) + (A β)e βt (γ α)(α β) + (A γ)e γt (α γ)(β γ) s 2 +ω s 2 s 2 +ω 2 s(s 2 +ω 2 ) s 2 (s 2 +ω 2 ) (s+α) 2 +ω 2 s+α (s+α) 2 +ω 2 ω siωt cosωt ω 2 ( cosωt) (ωt siωt) ω 3 ω e αt siωt e αt cosωt

8

9 B. függelék Fourier-traszformáció és alkalmazásai Tételezzük fel, hogy az f(t),t [, ) olya függvéy, amely mid abszolút, mid égyzetese itegrálható: f(t) dt <, f(t) 2 dt <. Ekkor azt az F itegráltraszformációt, amely az f(t) függvéyhez egy F(iω),ω R függvéyt redeli, azaz F : f(t) F(iω), ahol F(iω) = f(t)e iωt dt, ω R, Fourier-traszformációak evezzük. Az F(iω) komplex változós függvéy pozitív valós, azaz F(iω) = F( iω). Az iverz Fourier-traszformációt a következőképp defiiáljuk: F : F(iω) f(t), f(t) = 2π F(iω)e iωt dω, t [, ). Az időfüggvéyek és Fourier-traszformáltjaik között a Parseval-tétel (a szakirodalomba Placherel-tételkét is szerepel) teremt kapcsolatot, amely kimodja, hogy ha a f(t), g(t) függvéyekek létezik Fourier-traszformált

10 264 B. Fourier-traszformáció és alkalmazásai juk, akkor f(t)g(t)dt = 2π Ebből a tételből következik, hogy f(t) 2 dt = 2π F(iω)G( iω)dω. F(iω)F( iω)dω, ami azt fejezi ki, hogy a F Fourier- és az F iverz Fourier-traszformáció kölcsööse egyértelmű megfeleltetést hoz létre a feti tulajdoságú függvéyek tere és a komplex változós függvéyek tere között. A redszer- és iráyításelméletbe azt modjuk, hogy a Fourier-traszformációval áttérük az időtartomáyból a frekveciatartomáyba, mivel az ω változó fizikai értelmezése az ω = 2π f[rad] körfrekvecia. A Fourier traszformációval kapcsolatos ismeretayag további bővítéséhez javasoljuk a [62] taköyv feldolgozását. Azo függvéyek terét, amelyekre f(t) 2 dt = f L2 <, L 2 Lebesque-térek, az f L2 számot pedig az f függvéy ormájáak evezzük. Komplex változós függvéyek eseté azo függvéyek terét, amelyekre F(iω) 2 dω = F H2 <, Hardy-térek, a F H2 számot pedig az F függvéy ormájáak evezzük. A Fouriertraszformáció izomorfia a két tér között, a Parseval-tétel pedig azt modja ki, hogy. f L2 = F H2.

11 C. függelék Mátrixszámítás és lieáris algebra A v,...,v, v i R, i számokból alkotott alábbi formába összeredezett szám -eseket: v T = [v,...,v ] sorvektorokak, a v oszlopba redezett elemeket oszlopvektorokak evezzük, jelölésük v R R = R. A v,w R vektorok között értelmezzük az ú. skalárszorzást: v T w = i= v i w i, amiek geometriai jeletése a v vektor vetülete a w vektorra, azaz v T w = v w cosα, ahol v, w a vektorok abszolút értéke, az α pedig a közöttük lévő szög. Az a,...,a m, a i j R i, j számokat egy m méretű táblázatba redezve egy A R m mátrixot kapuk: a... a a 2... a 2 A =. a m... a m Egy A mátrix A T traszpoáltját úgy kapjuk meg, hogy felcseréljük a sorait és az oszlopait.

