Az Euler módszer. Kormányos Andor március 18. Komplex Rendszerek Fizikája Tanszék
|
|
- Gusztáv Gulyás
- 3 évvel ezelőtt
- Látták:
Átírás
1 Komplex Rendszerek Fizikája Tanszék március 18.
2 Euler módszer Tekintsük közönséges els rend dierenciálegyenletek rendszerét: dy i dx = f i (x, y 1, y 2,..., y i ) Az y = (y 1, y 2... ) T több változó vektora, pl fázistér: koordináták és sebességek, x változó skalár, pl az id Magasabbrend lineáris dierenciálegyenlet is átírhatóak els rend dierenciálegyenlet rendszerre, lásd Bevezetés I fóliák
3 Euler módszer Tekintsük közönséges els rend dierenciálegyenletek rendszerét: dy i dx = f i (x, y 1, y 2,..., y i ) Az y = (y 1, y 2... ) T több változó vektora, pl fázistér: koordináták és sebességek, x változó skalár, pl az id Magasabbrend lineáris dierenciálegyenlet is átírhatóak els rend dierenciálegyenlet rendszerre, lásd Bevezetés I fóliák Ötlet: kezeljük a problémát iteratívan írjuk át a dx dierenciálokat véges x dierenciákra a x lépéshosszt általában h-val jelöljük léptessük a változók értékét diszkrét lépésekben az összes változót egyszerre!
4 Euler módszer Tekintsük közönséges els rend dierenciálegyenletek rendszerét: dy i dx = f i (x, y 1, y 2,..., y i ) Az y = (y 1, y 2... ) T több változó vektora, pl fázistér: koordináták és sebességek, x változó skalár, pl az id Magasabbrend lineáris dierenciálegyenlet is átírhatóak els rend dierenciálegyenlet rendszerre, lásd Bevezetés I fóliák Ötlet: kezeljük a problémát iteratívan írjuk át a dx dierenciálokat véges x dierenciákra a x lépéshosszt általában h-val jelöljük léptessük a változók értékét diszkrét lépésekben az összes változót egyszerre! Az n-ik lépésben: Eközben a független változó is lép: y n+1 = y n + h f(x n, y n) x n+1 = x n + h
5 A hiba kiszámítása Egy y vektorelemre: y n+1 = y n + h f (x n, y n)
6 A hiba kiszámítása Egy y vektorelemre: y n+1 = y n + h f (x n, y n) Tegyük fel, hogy x n helyen a diszkréten számított y n és az egzakt y(x n) megoldás azonos volt. nézzük meg az eltérést egy lépés után lokális hiba
7 A hiba kiszámítása Egy y vektorelemre: y n+1 = y n + h f (x n, y n) Tegyük fel, hogy x n helyen a diszkréten számított y n és az egzakt y(x n) megoldás azonos volt. nézzük meg az eltérést egy lépés után lokális hiba tekintsük y(x) Taylor-sorát x körül az x + h helyen: y n+1 = y(x + h) = y(x) + dy dx h d 2 y dx 2 h mivel az Euler módszer ennek csak az els két tagját adja meg, nem lehet pontosabb O(h 2 )-nél
8 A hiba kiszámítása Egy y vektorelemre: y n+1 = y n + h f (x n, y n) Tegyük fel, hogy x n helyen a diszkréten számított y n és az egzakt y(x n) megoldás azonos volt. nézzük meg az eltérést egy lépés után lokális hiba tekintsük y(x) Taylor-sorát x körül az x + h helyen: y n+1 = y(x + h) = y(x) + dy dx h d 2 y dx 2 h mivel az Euler módszer ennek csak az els két tagját adja meg, nem lehet pontosabb O(h 2 )-nél a teljes számolás során 1/h lépés végzünk, ezért a globális hiba nem lehet kisebb O(h)-nál.
9 Az Euler-módszer hibája Az Euler-módszer esetében a deriváltak értékét mindig a lépés elején vesszük ha a derivált a lépés során túl gyorsan változik, akkor a lépésnek lesz valamekkora hibája id vel nagy lesz az eltérés az analitikus megoldástól v ha a lépést felére csökkentjük, a hiba a negyedére csökken, de kétszer több lépésre van szükség
10 Példa: harmonikus oscillátor Harmonikus oszcillátor: d 2 x dt 2 = kx m Átírva els rend egyenletek rendszerére: dv dt dx dt = kx m = v Felírjuk az egyenletrendszer diszkretizált változatát v n+1 = v n k xn m t x n+1 = x n + v n t Majd az id léptetése t n+1 = t n + t Itt most x és v felel meg a korábbi y vektor elemeinek, t a korábbi x független változónak és t a h lépésköznek.
11 Harmonikus oszcillator integrálása Euler módszerrel dt = Az oszcilláció amplitúdója id ben lassan növekszik!
12 Harmonikus oszcillator integrálása Euler módszerrel dt = ha dt-t kisebbre vesszük, az oszcilláció amplitúdója az adott id távon állandó
13 Harmonikus oszcillator integrálása Euler módszerrel dt = ha dt-t nagy, az oszcilláció amplitúdója gyorsan n a számolásban
14 Energiamegmaradás Az el z példában: harmonikus oszcillátor a test minden kilengéskor egy kicsit túllendült ez a módszer módszer pontatlansága miatt volt így a test minden kitéréskor plusz potenciális energiát nyert Hamiltoni rendszerek szimulációjánál az energiamegmaradás alapkövetelmény! vannak módszerek, amelyek adott rendben megtartják az energiát ezek az ún. szimplektikus integrátorok vagy csökkentjük a hibát, hogy az az integrálási id alatt elhanyagolható legyen
15 Az integrálási id invertálhatósága Visszafelé id fejlesztve a rendszert visszajutunk-e a kezdeti állapotba? ha nem disszipatív (pl nincs súrlódás), akkor elvileg igen megmarad az energia Visszafelé léptetve egy diszkrét integrátort, visszajutunk-e az eredeti kiindulási pontba? egyszer integrátorral általában nem a numerikus hibák összeadódnak kaotikus egyenleteknél pedig fel is er södnek Legegyszer bb szimplektikus és invertálható integrátor: lásd a Leapfrog módszer fóliákat!
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
Numerikus integrálás április 20.
Numerikus integrálás 2017. április 20. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Numerikus integrálás április 18.
Numerikus integrálás 2016. április 18. Integrálás A deriválás papíron is automatikusan elvégezhető feladat. Az analitikus integrálás ezzel szemben problémás vannak szabályok, de nem minden integrálható
Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Ingák Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés A harmonikus oszcillátor
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis
Parciális dierenciálegyenletek
Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok
Végeselem modellezés alapjai 1. óra
Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,
(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,
Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel
Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)
Dinamikai rendszerek, populációdinamika
Dinamikai rendszerek, populációdinamika Számítógépes szimulációk 1n4i11/1 Csabai István ELTE Komplex Rendszerek Fizikája Tanszék 5.102 Email: csabaiθcomplex.elte.hu 2009 tavasz Dierenciálegyenletek a zikán
Lagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra
Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy
Populációdinamika. Számítógépes szimulációk szamszimf17la
Populációdinamika Számítógépes szimulációk szamszimf17la Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Dierenciálegyenletek
1. Határozza meg az alábbi határértéket! A válaszát indokolja!
Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)
Bevezetés a kaotikus rendszerekbe
Bevezetés a kaotikus rendszerekbe. előadás Könyvészet: Steven H. Strogatz, Nonlinear Dynamics and Chaos Káosz, fraktálok és dinamika ` Fraktálok: szépség matematikai leírás Fraktálzene: Phil Thompson Me
Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Normák, kondíciószám
Normák, kondíciószám A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris egyenletrendszerek Nagyon sok probléma közvetlenül lineáris egyenletrendszer megoldásával kezelhetı Sok numerikus
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
Tárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
Segédanyag az A3 tárgy gyakorlatához
Segédanyag az A3 tárgy gyakorlatához Sáfár Orsolya Szeparábilis dierenciálegyenletek A megoldásról általában: A szeparábilis dierenciálegyenlet álatlános alakja: y (x) = f(x)g(y). Ebben az esetben g(y)-al
sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!
Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén
valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.
2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve
Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20
Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális
MATLAB. 8. gyakorlat. Differenciálegyenletek
MATLAB 8. gyakorlat Differenciálegyenletek Menetrend Kis ZH Differenciálegyenletek általában Elsőrendű differenciálegyenletek Másodrendű differenciálegyenletek Kis ZH pdf Differenciálegyenletek Diffegyenlet:
ODE SOLVER-ek használata a MATLAB-ban
ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk
Végeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
Matematika A1. 8. feladatsor. Dierenciálás 2. Trigonometrikus függvények deriváltja. A láncszabály. 1. Határozzuk meg a dy/dx függvényt.
Matematika A 8. feladatsor Dierenciálás Trigonometrikus függvények deriváltja. Határozzuk meg a dy/d függvényt. a) y = 0 + 3 cos 0 3 sin b) y = sin 4 + 7 cos sin c) y = ctg +ctg sin )+ctg ) d) y = tg cos
Determinisztikus folyamatok. Kun Ferenc
Determinisztikus folyamatok számítógépes modellezése kézirat Kun Ferenc Debreceni Egyetem Elméleti Fizikai Tanszék Debrecen 2001 2 Determinisztikus folyamatok Tartalomjegyzék 1. Determinisztikus folyamatok
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Szélsőérték-számítás
Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y
Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek
Matematika mérnököknek 2 Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek 1 Ismétlés Di-számítás Határozatlan integrál Matematika mérnököknek 2 2 Di-számítás Desc Summa Fa
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I. rész
Rugalmas láncgörbe alapvető összefüggések és tudnivalók I rész evezetés rugalmas láncgörbe magyar nyelvű szakirodalma nem túl gazdag Egy viszonylag rövid ismertetés található [ 1 ] - ben közönséges ( azaz
Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek
Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk
Matematika III. harmadik előadás
Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)
Bevezetés a görbe vonalú geometriába
Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.
Differenciálegyenletek
DE 1 Ebben a részben I legyen mindig pozitív hosszúságú intervallum DE Definíció: differenciálegyenlet Ha D n+1 nyílt halmaz, f:d folytonos függvény, akkor az y (n) (x) f ( x, y(x), y'(x),..., y (n-1)
Elhangzott gyakorlati tananyag óránkénti bontásban. Mindkét csoport. Rövidítve.
TTK, Matematikus alapszak Differenciálegyenletek 1 (BMETE93AM15) Elhangzott gyakorlati tananyag óránkénti bontásban Mindkét csoport Rövidítve 1 gyakorlat 017 szeptember 7 T01 csoport Elsőrendű közönséges
(x + 1) sh x) (x 2 4) = cos(x 2 ) 2x, e cos x = e
Az. gyakorlat HF-inak megoldása. Deriváljuk az alábbi függvényeket. sin x cos x = cos x sin x, x ln x = x / ln x + x x x, x x = x / = x/ = = e x cos x+e x sin x e x cos x cos x, x sin x ln x = + x x, x
GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat
Széchenyi István Egyetem Alkalmazott Mechanika Műszaki Tudományi Kar Tanszék GÉPEK DINAMIKÁJA 9.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) y k c S x x m x Adatok m kg c
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,
Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2
Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi
Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris
Numerikus módszerek. 9. előadás
Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f
Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering
Line aris f uggv enyilleszt es m arcius 19.
Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés
Közönséges differenciálegyenletek kétpontos peremérték-feladatai a numerikus modellezésben
Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek kétpontos peremérték-feladatai a numerikus modellezésben BSc Szakdolgozat Készítette: Horváth Eszter Matematika BSc,
Gazdasági matematika II. vizsgadolgozat megoldása, június 10
Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése) (x 1)(x + 1) x 1
Feladatok megoldásokkal az első gyakorlathoz (differencia- és differenciálhányados fogalma, geometriai és fizikai jelentése). Feladat. Határozzuk meg az f(x) x 2 függvény x 0 pontbeli differenciahányados
Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
Differenciálegyenletek numerikus megoldása
Eötvös Loránd Tudományegyetem Természettudományi Kar Somogyi Crescencia Kornélia Differenciálegyenletek numerikus megoldása BSc szakdolgozat Témavezet : Dr. Kovács Sándor Numerikus Analízis Tanszék Budapest,
Nemlineáris egyenletrendszerek megoldása április 15.
Nemlineáris egyenletrendszerek megoldása 2014. április 15. Nemlineáris egyenletrendszerek Az egyenletrendszer a következő formában adott: f i (x 1, x 2,..., x M ) = 0 i = 1...N az f i függvények az x j
DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet
"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31
Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós
1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor
. Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következő végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle belső konvergenciakritérium) A a n végtelen sor akkor és csakis
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1
numerikus analízis ii 34 Ezért [ a, b] - n legfeljebb n darab gyöke lehet = r (m 1) n = r m + n 1 19 B - SPLINEOK VOLT: Ω n véges felosztás S n (Ω n ) véges dimenziós altér A bázis az úgynevezett egyoldalú
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban
Szerkezetek numerikus modellezése az építőmérnöki gyakorlatban tanszékvezető, főiskolai docens a Magyar Építész Kamara tagja a Magyar Mérnöki Kamara tagja a fib Magyar Tagozatának tagja az ÉTE Debreceni
Modellek és Algoritmusok - 2.ZH Elmélet
Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)
NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó
FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart
Gazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
Eötvös Loránd Tudományegyetem Természettudományi Kar
Eötvös Loránd Tudományegyetem Természettudományi Kar Közönséges differenciálegyenletek numerikus megoldása Szakdolgozat Soós Ivett Matematika B.Sc., Matematikai elemz szakirány Témavezet : Mincsovics Miklós
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozza meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 3y + x 2 y + 2xy, (c) f(x,
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
Robotok inverz geometriája
Robotok inverz geometriája. A gyakorlat célja Inverz geometriai feladatot megvalósító függvények implementálása. A megvalósított függvénycsomag tesztelése egy kétszabadságfokú kar előírt végberendezés
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY,
DIFFERENCIÁLÁS, GRADIENS VEKTOR, HESSE MÁTRIX, LÁNCSZABÁLY, IMPLICIT FÜGGVÉNY TÉTEL DR NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-B-0//KONV-00-000
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.
Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)
Infobionika ROBOTIKA. XI. Előadás. Robot manipulátorok III. Differenciális kinematika. Készült a HEFOP P /1.0 projekt keretében
Infobionika ROBOTIKA XI. Előadás Robot manipulátorok III. Differenciális kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom A forgatási mátrix időbeli deriváltja A geometriai
7. Oldjuk meg az alábbi kezdetiérték-problémát: y x y = 6x, y(0) =
. feladatsor: szeparábilis és els rend lineáris dierenciálegyenletek x. Mutassuk meg, hogy y = e x e t2 dt + 3e x megoldása az alábbi dierenciálegyenletnek: y y = e x+x2. 2. Adjuk meg az y = e 3x + 2x
11. gyakorlat megoldásai
11. gyakorlat megoldásai Lokális szélsőértékek F1. Határozzuk meg az alábbi kétváltozós függvények lokális szélsőértékeit! (a) f(x, y) = 4x 2 + 2xy + 5y 2 + 2, (b) f(x, y) = y 4 y + x 2 y + 2xy, (c) f(x,
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
8. DINAMIKAI RENDSZEREK
8. DINAMIKAI RENDSZEREK Különböző folyamatok leírására különböző tudományterületeken állítanak fel olyan modelleket, amelyek nemlineáris közönséges autonóm differenciálegyenlet-rendszerre vezetnek. Ezek
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
(kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus)
Széchenyi István Egyetem Műszaki Tudományi Kar Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA 2.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) Gépek dinamikája - 2. gyakorlat
A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben
A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben Faragó István 1, Havasi Ágnes 1, Zahari Zlatev 2 1 ELTE Alkalmazott Analízis és Számításmatematikai Tanszék és MTA-ELTE Numerikus Analízis
Fizika 1 Mechanika órai feladatok megoldása 7. hét
Fizika 1 Mechanika órai feladatok megoldása 7. hét Az F erő által végzett munka, ha a test adott pályán mozog az r 1 helyvektorú P 1 pontból az r helyvektorú P pontba, az alábbi vonalintegrállal számolható:
Dierenciálhányados, derivált
9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /
2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve trigonometrikus alakban vannak megadva?
= komolyabb bizonyítás (jeleshez) Ellenőrző kérdések 2006 ősz 1. Definiálja a komplex szám és műveleteinek fogalmát! 2. Hogyan számíthatjuk ki két komplex szám szorzatát, ha azok a+bi alakban, illetve
1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!
. Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Ipari matematika 2. gyakorlófeladatok
Ipari matematika. gyakorlófeladatok. december 5. A feladatok megoldása általában többféle úton is kiszámítató. Interpoláció a. Polinom-interpoláció segítségével adjunk közelítést sin π értékére a sin =,
Jelek és rendszerek Gyakorlat_02. A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával.
A gyakorlat célja megismerkedni a MATLAB Simulink mőködésével, filozófiájával. A Szimulink programcsomag rendszerek analóg számítógépes modelljének szimulálására alkalmas grafikus programcsomag. Egy SIMULINK
Kalkulus 2., Matematika BSc 1. Házi feladat
. Házi feladat Beadási határidő: 07.0.. Jelölések x = (x,..., x n, y = (y,..., y n, z = (z,..., z n R n esetén. x, y = n i= x iy i, skalárszorzat R n -ben. d(x, y = x y = n i= (x i y i, metrika R n -ben
12. Mikor nevezünk egy részhalmazt nyíltnak, illetve zártnak a valós számok körében?
Ellenörző Kérdések 1. Mit jelent az, hogy egy f : A B függvény injektív, szürjektív, illetve bijektív? 2. Mikor nevezünk egy függvényt invertálhatónak? 3. Definiálja a komplex szám és műveleteinek fogalmát!
2 (j) f(x) dx = 1 arcsin(3x 2) + C. (d) A x + Bx + C 5x (2x 2 + 7) + Hx + I. 2 2x F x + G. x
I feladatsor Határozza meg az alábbi függvények határozatlan integrálját: a fx dx = x arctg + C b fx dx = arctgx + C c fx dx = 5/x 4 arctg 5 x + C d fx dx = arctg + C 5/ e fx dx = x + arctg + C f fx dx
n n (n n ), lim ln(2 + 3e x ) x 3 + 2x 2e x e x + 1, sin x 1 cos x, lim e x2 1 + x 2 lim sin x 1 )
Matek szigorlat Komplex számok Sorozat határérték., a legnagyobb taggal egyszerűsítünk n n 3 3n 2 + 2 3n 2 n n + 2 25 n 3 9 n 2 + + 3) 2n 8 n 3 2n 3,, n n5 + n 2 n 2 5 2n + 2 3n 2) n+ 2. e-ados: + a )
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra