Populációdinamika. Számítógépes szimulációk szamszimf17la

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Populációdinamika. Számítógépes szimulációk szamszimf17la"

Átírás

1 Populációdinamika Számítógépes szimulációk szamszimf17la Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék

2 Bevezetés Dierenciálegyenletek a zikán túl Newton eredetileg a zikai rendszerek megértésére vezette be a dierenciálegyenleteket, de hamarosan kidrült, hogy az élet más területén jelenlev folyamatokat is jól megfoghatjuk általuk. Így a kémiától kezdve a populáció biológián át a pénzügyi-gazdasági és társadalmi folyamatok leírásában, modellezésében is megvan a szerepük. Fontos megjegyezni, hogy ezek a modellek a valóság közelítései csupán, de rámutathatnak lényeges motívumokra. A dierenciálegyenleteket többnyire akkor használjuk, ha egy változó id ben változik jöv beli értéke a változó saját aktuális értékének és más egyéb vátozók függvénye. A populációdinamikát egy általános keretrendszernek tekinthetjük. Bár alapvet en növényev kr l, ragadozókról és a táplálékról beszélünk, alakilag hasonló egyenletekbe behelyettesíthetjük vegyületek koncentrációit, katalizátorok hatékonyságát, vagy a gazdaság modellezésekor termel ket és fogyasztókat. A dinamika nagyon hasonló mintázatokat produkál. Csabai István, Stéger József (ELTE) PD 2 / 18

3 Egy szabadon fejl d faj A populáció létszámának (n) változását vizsgáljuk, az id (t) függvényében. Ha más tényez nincs, akkor logikus feltételezni, hogy a szaporodás a populáció létszámával arányos. A szaporodási ráta a írja le, hogy t id alatt mondjuk évente mennyi utód jön világra: n(t + t) = n(t) + an(t). Ha t kicsi, akkor a-t átskálázva a fenti egyenlet határesetben a következ dierenciálegyenletet adja: dn dt = an. A folytonos egyenlet akkor jó közelítés, ha a populáció mérete nagy és a szaporodási ráta elfolytonosítása nem okoz gondot. Az eredeti diszkrét megoldás a kiértékelt folytonos egyenlet újra diszkretizálásával történik. A valóságban ezzel vigyázni kell az er s éves szaporodási ciklusok miatt. Az egyenlet megoldása a jól ismert exponenciális növekedés: n = e at. Csabai István, Stéger József (ELTE) PD 3 / 18

4 Egy szabadon fejl d faj Egy szabadon élő faj Nyulak 4 Egyedszám Csabai István, Stéger József (ELTE) PD 4 / 18

5 A pusztulás és a véges táplálék hatása Realisztikusabb a modell, ha bevezetjük d halálozási rátát: dn dt = an dn. A megoldás r = a d el jelét l függ en n = e rt exponenciálisan növekv vagy csökken görbe. A konstans megoldás nem stabil. Vegyük gyelembe, hogy az er források az élelem vagy a nyersanyag korlátosak. Modellezzük ennek a szaporodásra-pusztulásra vett hatását szorzó tényez vel: dn = rnf (n). dt Tegyük fel, hogy az er források egy maximum k létszámú populációt tarthat el (kapacitás). F legegyszer bb modellje n-ben lineáris, kis populáció esetében nem módosítja az eredeti egyenleteket, a kapacitás elérésekor nem enged további szaporodást. Ezt a feltételt kielégíti: F (n) = 1 n k. Csabai István, Stéger József (ELTE) PD 5 / 18

6 A logisztikus egyenlet A dierenciálegyenlet így módosul: dn (1 dt = rn n ). k A logisztikus egyenlet x = n/k-val átskálázva a kifejezést: dx dt = rx(1 x). Megoldása r-től, és a kezdeti x -tól függően növekedő vagy csökkenő szigmoid jellegű görbe: 1 x(t) = ( ) x 1 e rt Csabai István, Stéger József (ELTE) PD 6 / 18

7 A logisztikus egyenlet A logisztikus egyenlet megoldása r = 1 r =, 5 r = Telítettség.6.4 Telítettség.6.4 Telítettség r = 1 r =, Telítettség.6.4 Telítettség Csabai István, Stéger József (ELTE) PD 7 / 18

8 A logisztikus egyenlet Stabilitás A logisztikus egyenlet egy nemlineáris dierenciálegyenlet. A nemlineáris dierenciál egyenletek nem minden esetben oldhatók meg analitikusan. Az egyenlet xpontjai, ahol dx/dt = esetünkben az x = és az x = 1. A xpontok lehetnek stabilak vagy instabilak, attól függ en, hogy picit megváltoztatva az oda visszatér vagy exponenciálisan eltávolodik. A stabilitást legegyszer bb lineáris perturbációkkal vizsgálni. Legyen a dierenciálegyenlet a következ alakú: dx dt = f (x), és egy x pontja x, azaz ahol f (x ) =. Kis perturbációval kimozdítva a rendszert a megoldás lineáris közelításben kereshet : x(t) = x + ɛ(t). Beírva az eredeti egyenletbe és Taylor-sorba fejtve: dɛ dt = f (x + ɛ) = f (x ) + ɛf (x ) +..., Csabai István, Stéger József (ELTE) PD 8 / 18

9 A logisztikus egyenlet Stabilitás (folytatás) A magasabb rend deriváltakat elhagyva: amit megold dɛ dt = ɛf (x ), ɛ(t) = ɛ()e f (x )t. A fixpontok stabilitása A logisztikus leképezés fixpontjai f (x ) < f (x) F (n) f (x ) > f (x ) > k x n A megoldás akkor stabil, ha lim t ɛ(t) =, azaz f (x ) <. x = : n = instabil, és x = 1: n = k stabil fixpont. Csabai István, Stéger József (ELTE) PD 9 / 18

10 Fajok versengése közös er forrásért Ha egy él helyen (niche) több faj küzd egyazon táplálékért, a véges er forrásokon keresztül kölcsönhatásba kerülnek. Egymáshoz viszonyított szaporodási rátájuk és a környezet eltartóképessége függvényében a rátermettebb faj akár teljesen el is foglalhatja a nichet. Modellezzünk két fajt: Az erőforrásért folytatott verseny azt jelenti, hogy ha az egyik faj szaporodik, akkor a másik faj számára is kevesebb erőforrás áll rendelkezésre: ( dn 1 = r 1 n 1 1 n ) 1 + αn 2, dt dn 2 dt k 1 = r 2 n 2 ( 1 n 2 + βn 1 k 2 ahol α és β dimenziótlan paraméterek azt felyezik ki, hogy milyen arányban fogysztja az egyik faj a másik erőforrásait és viszont. A rendszer fixpontjai függenek α, β, r 1, r 2, k 1 és k 2 értékeitől. ), Csabai István, Stéger József (ELTE) PD 1 / 18

11 Ragadozó-préda rendszerek A fajok kölcsönhatása nem csak a közös er forrásokért való küzdelemben nyilvánulhat meg. Róka nyúl példa 2 Hiúz Nyúl 2 1 Hiúz prémek száma [x1] Nyúl prémek száma [x1] Nyúl prém [x1] ,86 1,88 1,9 1,92 [évszám] Hiúz prém [x1] Sok nyúl sok táplálék a rókáknak a rókák is szaporodnak egyre több nyulat fogyasztanak kevesebb nyúl kevesebb róka a nyulak újra elszaporodnak... Csabai István, Stéger József (ELTE) PD 11 / 18

12 Lotka-Volterra-modell Feltételezések: korlátlan táplálék a nyulaknak (R), és korlátlan kapacitású rókák (F). LV-modell A paraméterek jelentése: dnr dt dnf dt = anr bnfnr, = cnrnf dnf. nr: a nyulak száma, a: a nyulak szaporodási rátája, bnf: a nyulak pusztulási rátája, nf: a rókák száma, cnr: a rókák szaporodási rátája, d: a rókák pusztulási rátája. Csabai István, Stéger József (ELTE) PD 12 / 18

13 Lotka-Volterra-modell A Lotka-Volterra-modell szimulációja Paraméterek: a =, 4; b =, 1; c =, 1; d =, 9 1,5 Nyulak Rókák 8 Egyedszám 1, 5 Rókák ,1,21,41,6 Nyulak Paraméterek: a =, 4; b =, 4; c =, 4; d =, 9 8 Nyulak Rókák 6 Egyedszám Rókák Nyulak Csabai István, Stéger József (ELTE) PD 13 / 18

14 Lotka-Volterra-modell A Lotka-Volterra-modell realisztikusabbá tehet : ha a nyulak táplálékforrását korlátozzuk, ha korlátozzuk a rókák nyúlfogyasztási képességét. A kapacitás bevezetése ( a a 1 n R k ). A telítődés bevezetése nrnf n RnF 1 + nrs Csabai István, Stéger József (ELTE) PD 14 / 18

15 Lotka-Volterra-modell A módosított Lotka-Volterra-modell szimulációja Paraméterek: a =, 4; b =, 4; c =, 4; d =, 9; K = 8 6 Nyulak Rókák 6 Egyedszám 4 2 Rókák Nyulak Paraméterek: a =, 4; b =, 4; c =, 4; d =, 9; S = 25 4, Nyulak Rókák 4, Egyedszám 3, 2, 1, Rókák 3, 2, 1, , 2, 3, 4, Nyulak Csabai István, Stéger József (ELTE) PD 15 / 18

16 Feladatok Felhasználva az el z órák anyagát írjunk saját szimulátorokat! 1 Nézzük meg, hogy a xpontok közelében és azoktól távol a logisztikus egyenlet analitikusan kiszámolható viselkedését milyen jól adja vissza az Euler-módszer és az adaptív Runge-Kutta módszer. Ábrázoljuk együtt a numerikus és analitikus megoldásokat, vizsgáljuk meg a különbségüket! Különböz kezd - és különböz r paraméterekkel indítva a logisztikus egyenletet rekonstruáljuk a fólia ábráit! 2 Készítsük el a fajok közös er forrásért való versengését modellez csatolt logisztikus modellt! Szimuláljuk az α = β = 1 esetet, és demonstráljuk numerikusan a kompetitív kizárás törvényét: azaz a két faj nem létezhet stabilan együtt a nagyobb k érték kiszorítja a másikat. Mutassuk meg, hogy a két faj együttélése csak αk 2 < k 1 és βk 1 < k 2 esetében stabil. Tipp: szimuláljunk különböz paraméterekkel, és ábrázoljuk a hosszabb id után megmaradt fajok számát az (αk 2 k 1 ) (βk 1 k 2 ) síkon. 3 Implementáljuk a Lotka-Volterra-modellt! Ábrázoljuk különböz paramétereknél a fajok szaporodását és a nrnf fázisteret! Csabai István, Stéger József (ELTE) PD 16 / 18

17 Szorgalmi feladat Készítsük el a véges táplálék ill. telít dés hatását is gyelembe vev Lotka-Volterra-modellt! Ábrázoljuk itt is a populációk létszámát illetve a fázisteret! Keressünk xpontokat, vizsgáljuk meg azok stabilitását! Dolgozzunk ki modellt 3 faj esetére, például tápláléklánc, két növényev és egy ragadozó faj. Csabai István, Stéger József (ELTE) PD 17 / 18

18 Irodalom Mathematical Biology jegyzet 1.1, Logisztikus egyenlet Lotka-Volterra egyenlet Lotka-Volterra modell több faj kompetíciójával Csabai István, Stéger József (ELTE) PD 18 / 18

Dinamikai rendszerek, populációdinamika

Dinamikai rendszerek, populációdinamika Dinamikai rendszerek, populációdinamika Számítógépes szimulációk 1n4i11/1 Csabai István ELTE Komplex Rendszerek Fizikája Tanszék 5.102 Email: csabaiθcomplex.elte.hu 2009 tavasz Dierenciálegyenletek a zikán

Részletesebben

2. Alapfeltevések és a logisztikus egyenlet

2. Alapfeltevések és a logisztikus egyenlet Populáció dinamika Szőke Kálmán Benjamin - SZKRADT.ELTE 22. május 2.. Bevezetés A populációdinamika az élőlények egyedszámának és népességviszonyainak térbeli és időbeli változásának menetét adja meg.

Részletesebben

Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Ingák Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés A harmonikus oszcillátor

Részletesebben

Bevezetés a kaotikus rendszerekbe

Bevezetés a kaotikus rendszerekbe Bevezetés a kaotikus rendszerekbe. előadás Könyvészet: Steven H. Strogatz, Nonlinear Dynamics and Chaos Káosz, fraktálok és dinamika ` Fraktálok: szépség matematikai leírás Fraktálzene: Phil Thompson Me

Részletesebben

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering

Részletesebben

Predáció populációdinamikai hatása

Predáció populációdinamikai hatása Predáció populációdinamikai hatása Def.: olyan szervezet, amely a zsákmányát, annak elfogása után, megöli és elfogyasztja. (Ellentétben: herbivor, parazitoid, ahol késleltetett a hatás, de ezekre is a

Részletesebben

Populációdinamika és modellezés. A populációk változása populációdinamika. A populáció meghatározása. Modellezés