12 266 C. Mátrixszámítás és lieáris algebra Mátrixok közötti műveletekre voatkozó szabályok: Összeadás, kivoás. Legyeek A,B R m azoos méretű mátrixok. Ekkor C = A ± B = B ± A és a C összeg mátrixelemei a megfelelő mátrix elemek összegével (külöbségével) azoosak. Szorzás (em kommutatív). Legyeek A R m, B R m p mátrixok. A szorzatmátrix C = AB R p, elemei c i j = m l= a ilb l j, azaz a c i j elem az A mátrix i-edik soráak és a B mátrix j-edik oszlopáak skalárszorzata. Mátrixivertálás, determiás: Az A R mátrix A iverzét az AA = A A = I azoossággal defiiáljuk, az eek eleget tevő iverz pedig A = adja deta, ahol deta az A matrix determiása, az adja pedig az adjugáltja. Az adjugált mátrixot úgy képezzük, hogy mide eleméhez hozzáredeljük a eki megfelelő előjeles aldetermiást. Látható, hogy az iverz akkor létezik, ha a mátrix determiása em zérus. Az olya mátrixokat, amelyekek em zérus a determiása, emsziguláris mátrixokak evezzük. C.25. PÉLDA. Ha A R 2 2, azaz 2 2-es méretű mátrix eseté deta = a a 22 a 2 a 2, [ ] a22 a adja = 2 a 2 a. C.26. PÉLDA. Lieáris egyetletredszerek megoldása ha A emsziguláris Ax = x =, Ax = b x = A b. Mátrixok sajátértékei és sajátvektorai Belátható, hogy a det[λi A] egy -edfokú poliom. A det[λi A] = egyelet gyökeit az A mátrix sajátértékeiek evezzük. Az algebra alaptétele szerit eek a poliomak számú (általába valós és komplex) gyöke

13 C. Mátrixszámítás és lieáris algebra 267 va, amiket λ i C,i =,..., jelölük. A [λ i I A]v i =,i =,..., egyeletbe a v i vektorokat az A mátrix λ i sajátértékéhez tartozó sajátvektoráak evezzük. C.27. PÉLDA. Határozzuk meg az A = 2 mátrix sajátértékeit és sajátvektorait. A mátrixak három sajátértéke va, mivel λ det(λi A) = det λ 2 = λ(λ 2)(λ+) = λ alapjá: λ = 2, λ 2 =, λ 3 =. A három sajátértékhez tartozó sajátvektorokat az (A λi)v = egyelet alapjá határozzuk meg. A λ sajátértékhez tartozó v sajátvektor számítása a következő: 2 v (A λ I)v = 2 2 v 2 = v 3 = [ 2v v 2v 2 + 2v 3 v 2 v 3 ] T A [ ] [ ] 2v v 2v 2 + 2v 3 v 2 v 3 = mátrixegyelet megoldása: v =, v 2 = α és v 3 = α tetszőleges α-val. A v -hez tartozó egyik sajátvektor a következő: v = [ ] T. A másik két sajátértékhez is kiszámíthatjuk a sajátvektorokat. A v 2 -höz tartozó egyik sajátvektor: v 2 = [ 2 ] T. A v3 -hoz tartozó egyik sajátvektor a következő: v 3 = [ 2 ] T. Azaz sajátvektorokat tartalmazó mátrix: V = [ ] 2 v v 2 v 3 = 2

14 268 C. Mátrixszámítás és lieáris algebra A lieáris algebra alapjai Az -elemű vektorokat úgy értelmezhetjük, mit az -dimeziós euklideszi tér elemeit. 2 A v,v 2,...,v vektorok lieárisa függetleek, ha α i R skalárszámra α v +...α v =, azaz ha valameyi α l =,l [,...,]. Azt modjuk, hogy az lieárisa függetle v i vektor kifeszíti az R teret. A v i vektorok lieárisa függetleek, ha a belőlük alkotott vektorok V = [v,...,v ] mátrixa teljes ragú, azaz ragv =. Az m méretű mátrixokat úgy tekithetjük, mit az m-dimeziós euklideszi térről az -dimeziós euklideszi térre leképező lieáris operátorokat: A : R m R, azaz ha v R m, akkor Av R. Ha A mátrix ragja raga = r, akkor A az R vektorokat az r-dimeziós R m térre képezi le, és azt modjuk, hogy ImA = R r, azaz R r az A lieáris operátor képtere. Azokat a v R vektorokat, melyeket az A mátrix zérus vektorba képezi le, azaz Av =, az A lieáris operátor magteréek evezzük, és KerA-val jelöljük. Tehát ha v KerA R Av =. Belátható, hogy a KerA altér dimeziója dimkera = r és r = raga. Az eredméyeket lieáris egyeletredszer megoldásáál haszáljuk. A lieáris algebra további taulmáyozására javasoljuk a [6] taköyvet. 2 Az -dimeziós euklideszi tér egy lieáris vektortér, ahol értelmezve va skalárral vett szorzás és vektor összeadás. Azaz, ha α,α 2 R és v,v 2 R, akkor α v + α 2 v 2 R

