Döntésmodellezés a közúti közlekedési módválasztásban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Döntésmodellezés a közúti közlekedési módválasztásban"

Átírás

1 Dötésmodellezés a közút közlekedés módválasztásba Kosztyó Áes, Török Ádám 2 Absztrakt Ckkükbe a közút közlekedés módválasztást, mt racoáls dötés folyamatot szereték modellez, külöös tektettel a épjárműforalom károsaya kbocsátására. Mukákba elsősorba arra törekedtük, hoy bemutassuk a klasszkus közazdasá meközelítés lokáját, a közlekedő választását. Erre külööse alkalmas a dszkrét dötés modellek családja. Ckkükbe csak a eoklasszkus közazdasátaból jól smert haszossá alapú dszkrét modellekkel folalkozuk, mert a közlekedés módválasztás és köryezetterhelés problematkáját ez tárja fel mefelelőe. A modellbe a lehetőséekhez eyértelműe haszossáokat redelük, és azt feltételezzük, hoy a dötéshozó md a számára leayobb haszossáú dötést hozza me. A haszossá füvéybe szte bármlye paraméter mplemetálható, ám yakorlat alkalmazhatósá szempotjából az eljutás dőt, az utazás költséet és a köryezetterhelést vettük alapul.. Bevezetés A közút közlekedés éyek vzsálata eyre fotosabbá vált az elmúlt 25 évbe. A modell, amely a valósá eyszerűsített leírása, seítséével a komplex valósáos redszerek köyebbe érthetőek me. A ckk célja, hoy az ember vselkedést modellezze a közlekedés módválasztás szempotjából. A redszer összetettsée matt eyszerűsítésekre va szüksé, melyek eleedhetetleek, hoy a modellük működjö. Külöbözú problémák meoldásához a valósá modellbe törtéő ábrázolására va szüksé. A modell a valósá leeyszerűsített képe, a téyek komplex összefüést csak úy tudjuk áttekte és meérte, ha mefeleő módo leeyszerűsítjük azokat. A fzka modell a valósá olya részletéek leeyszerűsített, kokrét ábrázolása amely a vzsálat számára léyees szempotokat a valósáak mefeleőe tartalmazza. [2] Ey adott modell számos feltételezést tartalmaz, melyekkel potosa tsztába kell leük, amkor előrejelzést, szabályozást vay optmalzálást Kosztyó Áes, taárseéd; Budapest Műszak és azdasátudomáy Eyetem, Közlekedésazdasá taszék, akosztyo@kazd.bme.hu 2 Török Ádám, PhD hallató; Budapest Műszak és azdasátudomáy Eyetem, Közlekedésazdasá taszék, atorok@kazd.bme.hu

2 vézük a modelle. Ahhoz, hoy mefyelhessük, hoy eyéek mkét hozak dötéseket éháy specáls feltételezéssel kell élük:. dötéshozó: a dötést hozó eyé, vay valamlye közös tulajdosá alapjá vett csoportosulás (lyekor a csoport más tulajdosáat fyelme kívül hayjuk); 2. a lehetőséek: azo feltételezések, amelyek a dötéshozó számára elérhető választás lehetőséek defálják; 3. jellemzők: azo feltételezések, melyek mehatározzák mde választás lehetősére a dötést befolyásoló téyezőket és melyeket dötéshozó fyelembe vesz a dötéséél; 4. dötés szabály: azo feltételezések, melyek leírják a dötés mechazmus karaktersztkát. Ey dötés modellezéséél vzsáluk kell, hoy mlye választás lehetőséet választott a dötéshozó és azt s vzsál kell, hoy melyket em választotta. Ckkbe, a közlekedés módválasztásból adódóa, a közlekedés módválasztás modellek közül a dszkrét választás modelleket vzsáljuk me. 2. Dszkrét dötés modellek Dszkrét dötés modellél felírható a választás lehetőséek vées sokasáa. Következő lépésbe fel kell tár a választás lehetőséek körét. A lehetőséek két csoportra bothatóak: általáos választás lehetőséekre és a redukált lehetőséek tárára. Az általáos lehetőséek csoportja az összes lehetsées választást tartalmazza, amí a redukált lehetőséek csak a dötéshozó számára elérhető lehetőséeket tartalmazza. Itt kell mejeyez, hoy eyes közlekedés módválasztás esetekbe külö mefyelést tee dokolttá az, hoy eyes közlekedés aláazatok mért em kerülek bele a redukált lehetőséek halmazába (pl.: cs épjárművezető eedélye és ezért em szerepel a közlekedés módok között az eyé épjárműközlekedés, vay formácó háy matt em haszálja a közössé közlekedést). A redukált dötés lehetőséek részhalmaza e yakra valód részhalmaza az általáos dötés lehetőséekek.

3 A vzsálatkor azoosíta kell azo jellemzőket, melyek befolyásolják a dötéshozót dötése mehozásába. Mde választás lehetőséet értékelük kell a jellemzők alapjá. Ezek lehetek közlekedés eseté az utazás vay az eljutás dő, a kéyelem és az eyé költséek. A vzsálat alapját adó jellemzők eyarát lehetek kvattatívak és kvaltatívak. Jellemző, hoy em csak mefyelhető drekt smérv lehet, haem aak valamlye füvéykapcsolata (pl.: az utazás dő helyett aak loartmusa vay az eyé költséek helyett az eyé jövedelem és költsé háyadosa szerepelhet) [4]. Mutá mevzsáltuk a dötés jellemzőket és a választás lehetőséeket vzsáljuk me a dötés mechazmust leíró karaktersztkákat s. A módválasztásokat leíró karaktersztkákat csoportokra szokták bota a közös matematka modell alapjá. Ckkükbe, a továbbakba csak a eoklasszkus közazdasátaból jól smert haszossá alapú dszkrét modellekkel folalkozuk, mert a közlekedés módválasztást ez írja le mefelelőe. A modellbe a lehetőséekhez eyértelműe haszossáokat redelük, és azt feltételezzük, hoy a dötéshozó md a számára leayobb haszossáú dötést hozza me. Ez a feltételezésük korlátozza a modell yakorlat haszálhatósáát, habár az ember elme és vselkedés összetettsée dokolá a bzoytalasá vay hba kezelését, a szorúa csak haszossá alapú modell mésem folalkozk ezzel. A dötéshozót a haszossámaxmalzáso túl számos elem: a szokások, a kultúra és társadalm tézméyek mellett, eyé kotív képessée motvácó s befolyásolják. [] Más haszossá alapú, de bővített modellekbe a bzoytalasáot hbataal vay súlyozó téyezőkkel próbálják korrál. () U =Ω +ε,ahol U : az. közlekedés mód haszossáa Ω : az. közlekedés mód mefyelhető haszossáa ε : az. közlekedés mód em mefyelhető haszossáa vay hbata (2) U = ( w f j j ) j=,ahol w j : a j. dötés jellemző súlya

4 f j : a j. dötés jellemző 3. Nested Lot dszkrét dötés modell közlekedés alkalmazása A modell alapvetőe a haszossá alapú modellek családjába tartozk. Alapvetése, hoy a dötéshozó a számára lekedvezőbb, leayobb haszossáú közlekedés módot választja. A modell alapjá aak valószíűsée, hoy a dötéshozó. lehetőséet választja J lehetősé közül az az alább módo írható le: U e P = (3) e j J U j Ebbe az értelembe a haszossá a módválasztás teljes költséét próbálja jelete, am persze a kettő között fordított aráyossáo alapul. Az alább bemutatott eljárás csak a haszossá kfejtésébe tér el az edd smertetettől, mert olya elemet s tartalmaz, amelyek költséesítése edd csak ehézkese volt meoldható. 4. Bárs Nested Lot Dötés Modell alkalmazása közlekedés módválasztásra [3] A közlekedés módválasztásál a Nested Lot modell tovább eyszerűsíthető, hsze halmazképzéssel a Bárs Nested Lot modell képezhető belőle (. ábra). közlekedés yalo jármű kerékpár épjármű közössé eyé orszáút autópá. ábra: Bárs dötés fa a közlekedés módválasztáshoz

5 Ekkor az összefüés 2 taúvá eyszerűsödk: U e (4) P = ; P U+ U 2 =-P 2 e 5. A haszossá mehatározása A modellbe e ay szerepe va a haszossáak, ezért mehatározását az alábbakba mutatjuk be. A haszossá füvéyébe szte bármlye paraméter fyelembe vehető, ám yakorlat alkalmazhatósá szempotjából az eljutás dőt, az utazás költséet és a köryezetterhelést vettük alapul. (5) U = w j + wk + wl C T L, ahol U : az. közlekedés mód haszossáa w x : a súlytéyező C : az. közlekedés mód utazás költsée T : az. közlekedés mód utazás deje L : az. közlekedés mód lészeyezése Formázott: Kemelt Bzoyos esetekbe az emberek haszossáuk elvesztítése elleére s raaszkodak dötésükhöz, ré jól bevált szokásukhoz. Eek modellezésére vezessük be a közlekedés módok specfkus kostasát (ASC). Ekkor a haszossá felírható: (6) U = w j + wk + wl + ASC C T L, ahol ASC : az. közlekedés mód specfkus kostasa Formázott: Kemelt A fet leírtak csak leárs haszossára voatkozak, természetese elképzelhetőek más dötés mechazmust leíró karaktersztkák (hatváy, loartmkus stb.). A haszossá alkotó elemeből talá külöösebb mayarázatot csak a lészeyezés mehatározása éyel.

6 A járműáramlatot csoportokra lehet bota. A csoportosítás alapja a törvéy előírás 3. A járműáramlat károsaya kbocsátás sztjéek mehatározása sorá veyük a G mátrxot, amely a épjárműállomáy darabszámát reprezetálja az alább smérvcsoportok alapjá: (7) G = (8) j = kbocsátás j j j m m m ahol: j a képzett csoportokba tartozó épjárművek elemszáma = α j=,, m az EURO 4 j szabváyú járművek által okozott károsaya j (9) m j j= M :..3 = β =,, N : osztályú járművek csoportja m (0) j = j = = j= j= = m α β azaz az összes jármű. j A járművek károsaya kbocsátásáak becsléséhez kbocsátás faktort haszálható, amely a jelele emzetköz kutatásokkal s összhaba va. Mevzsáltuk a hazákba alkalmazott köryezetvédelm felülvzsálat techolóa esetlees adaptácójáak lehetőséét, de a járműspecfkus adatok komplextása az átvételt em tesz lehetővé. A kbocsátás faktor alapja az EURO köryezetvédelm szabváy károsaya kbocsátás határértéke, melyek az dők folyamá szorodtak és fomodtak, részletesebbé váltak. 6. Összefolalás A közlekedés éyek vzsálata eyre fotosabbá vált az elmúlt 25 évbe. Mukákba elsősorba arra törekedtük, hoy modellezzük a közlekedés módválasztást, mt racoáls dötés folyamatot, külöös tektettel a épjárműforalom károsaya kbocsátására. A ckkbe, a közlekedés módválasztásból 3 5/990. (IV. 2.) KöHÉM redelet 4 6/990 (IV.2.) KöHÉM redelet 5. mellékletéek 2 táblázata alapjá defált EURO előírások

7 adódóa, a közlekedés módválasztás modellek közül a dszkrét választás modelleket vzsáljuk me. Erre külööse alkalmas a dszkrét dötés modellek családja. A ckk célja, hoy az ember vselkedést modellezze a közlekedés módválasztás szempotjából. Dszkrét dötés modellél felírható a választás lehetőséek vées sokasáa. A vzsálatkor azoosíta kell azo jellemzőket, melyek befolyásolják a dötéshozót dötése mehozásába. Mde választás lehetőséet értékelük kell a jellemzők alapjá. Ezek lehetek közlekedés eseté az utazás vay az eljutás dő, a kéyelem és az eyé költséek, esetle a köryzetterhelés. A vzsálat alapját adó jellemzők eyarát lehetek kvattatívak és kvaltatívak. Az általuk módosított modell alapvetőe a haszossá alapú modellek családjába tartozk. Alapvetése, hoy a dötéshozó a számára lekedvezőbb, leayobb haszossáú közlekedés módot választja. A haszossá füvéyébe szte bármlye paraméter fyelembe vehető, ám yakorlat alkalmazhatósá szempotjából az eljutás dőt, az utazás költséet és a köryezetterhelést vettük alapul. Íy a köryzetterhelés értékelése a közlekedés módválasztás dötésekél mefyelhetővé válk. Hvatkozás [] Spos László Tóth Arold A közazdasá értelembe rracoálsak tektett dötések kotív oka, Market & Maaemet 2006/0. p22-30 [2] Dr. Glcze Éva, Molár László, Tara Júla, Fekete Adrás Matematka Módszerek és modelleke a közlekedésbe II. Taköyvkadó, Budapest 97 [3] Dr. Glcze Éva Személyközlekedés Üzemta, Eyetem Jeyzet, [4] Kővár Botod A város közlekedés folyamatok komplex befolyásoló tézkedése, Lofo, 2005/07-08, p8-9

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése

Tartalomjegyzék. 4.3 Alkalmazás: sorozatgyártású tűgörgő átmérőjének jellemzése 3 4 Tartalomegyzék. BEVEZETÉS 5. A MÉRÉS 8. A mérés mt folyamat, fogalmak 8. Fotosabb mérés- és műszertechka fogalmak 4.3 Mérés hbák 8.3. Mérés hbák csoportosítása eredetük szert 8.3. A hbák megeleítés

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R,

KOMBINATORIKA ELŐADÁS osztatlan matematikatanár hallgatók számára. Szita formula J = S \R, KOMBINATORIKA ELŐADÁS osztatla matematkataár hallgatók számára Szta formula Előadó: Hajal Péter 2018 1. Bevezető példák 1. Feladat. Háy olya sorbaállítása va a {a,b,c,d,e} halmazak, amelybe a és b em kerül

Részletesebben

Valós és funkcionálanalízis

Valós és funkcionálanalízis Matematika taozatok. Kedd 13:3 Marx-terem 1. Baják Szabolcs (DE TTK). Baloh Ferec (SZTE TTK) 3. Glavosits Tamás (DE TTK) 4. Mészáros Fruzsia (DE TTK) 5. Mező Istvá (DE TTK) 6. Naszódi Gerely (ELTE TTK)

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata

A pályázat címe: Rugalmas-képlékeny tartószerkezetek topológiai optimalizálásának néhány különleges feladata 6. év OTKA zárójeletés: Vezető kutató:kalszky Sádor OTKA ylvátartás szám T 4993 A pályázat címe: Rugalmas-képlékey tartószerkezetek topológa optmalzálásáak éháy külöleges feladata (Részletes jeletés) Az

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Alkalmazott Informatikai Tanszék Mskol Egyetem Gépészmérök és Iformatka Kar Alkalmazott Iformatka Taszék 2012/13 2. félév 9. Előadás Dr. Kulsár Gyula egyetem does Matematka modellek a termelés tervezésébe és ráyításába Néháy fotosabb

Részletesebben

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet)

Matematikai statisztika elıadás III. éves elemzı szakosoknak. Zempléni András 9. elıadásból (részlet) Matematka statsztka elıadás III. éves elemzı szakosokak Zemplé Adrás 9. elıadásból részlet Y közelítése függvéyével Gyakor eset, hogy em smerjük a számukra érdekes meység Y potos értékét pl. holap részvéy-árfolyam,

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

1. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) 1. Alapfogalmak:

1. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) 1. Alapfogalmak: SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-MECHNIZMUSOK ELŐDÁS (kidolozta: Szüle Veronika, ey. ts.). lapfoalmak:.. mechanizmus foalmának bevezetése: modern berendezések, épek jelentős részében

Részletesebben

Laboratóriumi mérések

Laboratóriumi mérések Laboratórum mérések. Bevezetı Bármlye mérés ayt jelet, mt meghatároz, háyszor va meg a méredı meységbe egy másk, a méredıvel egyemő, ökéyese egységek választott meység. Egy mérés eredméyét tehát két adat

Részletesebben

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai

13. Tárcsák számítása. 1. A felületszerkezetek. A felületszerkezetek típusai Tárcsák számítása A felületszerkezetek A felületszerkezetek típusa A tartószerkezeteket geometra méretek alapjá osztálozzuk Az eddg taulmáakba szereplı rúdszerkezetek rúdjara az a jellemzı hog a hosszuk

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika ... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB

Részletesebben

A forgalomba belépő gépjárművek többlet károsanyag kibocsátásának számítása a nemzetközi határértékek figyelembe vételével

A forgalomba belépő gépjárművek többlet károsanyag kibocsátásának számítása a nemzetközi határértékek figyelembe vételével Török Ádá, Zöldy Máté Közúti Közlekedés A foraloba belépő épjárűvek többlet károsaya kibocsátásáak száítása a ezetközi határértékek fiyelebe vételével A XX század véé és a XXI század elejé a otorizált

Részletesebben

? közgazdasági statisztika

? közgazdasági statisztika Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem

Részletesebben

VASBETON ÉPÜLETEK MEREVÍTÉSE

VASBETON ÉPÜLETEK MEREVÍTÉSE BUDAPET MŰZAK É GAZDAÁGTUDOMÁY EGYETEM Építőmérök Kar Hdak és zerkezetek Taszéke VABETO ÉPÜLETEK MEREVÍTÉE Oktatás segédlet v. Összeállította: Dr. Bód stvá - Dr. Farkas György Dr. Kors Kálmá Budapest,.

Részletesebben

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat

A tárgy címe: ANALÍZIS 1 A-B-C (2+2). 1. gyakorlat A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Legye N, x k R k =,, és tegyük fel, hogy vagy x k 0 k =,, vagy pedig x k 0 k =,, Ekkor + x k + x k Speciális Beroulli-egyelőtleség Ha N és

Részletesebben

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága

Sorozatok, határérték fogalma. Függvények határértéke, folytonossága Sorozatok, határérték fogalma. Függvéyek határértéke, folytoossága 1) Végtele valós számsorozatok Fogalma, megadása Defiíció: A természetes számok halmazá értelmezett a: N R egyváltozós valós függvéyt

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Széki Hírek A Magyarszékért Egyesület kiadványa

Széki Hírek A Magyarszékért Egyesület kiadványa Szék Hírek A Magyarszékért Egyesület kadáya X. éfolyam, 1. szám Karácsoy a árakozással tel szeretet üepe December 17-é fatalok adtak hagerseyt a templomba. K kegyetleül süöltött a hdeg szél, míg be melegséggel

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alapja Iformácóelmélet Glbert-Moore Szemléltetése hasoló a Shao kódhoz A felezőpotokra a felezős kódolás A felezőpot értéke bttel hosszabb kfejtést géyel /2 0 x x x p p 2 p

Részletesebben

HIVATALI FOLYAMATOK FEJLESZTÉSE

HIVATALI FOLYAMATOK FEJLESZTÉSE Cgád Város Ökormáyzat HIVATALI FOLYAMATOK FEJLESZTÉSE MINŐSÉGÜGYI ME 05 1. AZ CÉLJA Az eljárás célja a hvatal folyamatok fejlesztéséek szabályozása. Jele eljárás meghatározza a fejlesztés lefolytatásáak

Részletesebben

0. mérés A MÉRNÖK MÉR

0. mérés A MÉRNÖK MÉR 0. mérés A MÉRNÖK MÉR 1. Bevezetés A mérnöki ismeretszerzés eyik klasszikus formája a mérés, és a mérési eredményekből levonható következtetések feldolozása (a mérnök és a mérés szó közötti kapcsolat nyilvánvaló).

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

A MATEMATIKAI STATISZTIKA ELEMEI

A MATEMATIKAI STATISZTIKA ELEMEI A MATEMATIKAI STATISZTIKA ELEMEI Az Eötvös Lórád Tudomáyegyetem Természettudomáy Kará a Fzka Kéma Taszék évek óta kéma-szakos taárhallgatókak matematka bevezetõ elõadásokat tart. Az elõadások célja az,

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Kiberfizikai rendszerek

Kiberfizikai rendszerek Kibefizikai edszeek A fizikai voatkozásokól. folytatás 5. ovembe. PS edszeek modellezési kédései Példa: Készítsük poamozható feszültséosztó áamköt-beedezést! U (t) R Következméy: U U(t) U t = U t R + R

Részletesebben

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell

I. A közlekedési hálózatok jellemzői II. A közlekedési szükségletek jellemzői III. Analitikus forgalom-előrebecslési modell Budapest Műszak és Gazdaságtudomány Egyetem Közlekedésmérnök és Járműmérnök Kar Közlekedésüzem Tanszék HÁLÓZATTERVEZÉSI MESTERISKOLA BEVEZETÉS A KÖZLEKEDÉS MODELLEZÉSI FOLYAMATÁBA Dr. Csszár Csaba egyetem

Részletesebben

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)

Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o) Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

Kényszereknek alávetett rendszerek

Kényszereknek alávetett rendszerek Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel- ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük

Részletesebben

Az elektronmikroszkópia fizikai alapja: nagy-energiájú elektronok szóródásai

Az elektronmikroszkópia fizikai alapja: nagy-energiájú elektronok szóródásai A elektromkroskópa fka alapa: ay-eeráú elektrook sóródása -7 A > elektro/s > µm-ekét ( ke) > Eyelektro-sórás Fatáa Meeyés Alkalmaása Eyseres ematkus elm (Ewald-serk) t m Dffr köelítő elye (Bra-eyelet)

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév

Eötvös Loránd Tudományegyetem Informatikai Kar. Analízis 1. Írásbeli beugró kérdések. Készítette: Szántó Ádám Tavaszi félév Eötvös Lorád Tudomáyegyetem Iformatikai Kar Aalízis 1. Írásbeli beugró kérdések Készítette: Szátó Ádám 2011. Tavaszi félév 1. Írja le a Dedekid-axiómát! Legyeek A R, B R. Ekkor ha a A és b B : a b, akkor

Részletesebben

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab

A paramétereket kísérletileg meghatározott yi értékekre támaszkodva becsülik. Ha n darab kisérletet (megfigyelést, mérést) végeznek, n darab öbbváltozós regresszók Paraméterbecslés-. A paraméterbecslés.. A probléma megfogalmazása A paramétereket kísérletleg meghatározott y értékekre támaszkodva becsülk. Ha darab ksérletet (megfgyelést, mérést

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben

HIDROMOTOROK. s azaz kb. 1,77 l/s. A folyadéknyelésből meghatározható az elérhető maximális fordulatszám: 3

HIDROMOTOROK. s azaz kb. 1,77 l/s. A folyadéknyelésből meghatározható az elérhető maximális fordulatszám: 3 íz- és széltrbiák - ok IROMOTOROK I. Ey 6,8 bar túlyomású idraliks redszerről kívák üzemelteti ey 0 cm -es axiál dattyús idrosztatiks motort. Milye maximális fordlatszám és yomaték érető el, a a kívát

Részletesebben

A POLGÁRMESTERI HIVATAL KÖZREMŰKÖDÉSE AZÖNKORMÁNYZAT RENDELETALKOTÁSI FOLYAMATÁBAN

A POLGÁRMESTERI HIVATAL KÖZREMŰKÖDÉSE AZÖNKORMÁNYZAT RENDELETALKOTÁSI FOLYAMATÁBAN Cgád Város Ökormáyzat Polgármester Hvatala 1. AZ CÉLJA Az eljárás célja szabályoz Cgád Város Polgármester Hvatal (a továbbakba: Polgármester Hvatal) közreműködését az ökormáyzat redeletalkotás folyamatába

Részletesebben

Egyszerő kémiai számítások

Egyszerő kémiai számítások Egyszerő kéiai száítások z egyes fizikai, illetve kéiai eyiségek közötti összefüggéseket éréssel állapítjuk eg. hhoz, hogy egy eyiséget éri tudjuk, a eyiségek valaely rögzített értékét (értékegység) kell

Részletesebben

A brexit-szavazás és a nagy számok törvénye

A brexit-szavazás és a nagy számok törvénye Mûhely Medvegyev Péter kadidátus, a Corvius Egyetem egyetemi taára E-mail: peter.medvegyev@uicorvius.hu A brexit-szavazás és a agy számok törvéye A 016. év, de vélhetőe az egész évtized legfotosabb politikai

Részletesebben

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg.

(1) Milyen esetben beszélünk tartós nyugalomról? Abban az esetben, ha a (vizsgált) test a helyzetét hosszabb időn át nem változtatja meg. SZÉCHENYI ISTVÁN EGYETEM MECHNIK - STTIK LKLMZTT MECHNIK TNSZÉK Elmélet kérdések és válaszok egetem alapképzésbe (Sc képzésbe) résztvevő mérökhallgatók számára () Mle esetbe beszélük tartós ugalomról?

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél

1. előadás: Bevezetés. Irodalom. Számonkérés. A valószínűségszámítás és a statisztika tárgya. Cél Valószíűségszámítás és statsztka előadás fo. BSC/B-C szakosokak 1. előadás szeptember 13. 1. előadás: Bevezetés Irodalom, követelméyek A félév célja Valószíűségszámítás tárgya Törtéet Alapfogalmak Valószíűségek

Részletesebben

Nevezetes sorozat-határértékek

Nevezetes sorozat-határértékek Nevezetes sorozat-határértékek. Mide pozitív racioális r szám eseté! / r 0 és! r +. Bizoyítás. Jelöljük p-vel, illetve q-val egy-egy olya pozitív egészt, melyekre p/q r, továbbá legye ε tetszőleges pozitív

Részletesebben

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről

Vác Város Önkormányzat 11 /2004. (IV.30.) számú rendelet az önkormányzati beruházások és felújítások rendjéről Vác Város Ökormáyzat 11 /2004. (IV.30.) számú redelet az ökormáyzati beruházások és felújítások redjéről Vác Város Képviselőtestülete az ökormáyzati beruházások és felújítások egységes szemléletű gyors

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

A Secretary problem. Optimális választás megtalálása.

A Secretary problem. Optimális választás megtalálása. A Secretary problem. Optmáls választás megtalálása. A Szdbád problémáa va egy szté lasszusa tethető talá természetesebb vszot ehezebb változata. Ez a övetező Secretary problem -a evezett érdés: Egy állásra

Részletesebben

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő. 3. SOROZATOK 3. Sorozatok korlátossága, mootoitása, kovergeciája Defiíció. Egy f : N R függvéyt valós szám)sorozatak evezük. Ha A egy adott halmaz és f : N A, akkor f-et A-beli értékű) sorozatak evezzük.

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

A Sturm-módszer és alkalmazása

A Sturm-módszer és alkalmazása A turm-módszer és alalmazása Tuzso Zoltá, zéelyudvarhely zámtala szélsőérté probléma megoldása, vagy egyelőtleség bzoyítása agyo gyara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölderféle

Részletesebben

MINŐSÉGÜGYI ELJÁRÁS A KÖZIGAZGATÁSI ÉS HATÓSÁGI IRODA ÁLTALÁNOS IGAZGATÁSI MUNKACSOPORTJÁNAK FOLYAMATSZABÁLYOZÁSA

MINŐSÉGÜGYI ELJÁRÁS A KÖZIGAZGATÁSI ÉS HATÓSÁGI IRODA ÁLTALÁNOS IGAZGATÁSI MUNKACSOPORTJÁNAK FOLYAMATSZABÁLYOZÁSA EI-18 MINŐSÉGÜGYI ELJÁRÁS A KÖZIGAZGATÁSI ÉS HATÓSÁGI IRODA ÁLTALÁNOS IGAZGATÁSI MUNKACSOPORTJÁNAK FOLYAMATSZABÁLYOZÁSA 1. AZ ELJÁRÁS CÉLJA Az eljárásba szereplő feladatok az alábbak: A hagyaték ügyek

Részletesebben

Információs rendszerek elméleti alapjai. Információelmélet

Információs rendszerek elméleti alapjai. Információelmélet Iformácós redszerek elmélet alaja Iformácóelmélet A forrás kódolása csatora jelekké 6.4.5. Molár Bált Beczúr Adrás NMMMNNMNfffyyxxfNNNNxxMNN verzazazthatóvsszaálímdeveszteségcsaakkorfüggvéykódolásaakódsorozat:eredméyekódolássorozatváltozó:forás

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula.

Kombinatorika. Variáció, permutáció, kombináció. Binomiális tétel, szita formula. Kombiatorika Variáció, permutáció, kombiáció Biomiális tétel, szita formula 1 Kombiatorikai alapfeladatok A kombiatorikai alapfeladatok léyege az, hogy bizoyos elemeket sorba redezük, vagy éháyat kiválasztuk

Részletesebben

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék

Adatfeldolgozás, adatértékelés. Dr. Szűcs Péter, Dr. Madarász Tamás Miskolci Egyetem, Hidrogeológiai Mérnökgeológiai Tanszék Adatfeldolgozás, adatértékelés Dr. Szűcs Péter, Dr. Madarász Tamás Mskolc Egyetem, Hdrogeológa Mérökgeológa Taszék A vzsgált köryezet elemek, lletve a felszí alatt közeg megsmerése céljából számtala külöböző

Részletesebben

Motorteljesítmény mérés diagnosztikai eszközökkel Készült a Bolyai János Ösztöndíj támogatásával

Motorteljesítmény mérés diagnosztikai eszközökkel Készült a Bolyai János Ösztöndíj támogatásával Motorteljesítmény mérés dianosztikai eszközökkel Készült a Bolyai János Ösztöndíj támoatásával Dr. Lakatos István h.d., eyetemi docens* * Széchenyi István Eyetem, Közúti és Vasúti Járművek Tanszék (e-mail:

Részletesebben

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1

1 n. 8abc (a + b) (b + c) (a + c) 8 27 (a + b + c)3. (1 a) 5 (1 + a)(1 + 2a) n + 1 A tárgy címe: ANALÍZIS A-B-C + gyakorlat Beroulli-egyelőtleség Ha N és h R, akkor + h + h Mikor va itt egyelőség? Léyeges-e a h feltétel? Számtai-mértai közép Bármely N és,, R, k 0 k =,, választással k

Részletesebben

Diszkrét Matematika 1. óra Fokszámsorozatok

Diszkrét Matematika 1. óra Fokszámsorozatok Dszkrét Matematka. óra 29.9.7. A köetkezı fogalmakat smertek tektük: gráf, egyszerő gráf, hurokél, párhuzamos élek, fa, ághatás operácó. Fokszámsorozatok Def.: G gráf fokszámsorozata fokaak reezett öekı

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

MELLÉKLET. a következőhöz: Javaslat A Tanács határozata

MELLÉKLET. a következőhöz: Javaslat A Tanács határozata EURÓPAI BIZOTTSÁG Brüsszel, 2016.1.22. COM(2016) 8 final ANNEX 7 MELLÉKLET a következőhöz: Javaslat A Tanács határozata az eyrészről az Európai Unió és taállamai, és másrészről az SADC-GPM-államok közötti

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ izika középszint 1012 ÉRETTSÉGI VIZSGA 11. május 17. IZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐORRÁS MINISZTÉRIUM JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ELSŐ RÉSZ A feleletválasztós

Részletesebben

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat

Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye.

A peremeloszlások. Valószínőségszámítás elıadás III. alk. matematikus szak. Példa. Valószínőségi vektorváltozók eloszlásfüggvénye. y Valószíőségszámítás elıaás III. alk. matematkus szak 4. elıaás, szeptember 30 A peremeloszlások (X,Y) eloszlásából (elevezés: együttes eloszlás) következtethetük az egyes változók eloszlására: P(X)P(X,Y0)+P(X,Y)+P(X,Y2)

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

Labormérések minimumkérdései a B.Sc képzésben

Labormérések minimumkérdései a B.Sc képzésben Labormérések mmumkérdése a B.Sc képzésbe 1. Ismertesse a levegő sűrűség meghatározásáak módját a légyomás és a levegő hőmérséklet alapjá! Adja meg a képletbe szereplő meységek jeletését és mértékegységét!

Részletesebben

BIZOTTSÁGI SZOLGÁLATI MUNKADOKUMENTUM A HATÁSVIZSGÁLAT ÖSSZEFOGLALÁSA. amely a következő dokumentumot kíséri

BIZOTTSÁGI SZOLGÁLATI MUNKADOKUMENTUM A HATÁSVIZSGÁLAT ÖSSZEFOGLALÁSA. amely a következő dokumentumot kíséri EURÓPAI BIZOTTSÁG Brüsszel, 2011.10.27. SEC(2011) 1294 vélees BIZOTTSÁGI SZOLGÁLATI MUNKADOKUMENTUM A HATÁSVIZSGÁLAT ÖSSZEFOGLALÁSA amely a következő dokumentumot kíséri Javaslat: AZ EURÓPAI PARLAMENT

Részletesebben

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat:

Járattípusok. Kapcsolatok szerint: Sugaras, ingajárat: Vonaljárat: Körjárat: JÁRATTERVEZÉS Kapcsolatok szert: Sugaras, gaárat: Járattípusok Voalárat: Körárat: Targocás árattervezés egyszerű modelle Feltételek: az ayagáram determsztkus, a beszállítás és kszállítás dőpot em kötött

Részletesebben

Matematika I. 9. előadás

Matematika I. 9. előadás Matematika I. 9. előadás Valós számsorozat kovergeciája +-hez ill. --hez divergáló sorozatok A határérték és a műveletek kapcsolata Valós számsorozatok mootoitása, korlátossága Komplex számsorozatok kovergeciája

Részletesebben

Tartalom Fogalmak Törvények Képletek Lexikon

Tartalom Fogalmak Törvények Képletek Lexikon Fizikakönyv ifj. Zátonyi Sándor, 016. Tartalom Foalmak Törvények Képletek Lexikon A szabadesés Az elejtett kulcs, a fáról lehulló alma vay a leejtett kavics füőleesen esik le. Ősszel a falevelek azonban

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

oldatból történő kristályosítás esetén

oldatból történő kristályosítás esetén Borsos és Lakatos: Méretfüggő kristályövekedési sebesség modellezése Méretfüggő kristályövekedési sebesség modellezése oldatból törtéő kristályosítás eseté Borsos Ákos és Lakatos G. Béla Pao Egyetem, Méröki

Részletesebben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben

f (M (ξ)) M (f (ξ)) Bizonyítás: Megjegyezzük, hogy konvex függvényekre mindig létezik a ± ben Propositio 1 (Jese-egyelőtleség Ha f : kovex, akkor tetszőleges ξ változóra f (M (ξ M (f (ξ feltéve, hogy az egyelőtleségbe szereplő véges vagy végtele várható értékek létezek Bizoyítás: Megjegyezzük,

Részletesebben

Valószínűségszámítás. Ketskeméty László

Valószínűségszámítás. Ketskeméty László Valószíűségszámítás Ketskeméty László Budapest, 996 Tartalomjegyzék I. fejezet VALÓSZÍNŰSÉGSZÁMÍTÁS 3. Kombatorka alapfogalmak 4 Elleőrző kérdések és gyakorló feladatok 6. A valószíűségszámítás alapfogalma

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Megjegyzés: Amint már előbb is említettük, a komplex számok

Megjegyzés: Amint már előbb is említettük, a komplex számok 1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN

AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN AZ OPTIMÁLIS MINTANAGYSÁG A KAPCSOLÓDÓ KÖLTSÉGEK ÉS BEVÉTELEK RELÁCIÓJÁBAN Molár László Ph.D. hallgató Mskolc Egyetem, Gazdaságelmélet Itézet 1. A MINTANAGYSÁG MEGHATÁROZÁSA EGYSZERŐ VÉLETLEN (EV) MINTA

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1

Mérési adatok feldolgozása. 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc 1 Mérés adatok feldolgozása 2008.04.08. Méréselmélet PE_MIK MI_BSc, VI_BSc Bevezetés A mérés adatok külöböző formába, általába ömlesztve jeleek meg Ezeket az adatokat külöböző szempotok szert redez kértékel

Részletesebben

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)

Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum) Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Regresszió és korreláció

Regresszió és korreláció Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Molekulák elektronszerkezete - kv2n1p07/1 vázlat

Molekulák elektronszerkezete - kv2n1p07/1 vázlat Molekulák elektroszerkezete - kvp07/ vázlat Szalay Péter Eötvös Lorád Tudomáyegyetem, Kéma Itézet 0. szeptember 8. Tematka A Bor-Oppehemer közelítés. Az elektro-hullámfüggvéy közelítése; az eerga kfeezése

Részletesebben

A heteroszkedaszticitásról egyszerûbben

A heteroszkedaszticitásról egyszerûbben Mûhely Huyad László kaddátus, egyetem taár, a Statsztka Szemle főszerkesztője A heteroszkedasztctásról egyszerûbbe E-mal: laszlo.huyad@ksh.hu A heteroszkedasztctás az ökoometra modellezés egyk kulcsfogalma,

Részletesebben

Szerelési kézikönyv. Díszítőpanel BYCQ140CW1 BYCQ140CW1W

Szerelési kézikönyv. Díszítőpanel BYCQ140CW1 BYCQ140CW1W Díszítőpanel BYCQ0CW BYCQ0CWW 9 8 7 6 6 6 7 7 +6 a a c e f d h 6 mm 6 8 7 9 6 BYCQ0CW Díszítőpanel BYCQ0CWW Előkészületek üzeme helyezés előtt Az üzeme helyezés helyén veye csak ki az eyséet a csomaolásól.

Részletesebben

Fizikai geodézia és gravimetria / 20. AZ ISMÉTELT GEODÉZIAI MÉRÉSEK GEODINAMIKAI ÉRTELMEZÉSE.

Fizikai geodézia és gravimetria / 20. AZ ISMÉTELT GEODÉZIAI MÉRÉSEK GEODINAMIKAI ÉRTELMEZÉSE. MSc Fizikai eodézia és avietia /. BMEEOAFML AZ ISMÉTELT GEODÉZIAI MÉRÉSEK GEODINAMIKAI ÉRTELMEZÉSE. Száos földfizikai folyaat a földi ehézséi eőté időbeli változásait okozza. A külöböző étékű és sebesséű

Részletesebben

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú

Befektetett munka. Pontosság. Intuícióra, tapasztalatra épít. Intuitív Analóg Parametrikus Analitikus MI alapú ..4. Óbuda Egyetem ák Doát Gépész és ztoságtechka Mérök Kar yagtudomáy és Gyártástechológa Itézet Termelés olyamatok II. Költségbecslés Dr. Mkó alázs mko.balazs@bgk.u-obuda.hu z dı- és költségbecslés eladata

Részletesebben

A pályázat címe: Új elméleti és numerikus módszerek tartószerkezetek topológiaoptimálására

A pályázat címe: Új elméleti és numerikus módszerek tartószerkezetek topológiaoptimálására 00. év OKA zárójelentés: Vezetı kutató:lóó János A pályázat címe: Új elmélet és numerkus módszerek tartószerkezetek topolóaoptmálására determnsztkus és sztochasztkus feladatok esetén. (Részletes jelentés)

Részletesebben