Populációdinamika és modellezés. A populációk változása populációdinamika. A populáció meghatározása. Modellezés Populációdinamika és modellezés Vadbiológia és ökológia Prof. Dr. Csányi Sándor A populáció meghatározása g Ökológia: saz egyed feletti (szupraindividuális) szervezôdés strukturális és funkcionális jelenségeinek

Részletesebben

Populációdinamika kurzus, projektfeladat. Aszimptotikus viselkedés egy determinisztikus járványterjedési modellben. El adó:

Populációdinamika kurzus, projektfeladat. Aszimptotikus viselkedés egy determinisztikus járványterjedési modellben. El adó: Populációdinamika kurzus, projektfeladat Aszimptotikus viselkedés egy determinisztikus járványterjedési modellben El adó: Unger Tamás István okleveles villamosmérnök matematika B.Sc. szakos hallgató Szeged

Részletesebben

Elméleti evolúcióbiológia beadandó feladat Kaotikus viselkedés a 4-dimenziós kompetitív Lotka-Volterra rendszerben

Elméleti evolúcióbiológia beadandó feladat Kaotikus viselkedés a 4-dimenziós kompetitív Lotka-Volterra rendszerben Kaotikus viselkedés a 4-dimenziós kompetitív Lotka-Volterra rendszerben ELTE zika BSc Biozikus szakirány 2015. május 15. Az esetleges elválasztási hibákért a LaTeX a felel s, mivel ezeket automatikusan

Részletesebben

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék, Wettl Ferenc (BME) Utolsó el adás / 20

Utolsó el adás. Wettl Ferenc BME Algebra Tanszék,   Wettl Ferenc (BME) Utolsó el adás / 20 Utolsó el adás Wettl Ferenc BME Algebra Tanszék, http://www.math.bme.hu/~wettl 2013-12-09 Wettl Ferenc (BME) Utolsó el adás 2013-12-09 1 / 20 1 Dierenciálegyenletek megoldhatóságának elmélete 2 Parciális

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 6. Differenciálegyenletekről röviden Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés 2 Elsőrendű differenciálegyenletek Definíciók Kezdetiérték-probléma

Részletesebben

Fajok közötti kapcsolatok

Fajok közötti kapcsolatok Egyedek közötti kölcsönkapcsolatok Környezete = a környék ható tényezôi Fajok közötti kapcsolatok Vadbiológia és ökológia h Az egymásra ható egyedek lehetnek g Fajtársak - interspecifikus kapcsolatok #

Részletesebben

Modellezés. Fogalmi modell. Modellezés. Modellezés. Modellezés. Mi a modell? Mit várunk tőle? Fogalmi modell: tómodell Numerikus modell: N t+1.

Modellezés. Fogalmi modell. Modellezés. Modellezés. Modellezés. Mi a modell? Mit várunk tőle? Fogalmi modell: tómodell Numerikus modell: N t+1. Mi a modell? A valóság leegyszerűsítése (absztrakciója) A lényegi folyamatokat és összefüggéseket ragadja meg Mit várunk tőle? Tükrözze a valóságot Képes legyen az eseményeket/folyamatokat előre jelezni

Részletesebben

Végeselem modellezés alapjai 1. óra

Végeselem modellezés alapjai 1. óra Végeselem modellezés alapjai. óra Gyenge alak, Tesztfüggvény, Lagrange-féle alakfüggvény, Stiness mátrix Kivonat Az óra célja, hogy megismertesse a végeselem módszer (FEM) alkalmazását egy egyszer probléma,

Részletesebben

Kutatói pályára felkészítı akadémiai ismeretek modul

Kutatói pályára felkészítı akadémiai ismeretek modul Kutatói pályára felkészítı akadémiai ismeretek modul Környezetgazdálkodás Modellezés, mint módszer bemutatása KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC Ökológiai modellek I. 19. lecke Bevezetés Az élıvilágban

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Szokol Patricia szeptember 19.

Szokol Patricia szeptember 19. a Haladó módszertani ismeretek című tárgyhoz 2017. szeptember 19. Legyen f : N R R adott függvény, ekkor a x n = f (n, x n 1 ), n = 1, 2,... egyenletet elsőrendű differenciaegyenletnek nevezzük. Ha még

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Solow-modell II. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Jöv héten dolgozat!!! Reál GDP növekedési üteme (forrás: World Bank) Reál GDP növekedési üteme (forrás: World Bank) Mit tudunk

Részletesebben

Differenciálegyenletek numerikus integrálása április 9.

Differenciálegyenletek numerikus integrálása április 9. Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek

Részletesebben

Populációdinamikai modellek numerikus megoldása Matlab alkalmazásával

Populációdinamikai modellek numerikus megoldása Matlab alkalmazásával Populációdinamikai modellek numerikus megoldása Matlab alkalmazásával Szakdolgozat Írta: Lovák Zsanett Matematika BSc szak Elemz szakirány Témavezet : Svantnerné Sebestyén Gabriella Doktorandusz Alkalmazott

Részletesebben

Vadbiológia és ökológia II.

Vadbiológia és ökológia II. Vadbiológia és ökológia II. Populációk kölcsönhatásai Dr. Szemethy László Az élőlények nem önmagukban, hanem a legkülönbözőbb módokon együtt élve, életközösséget formálva léteznek. számos esetben kölcsönös

Részletesebben

Numerikus módszerek. 9. előadás

Numerikus módszerek. 9. előadás Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f

Részletesebben

Populációdinamikai modellek stabilitásvizsgálata

Populációdinamikai modellek stabilitásvizsgálata Populációdinamikai modellek stabilitásvizsgálata Szakdolgozat Írta: ovács Jenifer Matematika BSc szak, Elemző szakirány Témavezető: Svantnerné Sebestyén Gabriella Doktorandusz Alkalmazott Analízis és Számításmatematikai

Részletesebben

Numerikus módszerek 1.

Numerikus módszerek 1. Numerikus módszerek 1. 10. előadás: Nemlineáris egyenletek numerikus megoldása Lócsi Levente ELTE IK 2013. november 18. Tartalomjegyzék 1 Bolzano-tétel, intervallumfelezés 2 Fixponttételek, egyszerű iterációk

Részletesebben

1. Határozza meg az alábbi határértéket! A válaszát indokolja!

1. Határozza meg az alábbi határértéket! A válaszát indokolja! Matematika (Analízis és dierenciálegyenletek), NGB_MA003_1, 2. zárthelyi 2014. 11. 20., 1A-csoport x 2 + 6x x 2 5 5x 2 f(x) = tg(2x + 1) 2 x + cos x x 16 5 x + 16 2 x 16 4. Határozza meg, hogy az f(x)

Részletesebben

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását!

Feladatok Differenciálegyenletek II. témakörhöz. 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! Feladatok Differenciálegyenletek II. témakörhöz 1. Határozzuk meg a következő elsőrendű lineáris differenciálegyenletek általános megoldását! (a) (b) 2. Tekintsük az differenciálegyenletet. y y = e x.

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Yule és Galton-Watson folyamatok

Yule és Galton-Watson folyamatok Dr. Márkus László Yule és ok 2015. március 9. 1 / 36 Yule és ok Dr. Márkus László 2015. március 9. Yule folyamat Dr. Márkus László Yule és ok 2015. március 9. 2 / 36 A független stacionárius növekmény

Részletesebben

Populáció A populációk szerkezete

Populáció A populációk szerkezete Populáció A populációk szerkezete Az azonos fajhoz tartozó élőlények egyedei, amelyek adott helyen és időben együtt élnek és egymás között szaporodnak, a faj folytonosságát fenntartó szaporodásközösséget,

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

Rekurzív sorozatok. SZTE Bolyai Intézet nemeth. Rekurzív sorozatok p.1/26

Rekurzív sorozatok. SZTE Bolyai Intézet   nemeth. Rekurzív sorozatok p.1/26 Rekurzív sorozatok Németh Zoltán SZTE Bolyai Intézet www.math.u-szeged.hu/ nemeth Rekurzív sorozatok p.1/26 Miért van szükség közelítő módszerekre? Rekurzív sorozatok p.2/26 Miért van szükség közelítő

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Julia halmazok, Mandelbrot halmaz

Julia halmazok, Mandelbrot halmaz 2011. október 21. Tartalom 1 Julia halmazokról általánosan 2 Mandelbrot halmaz 3 Kvadratikus függvények Julia halmazai Pár deníció Legyen f egy legalább másodfokú komplex polinom. Ha f (ω) = ω, akkor ω

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

3. Fékezett ingamozgás

3. Fékezett ingamozgás 3. Fékezett ingamozgás A valóságban mindig jelen van valamilyen csillapítás. A gázban vagy folyadékban való mozgásnál, kis sebesség esetén a csillapítás arányos a sebességgel. Ha az vagy az ''+k sin =0,

Részletesebben

4. Laplace transzformáció és alkalmazása

4. Laplace transzformáció és alkalmazása 4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:

Részletesebben

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0.

L'Hospital-szabály. 2015. március 15. ln(x 2) x 2. ln(x 2) = ln(3 2) = ln 1 = 0. A nevez határértéke: lim. (x 2 9) = 3 2 9 = 0. L'Hospital-szabály 25. március 5.. Alapfeladatok ln 2. Feladat: Határozzuk meg a határértéket! 3 2 9 Megoldás: Amint a korábbi határértékes feladatokban, els ként most is a határérték típusát kell megvizsgálnunk.

Részletesebben

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0,

(1 + (y ) 2 = f(x). Határozzuk meg a rúd alakját, ha a nyomaték eloszlás. (y ) 2 + 2yy = 0, Feladatok az 5. hétre. Eredményekkel és kidolgozott megoldásokkal. Oldjuk meg az alábbi másodrend lineáris homogén d.e. - et, tudva, hogy egy megoldása az y = x! x y xy + y = 0.. Oldjuk meg a következ

Részletesebben

Budapesti Corvinus Egyetem Makroökonómia Tanszék 2015/2016/2 SOLOW-MODELL. 2. gyakorló feladat március 21. Tengely Veronika

Budapesti Corvinus Egyetem Makroökonómia Tanszék 2015/2016/2 SOLOW-MODELL. 2. gyakorló feladat március 21. Tengely Veronika Budapesti Corvinus Egyetem Makroökonómia Tanszék 2015/2016/2 SOLOW-MODELL 2. gyakorló feladat 2016. március 21. Tengely Veronika A feladat Az általunk vizsgált gazdaságban a fogyasztók a mindenkori jövedelem

Részletesebben

Parciális dierenciálegyenletek

Parciális dierenciálegyenletek Parciális dierenciálegyenletek 2009. május 25. A félév lezárásaként néhány alap-deníciót és alap-példát szeretnék adni a Parciális Dierenciálegynletek (PDE) témaköréb l. Épp csak egy kis izelít t. Az alapfeladatok

Részletesebben

Az ökológia alapjai. Populáció-dinamika

Az ökológia alapjai. Populáció-dinamika Az ökológia alapjai Populáció-dinamika A homogén populációk változását leíró modellek Populációdinamika: valamely populáció létszámának (sűrűségének) és struktúrájának (koreloszlás, ivararány) időbeli

Részletesebben

Determinisztikus folyamatok. Kun Ferenc

Determinisztikus folyamatok. Kun Ferenc Determinisztikus folyamatok számítógépes modellezése kézirat Kun Ferenc Debreceni Egyetem Elméleti Fizikai Tanszék Debrecen 2001 2 Determinisztikus folyamatok Tartalomjegyzék 1. Determinisztikus folyamatok

Részletesebben

A hullámegyenlet megoldása magasabb dimenziókban

A hullámegyenlet megoldása magasabb dimenziókban A hullámegyenlet megoldása magasabb dimenziókban Orbán Ágnes Fábián Gábor Kolozsi Zoltán 2009. október 29. A hullámegyenlet Hullámegyenletnek nevezzük a következ lineáris parciális dierenciálegyenletet:

Részletesebben

Rend, rendezetlenség, szimmetriák (rövidített változat)

Rend, rendezetlenség, szimmetriák (rövidített változat) Rend, rendezetlenség, szimmetriák (rövidített változat) dr. Tasnádi Tamás 1 2018. február 16. 1 BME, Matematikai Intézet Tartalom Mi a rend? Érdekes grafikáktól a periodikus rácsokig Nem periodikus parkettázások

Részletesebben

3D számítógépes geometria 2

3D számítógépes geometria 2 3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel Ujjgyakorlat 1

Részletesebben

Nemlineáris programozás 2.

Nemlineáris programozás 2. Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,

Részletesebben

Vadászat - hasznosítás Állománynövekedési egyenletek. A hasznosítható mennyiség

Vadászat - hasznosítás Állománynövekedési egyenletek. A hasznosítható mennyiség Vadkár Vadkármegelőzés és vadkárbecslés 2. előadás A céltudatos emberi tevékenységgel létrehozott javakban a vadnak tulajdoníthatóan keletkezett mennyiségi hiány vagy minőségi értékromlás. Vadászat - hasznosítás

Részletesebben

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek

MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek MIKROÖKONÓMIA - konzultáció - Termelés és piaci szerkezetek Révész Sándor reveszsandor.wordpress.com 2011. december 20. Elmélet Termelési függvény Feladatok Parciális termelési függvény Adott a következ

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Runge-Kutta módszerek

Runge-Kutta módszerek Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása Eötvös Loránd Tudományegyetem Természettudományi Kar Somogyi Crescencia Kornélia Differenciálegyenletek numerikus megoldása BSc szakdolgozat Témavezet : Dr. Kovács Sándor Numerikus Analízis Tanszék Budapest,

Részletesebben

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények

1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1. Komplex függvények dierenciálhatósága, Cauchy-Riemann egyenletek. Hatványsorok, elemi függvények 1.1. Dierenciálhatóság 1.1. deníció. Legyen a z 0 pont az f(z) függvény értelmezési tartományának torlódási

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

Ipari kemencék PID irányítása

Ipari kemencék PID irányítása Ipari kemencék PID irányítása 1. A gyakorlat célja: Az ellenállással melegített ipari kemencék modelljének meghatározása. A Opelt PID tervezési módszer alkalmazása ipari kemencék irányítására. Az ipari

Részletesebben

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok . fejezet Bevezetés Algebrai feladatok J. A számok gyakran használt halmazaira a következ jelöléseket vezetjük be: N a nemnegatív egész számok, N + a pozitív egész számok, Z az egész számok, Q a racionális

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter

ELTE TáTK Közgazdaságtudományi Tanszék MAKROÖKONÓMIA. Készítette: Horváth Áron, Pete Péter. Szakmai felelős: Pete Péter MAKROÖKONÓMIA MAKROÖKONÓMIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertet Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2013 Ismertet Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezet Lektor Technikai szerkeszt Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

3. el adás. Hosszú távú modell: szerepl k, piacok, egyensúly. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem

3. el adás. Hosszú távú modell: szerepl k, piacok, egyensúly. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem Hosszú távú modell: szerepl k, piacok, egyensúly Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? GDP árindexek kamatok munkanélküliség Hol tartunk? Vannak releváns gazdasági

Részletesebben

Makroökonómia. 5. szeminárium

Makroökonómia. 5. szeminárium Makroökonómia 5. szeminárium Mit tudunk eddig? Alapfogalmak Hosszú távú modell Alapvető modellezési keretrendszer Szereplők Piacok Magatartási egyenletek Piaci egyensúlyi feltételek Azonban: statikus modell

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak:

Hurokegyenlet alakja, ha az áram irányával megegyező feszültségeséseket tekintjük pozitívnak: Első gyakorlat A gyakorlat célja, hogy megismerkedjünk Matlab-SIMULINK szoftverrel és annak segítségével sajátítsuk el az Automatika c. tantárgy gyakorlati tananyagát. Ezen a gyakorlaton ismertetésre kerül

Részletesebben

Lotka Volterra-féle populációdinamikai modellek vizsgálata

Lotka Volterra-féle populációdinamikai modellek vizsgálata Eötvös Loránd Tudományegyetem Természettudományi Kar Alkalmazott Analízis és Számításmatematikai Tanszék Lotka Volterra-féle populációdinamikai modellek vizsgálata Szakdolgozat Készítette: Kiss Franciska

Részletesebben

Populációs kölcsönhatások. A populációs kölcsönhatások jelentik az egyedek biológiai környezetének élő (biotikus) tényezőit.

Populációs kölcsönhatások. A populációs kölcsönhatások jelentik az egyedek biológiai környezetének élő (biotikus) tényezőit. Populációs kölcsönhatások A populációs kölcsönhatások jelentik az egyedek biológiai környezetének élő (biotikus) tényezőit. A populációk között kialakulhatnak közvetett vagy közvetlen kapcsolatok. Ezek

Részletesebben

3. el adás. Hosszú távú modell: szerepl k, piacok, egyensúly. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem

3. el adás. Hosszú távú modell: szerepl k, piacok, egyensúly. Kuncz Izabella. Makroökonómia. Makroökonómia Tanszék Budapesti Corvinus Egyetem Hosszú távú modell: szerepl k, piacok, egyensúly Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? GDP Árindexek Kamatok Munkanélküliség Vannak releváns gazdasági kérdések,

Részletesebben

Az ökológia alapjai NICHE

Az ökológia alapjai NICHE Az ökológia alapjai NICHE Niche Meghatározás funkció ill. alkalmazkodás szerint a növény- és állatfajok élő és élettelen környezetükbe eltérő módon illeszkednek be ott a többi élőlénytől többé-kevésbé

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

4. Kartell két vállalat esetén

4. Kartell két vállalat esetén 4. Kartell két vállalat esetén 34 4. Kartell két vállalat esetén Ebben a fejezetben azzal az esettel foglalkozunk, amikor a piacot két vállalat uralja és ezek összejátszanak. A vállalatok együttműködését

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok

Numerikus matematika. Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, Lebegőpontos számok Numerikus matematika Irodalom: Stoyan Gisbert, Numerikus matematika mérnököknek és programozóknak, Typotex, 2007 Lebegőpontos számok Normák, kondíciószámok Lineáris egyenletrendszerek Legkisebb négyzetes

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

Differenciálegyenletek december 13.

Differenciálegyenletek december 13. Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire

Részletesebben

Példatár Lineáris algebra és többváltozós függvények

Példatár Lineáris algebra és többváltozós függvények Példatár Lineáris algebra és többváltozós függvények Simonné Szabó Klára. február 4. Tartalomjegyzék. Integrálszámítás.. Racionális törtek integrálása...................... Alapfeladatok..........................

Részletesebben

ODE SOLVER-ek használata a MATLAB-ban

ODE SOLVER-ek használata a MATLAB-ban ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk

Részletesebben

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan!

sin x = cos x =? sin x = dx =? dx = cos x =? g) Adja meg a helyettesítéses integrálás szabályát határozott integrálokra vonatkozóan! Matematika előadás elméleti kérdéseinél kérdezhető képletek Analízis II Határozatlan integrálszámítás g) t = tg x 2 helyettesítés esetén mivel egyenlő sin x = cos x =? g) t = tg x 2 helyettesítés esetén

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Kaotikus dinamika. Dióssy Miklós - WXPC5Q. Komplex Rendszerek Szimulációs Módszerei. A jegyzőkönyvet készítette: Jegyzőkönyv

Kaotikus dinamika. Dióssy Miklós - WXPC5Q. Komplex Rendszerek Szimulációs Módszerei. A jegyzőkönyvet készítette: Jegyzőkönyv Komplex Rendszerek Szimulációs Módszerei Kaotikus dinamika Jegyzőkönyv A jegyzőkönyvet készítette: Dióssy Miklós - WXPC5Q A beadás időpontja: 2016. március 31. Dióssy Miklós - WXPC5Q Kaotikus dinamika

Részletesebben

Annak a function-nak a neve, amiben letároltuk az egyenletünket.

Annak a function-nak a neve, amiben letároltuk az egyenletünket. Function-ok a MATLAB-ban Előző óra 4. Feladata. Amikor mi egy function-t írunk, akkor azt eltárolhatjuk egy.m fileban. Ebben az esetben ha egy másik programunkból szeretnénk meghívni ezt a függvényt (pl

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi

Gyakorló feladatok. Agbeko Kwami Nutefe és Nagy Noémi Gyakorló feladatok Agbeko Kwami Nutefe és Nagy Noémi 25 Tartalomjegyzék. Klasszikus hibaszámítás 3 2. Lineáris egyenletrendszerek 3 3. Interpoláció 4 4. Sajátérték, sajátvektor 6 5. Lineáris és nemlineáris

Részletesebben

Populációdinamikai modellek

Populációdinamikai modellek Populációdinamikai modellek Populációdinamika és a modellezés Populáció és modellezése A populációdinamika a különféle élőlények egyedszámának, illetőleg népességviszonyainak térbeni és időbeli változásával

Részletesebben

Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások

Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Közönséges differenciál egyenletek megoldása numerikus módszerekkel: egylépéses numerikus eljárások Bevezetés Ebben a cikkben megmutatjuk, hogyan használhatóak a Mathematica egylépéses numerikus eljárásai,

Részletesebben

3. jegyz könyv: Bolygómozgás

3. jegyz könyv: Bolygómozgás 3. jegyz könyv: Bolygómozgás Harangozó Szilveszter Miklós, HASPABT.ELTE 21. április 6. 1. Bevezetés Mostani feladatunk a bolygók mozgásának modellezése. Mint mindig a program forráskódját a honlapon [1]

Részletesebben

Bevezetés a gazdasági ingadozások elméletébe

Bevezetés a gazdasági ingadozások elméletébe Hosszú táv vs. rövid táv Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Mit tudunk eddig? Elmélet Ismerjük a gazdaság hosszú távú m ködését (klasszikus modell) Tudjuk, mit l függ a gazdasági

Részletesebben

Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek

Matematika mérnököknek 2. Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek Matematika mérnököknek 2 Ismétlés Numerikus dierenciálás Diegyenletek Fourier Matlab Projekt Desc Linkek 1 Ismétlés Di-számítás Határozatlan integrál Matematika mérnököknek 2 2 Di-számítás Desc Summa Fa

Részletesebben