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

Diszkrét matematika II., 3. előadás. Komplex számok

Diszkrét matematika II., 3. előadás. Komplex számok 1 Diszkrét matematika II., 3. előadás Komplex számok Dr. Takách Géza NyME FMK Iformatikai Itézet takach@if.yme.hu http://if.yme.hu/ takach/ 2007. február 22. Komplex számok Szereték kibővítei a valós számtestet,

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Jelek és rendszerek - 4.előadás

Jelek és rendszerek - 4.előadás Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév

Kalkulus szigorlati tételsor Számítástechnika-technika szak, II. évfolyam, 2. félév Kalkulus szigorlati tételsor Számítástechika-techika szak, II. évfolyam,. félév Sorozatok: 1. A valós számoko értelmezett műveletek és reláció tulajdoságai. Számok abszolút értéke, itervallumok. Számhalmazok

Részletesebben

Stabilitás Irányítástechnika PE MI_BSc 1

Stabilitás Irányítástechnika PE MI_BSc 1 Stabilitás 2008.03.4. Stabilitás egyszerűsített szemlélet példa zavarás utá a magára hagyott redszer visszatér a yugalmi állapotába kvázistacioárius állapotba kerül végtelebe tart alapjelváltás Stabilitás/2

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból Ismétlés: Ha r,s > 0 valós, akkor r(cosα+isiα) = s(cosβ+isiβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete: ( s(cosβ+isiβ)

Részletesebben

Integrálszámítás (Gyakorló feladatok)

Integrálszámítás (Gyakorló feladatok) Itegrálszámítás Gyakorló feladatok Programtervez iformatikus szakos hallgatókak az Aalízis. cím tárgyhoz Összeállította Szili László 8. február Tartalomjegyzék I. Feladatok 5. Primitív függvéyek határozatla

Részletesebben

Jelek és rendszerek - 7.előadás

Jelek és rendszerek - 7.előadás Jelek és rendszerek - 7.előadás A Laplace-transzformáció és alkalmazása Mérnök informatika BSc Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

Matematika szigorlat (A1-A2-A3)

Matematika szigorlat (A1-A2-A3) Matematika szigorlat (A1-A2-A3) szóbeli kérdések kidolgozás ikkel, 2014-2016 Felhaszált források: 1. Szilágyi Brigitta előadásai készült saját jegyzet 2. Obádovics J. Gyula, Szarka Zoltá Felsőbb matematika

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

Folytonos idejű rendszerek stabilitása

Folytonos idejű rendszerek stabilitása Folytoos idejű redszerek stabilitása Összeállította: dr. Gerzso Miklós egyetemi doces PTE MIK Műszaki Iformatika Taszék 205.2.06. Itelliges redszerek I. PTE MIK Mérök iformatikus BSc szak Stabilitás egyszerűsített

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

LINEÁRIS TRANSZFORMÁCIÓ

LINEÁRIS TRANSZFORMÁCIÓ 16..8. LINEÁRIS TRANSZFORMÁCIÓ (MÁTRIX) SAJÁTÉRTÉKE, SAJÁTVEKTORA BSc. Maemaika II. BGRMAHNND, BGRMAHNNC LINEÁRIS TRANSZFORMÁCIÓ Egy A: R R függvéy lieáris raszformációak evezük, ha eljesülek az alábbi

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Integrálás sokaságokon

Integrálás sokaságokon Itegrálás sokaságoko I. Riema-itegrál R -e Jorda-mérték haszálható ehhez: A R eseté c(a)=0, ha 0 eseté létezek C 1,,C s kockák hogy A C1 Cs és s i 1 c C i defiíció: D ullmértékű R itegrálási tartomáy,

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Lineáris algebra Gyakorló feladatok

Lineáris algebra Gyakorló feladatok Lineáris algebra Gyakorló feladatok. október.. Feladat: Határozzuk meg a, 4b, c és a b c vektorokat, ha a = (; ; ; ; b = (; ; ; ; c = ( ; ; ; ;.. Feladat: Határozzuk meg a, 4b, a, c és a b; c + b kifejezések

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

1. Gyökvonás komplex számból

1. Gyökvonás komplex számból 1. Gyökvoás komplex számból Gyökvoás komplex számból. Ismétlés: Ha r, s > 0 valós, akkor rcos α + i siα) = scos β + i siβ) potosa akkor, ha r = s, és α β a 360 egész számszorosa. Moivre képlete scos β+i

Részletesebben

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz

Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

1. Az euklideszi terek geometriája

1. Az euklideszi terek geometriája 1. Az euklideszi terek geometriája Bázishoz tartozó skaláris szorzat Emékeztető Az R n vektortérbeli v = λ 2... és w = λ 1 λ n µ 1 µ 2... µ n λ 1 µ 1 +λ 2 µ 2 +...+λ n µ n. Jele v,w. v,w = v T u, azaz

Részletesebben

f(n) n x g(n), n x π 2 6 n, σ(n) n x

f(n) n x g(n), n x π 2 6 n, σ(n) n x Számelméleti függvéyek extremális agyságredje Dr. Tóth László 2006 Bevezetés Ha számelméleti függvéyek, l. multilikatív vagy additív függvéyek agyságredjét vizsgáljuk, akkor először általába az adott függvéy

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103 Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli (beugróval, feltétele a Lineáris algebra gyakorlat

Részletesebben

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés Nagyon könnyen megfigyelhetjük, hogy akármilyen két számmal elindítunk egy Fibonacci sorozatot, a sorozat egymást követő tagjainak

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

Analízis feladatgy jtemény II.

Analízis feladatgy jtemény II. Oktatási segédayag a Programtervez matematikus szak Aalízis I. tatárgyához (003004. taév szi félév) Aalízis feladatgy jteméy II. Összeállította Szili László 003 Tartalomjegyzék I. Feladatok 3. Valós sorozatok.......................................

Részletesebben

KÖZGAZDÁSZ SZAK. Módszertani szigorlat követelménye, tavaszi félév

KÖZGAZDÁSZ SZAK. Módszertani szigorlat követelménye, tavaszi félév KÖZGAZDÁSZ SZAK Módszertai szigorlat követelméye, 2014. tavaszi félév A módszertai szigorlat a B1, B2, Optimumszámítás és Statisztika I. tatárgyak ayagát öleli fel. Szigorlatot az tehet, akiek a Matematika

Részletesebben

Vektorok által generált altér, lineáris összefüggőség, függetlenség, generátorrendszer, bázis, dimenzió

Vektorok által generált altér, lineáris összefüggőség, függetlenség, generátorrendszer, bázis, dimenzió Vektorok által geerált altér lieáris összefüggőség függetleség geerátorredszer ázis dimezió Ee a része általáosítjuk a téreli ektorokra már megismert haszos fogalmakat. A legfotosa hogy ármely ektortére

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Számítógépi geometria. Kovács Zoltán

Számítógépi geometria. Kovács Zoltán Számítógépi geometria Kovács Zoltá Lektorálta: Dr. Verhóczki László (ELTE) A taayagfejlesztés az Európai Uió támogatásával és az Európai Szociális Alap társfiaszírozásával a TÁMOP-4.1.2-08/1/A-2009-0046

Részletesebben

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u

A felhasznált térfogalmak: lineáris tér (vektortér), normált tér, Banach tér, euklideszi-tér, Hilbert tér. legjobban közelítõ elem, azaz v u Approxmácó Bevezetés A felhaszált térfogalmak: leárs tér (vektortér) ormált tér Baach tér eukldesz-tér Hlbert tér V ormált tér T V T kompakt halmaz Ekkor v V u ~ T legjobba közelítõ elem azaz v u ~ f {

Részletesebben

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák: 1. Absztrakt terek 1 1. Absztrakt terek 1.1. Lineáris terek 1.1. Definíció. Az X halmazt lineáris térnek vagy vektortérnek nevezzük a valós számtest (komplex számtest) felett, ha bármely x, y X elemekre

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK

INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Megoldott feladatok Ijektivitás és egyéb tulajdoságok 59 ) INJEKTIVITÁS ÉS EGYÉB TULAJDONSÁGOK MEGOLDOTT FELADATOK Határozd meg azt az f:r R függvéyt, amelyre f ( f ( ) x R és a g:r R g ( = x f ( függvéy

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): ---

(anyagmérnök nappali BSc + felsőf. szakk.) Oktatók: Dr. Varga Péter ETF (előtan. feltétel): --- A ttárgy eve: Mtemtik I Heti órszám: 3+3 (6 kredit) Ttárgy kódj: GEMAN0B (ygmérök ppli BSc + felsőf szkk) A tárgy lezárás: láírás + kollokvium Okttók: Dr Vrg Péter ETF (előt feltétel): --- Algebr, lieáris

Részletesebben

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.

Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony. Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető

Részletesebben

1. Transzformációk mátrixa

1. Transzformációk mátrixa 1 Transzformáiók mátrixa Lineáris transzformáiók Definíió T test Az A : T n T n függvény lineáris transzformáió, ha tetszőleges v,w T n vektorra és λ skalárra teljesül, hogy A(v + w) A(v) + A(w) és A(λv)

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján

Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév

Diszkrét matematika I. legfontosabb tételek/definíciók (II. javított verzió) 2014/2015. I. félév Diszkrét matematika I. legfotosabb tételek/defiíciók (II. javított verzió) 2014/2015. I. félév 1. Előszó A jegyzet a Diszkrét matematika I. (DE IK PTI, tárgykód: INDK101-K5, Dr. Burai Pál) tatárgy 2014/2015.

Részletesebben

Algebra évfolyam. Szerkesztette: Hraskó András, Kiss Géza, Pataki János, Szoldatics József január 23.

Algebra évfolyam. Szerkesztette: Hraskó András, Kiss Géza, Pataki János, Szoldatics József január 23. Algebra 11 1. évfolyam Szerkesztette: Hraskó Adrás, Kiss Géza, Pataki Jáos, Szoldatics József 017. jauár 3. Techikai mukák (MatKöyv project, TEX programozás, PHP programozás, tördelés...) Dées Balázs,

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

Koordinátageometria összefoglalás. d x x y y

Koordinátageometria összefoglalás. d x x y y Koordiátageometria összefoglalás Vektorok A helyvektor hossza Két pot távolsága r x y d x x y y AB A két potot összekötő vektort megkapjuk, ha a végpot koordiátáiból kivojuk a kezdőpot koordiátáit. Vektor

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

B1 teszt 87. 1, x = 0 sorozat határértéke

B1 teszt 87. 1, x = 0 sorozat határértéke B teszt 87 B teszt A világot csak hat szám vezérli. (Marti Rees) Ezt a köyvet öt betű.. Az = + +,, = sorozat határértéke ( + ) a) ; b) ; c) d) ; e) em létezik.. A lim{ e } határérték ({ } az törtrésze)

Részletesebben

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár

dr. CONSTANTIN NĂSTĂSESCU egyetemi tanár a Román Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi tanár dr. CONSTANTIN NĂSTĂSESCU egyetemi taár a Romá Akadémia levelező tagja dr. CONSTANTIN NIŢĂ egyetemi taár I. VALÓS SZÁMOK. VALÓS GYÖKÖKKEL RENDELKEZŐ MÁSODFOKÚ EGYENLETEK II. A MATEMATIKAI LOGIKA ELEMEI.

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK

ANALÍZIS I. DEFINÍCIÓK, TÉTELEK ANALÍZIS I. DEFINÍCIÓK, TÉTELEK Szerkesztette: Balogh Tamás 2012. július 2. Ha hibát találsz, kérlek jelezd a ifo@baloghtamas.hu e-mail címe! Ez a Mű a Creative Commos Nevezd meg! - Ne add el! - Így add

Részletesebben

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2. TARTALOMJEGYZÉK Polinomok konvolúviója A DFT és a maradékos osztás Gyűrűk támogatás nélkül Második nekifutás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. október 2. TARTALOMJEGYZÉK Polinomok

Részletesebben

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes

DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes 1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

PTE PMMFK Levelező-távoktatás, villamosmérnök szak

PTE PMMFK Levelező-távoktatás, villamosmérnök szak PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben

Részletesebben

3.1. A Poisson-eloszlás

3.1. A Poisson-eloszlás Harmadik fejezet Nevezetes valószíűségi változók Valamely valószíűségi változóhoz kapcsolódó kérdésekre akkor tuduk potos választ adi, ha a változó eloszlása ismert, vagy megközelítőleg ismert. Ebbe a

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben