Az elektronmikroszkópia fizikai alapja: nagy-energiájú elektronok szóródásai
|
|
- Antal Juhász
- 6 évvel ezelőtt
- Látták:
Átírás
1 A elektromkroskópa fka alapa: ay-eeráú elektrook sóródása -7 A > elektro/s > µm-ekét ( ke) > Eyelektro-sórás Fatáa Meeyés Alkalmaása Eyseres ematkus elm (Ewald-serk) t m Dffr köelítő elye (Bra-eyelet) < % Rualmas Többsörös Damkus elm (Dsperós fel) Itetás: (SAED, TEM) BED, ( rutl: ALHEMI, SEI, BEI) Foo-keltés Nem külöítető el STEM Z-kotrast Rualmatla Plamokeltés Fémekbe eetés elektrosűrűsé, (leboml SEI) Ioácó arakterstkus EELS, EDS elemaal, Fékeés suár Ma terébe oulomb-sórás EDS áttér Geometra sempotából Bra-elredeés Laue-elredeés REM, RHEED, LEED SAED, BED, TEM kép Nayeerás elektrook sóródása /
2 Nayeeráú elektrook dffrakcóa d µm; t m > Eyelektro sóródás probléma (ülöálló atomoko rualmas sórás: lásd eyet) [k] 4 v/c > relatvstkus > Drac-eyelet kée [boyolult] De: Fuwara (96) : sp-atás elayaolató (trasmssó) Relatvstkus eera-mpulus > Scröder-serű eyelet: : yorsító fesültsé [olt] : krstály potecál e( ): elektro ketkus eeráa Teles eera: m c W mc γm c e { ( v c) } 4 Relatvstkusa: p c m c e( ) ( ) m c { m } W c > p c e { e( )} e( ) e e e e ( ) { e m c } em c e m c e e e e m c e m c m c emc Nayeerás elektrook sóródása /
3 5 []; [] / : 8 aysáred elayaolása [Nayeerás elektrook köelítés!!!] A koordáta-repreetácóbel mpulus operátorra áttérve és a ψ ullámfüvéyre alkalmava: p ---> aol m γeψ e E e mc a relatvstkusa korrált eera γm e Beveetve a effektív krstály potecált U () r () r és a elektro ullámsám vektort 4 U() r a { m E} { [ ] } ψ () r alapvető másodredű dfferecál-eyeletet kapuk eyük ésre: U(r) em csak a krstály saátsáa!!! Hullámsám (ullámoss) relatvstkusa korrált! Eψ Eyetle köelítés: ayeerás elektrook ákuumba (): síkullám, de Brole-ullámossal Meoldás módsere: Bloc-ullám módser Multslce (fka optka) módser Nayeerás elektrook sóródása 3 /
4 Meoldás Bloc-ullámokkal (Bete) ékoy mta síkullám : A beövő síkullám k A mtába Bloc-ullámok össeére bomlk A mtából klépve smét síkullámok Eek a Bra-dffraktált yalábok A mtá belül Bloc-ullámok sármatatása: Ha U(r) rácsperódkus partkulárs meoldás B(r) Teles meoldás: ψ () r α B () r (α atárfeltételből) U () r U ( r) aol Nayeerás elektrook sóródása 4 /
5 U B γm e f ( ) ( r ) e τ τ { ( ) r} () ( ) r k τ és Eel a redű dff ey > leárs alebra eyelet(-redser): [ ] [ ] k U k r A és suarak köött kölcsöatást U - íra le Mde r-re [ ] k U > Ismeretleek sáma eyeletek sáma suarak sáma Iráyfüés (peremfeltétel) ellemésée: óateely Bratől eltérő elyet S : Ewald-ömb távolsáa Bra-elyet Nayeerás elektrook sóródása 5 /
6 Rualmas > ( S ) ( ) ( ) S S Nay eera: és () 4 Å - és S S és S elayaolása ( Bra-elyettől távol reflexók em eredek) ( ) S Bloc-ullámsám k ( ) alakba (: felület-ormáls) ( k ) Mért lokus e a forma? { } S ( ) ékoy mta > elayaolató vssasórás > > S ( ) ( ) ( ) U Jelölük: és S ( ) ( ) ( ) U Rualmatla sórás -től eltérít > apertúra > absorpcó > komplex k, U Nayeerás elektrook sóródása 6 /
7 Leárs saátérték-problémává trasformáláso: B ( ) ( ) S ( ) ( ) B B ( ) U B ( ) Általáos: HOLZ, absorpcó, dőlt atárfelület, acetrkus krstályok felületormáls, óateely, suár ráya??? A ( ) ( ) Specáls esetek Iverós cetrummmal redelkeő krstály, absorpcó élkül Iverós cetrummmal redelkeő krstály, absorpcóval Serkeet mátrx (A) smmetrkus, valós, Hermtkus a saátértékek valósak és utér ( - ) teles redser smmetrkus, komplex, em Hermtkus a saátértékek komplexek Eel ól leírtuk, oy a beövő síkullámból a mtába mlye Blocullámok lesek A mta másk oldalá smét a vákuumba lép a elektroullám smét síkullámok össee les Más leírás célserűbb ee állapotok sármatatásáo Nayeerás elektrook sóródása 7 /
8 Nayeerás elektrook sóródása 8 / A mtából klépő ullámoko alteratív leírás: Darw repreetácó (em Bloc-ullámok sert, aem síkullámok sert sorfetés) () [ ] r r ψ Felbotva rb akkor les aoos a Bloc-ullámossal, a a mélysébe α Há feladat: memutat fet össefüést Fet össefüés mátrx alakba írva: α α A erestés eyüttatók a atárfeltételből; mdkét oldalt - -el sorova: S {()} - sórás mátrx I
9 A damkus elmélet kulcs-ábráa: Dsperós felület ét suár esetére felraolva körül ömb O körül ömb } dsperós felület k O ét suaras elyet Erőse torított aráyok!!! Eyre yöébb kölcsöatásál a Bloc-ullám folytoosa átmey síkullámba; a eyes Bloc-ullámok eyre kább a drekt suárra és a dffraktált (Bra) yalábokra emléketetek "kapcsolt" krstálypotecálál a perodctás "sellemképe" A dsperós felület ekveerás felület > a sávserkeetekél mesmert Ferm-felület mefelelőe Nayeerás elektrook sóródása 9 /
10 Damkus HOLZ-voal eltolódás ét erős (ZOLZ) és ey yee (HOLZ) suár esetére felraolva körül ömb O körül ömb körül ömb ZOLZ dsperós ' felületek damkus kematkus HOLZ-eltolódás O ét ZOLZ ey HOLZ suár Erőse torított aráyok!!! Aáy kölcsöató suár, ay á a dsperós felülete > HOLZ-voal felasadás HOLZ yee ("kematkus") csak a ZOLZ damkus A áttektetősé kedvéért a krstály átlateréek atását em raoltuk Nayeerás elektrook sóródása /
11 A ayeerás elektrodffrakcós és a sávserkeet sámítások vsoya Sávserkeet A teredés vektoro (mt paramétere) keressük a eera saátértékeket E(k) Potecál (Hartree köelítésbe): oulomb-potecál (maok a vsálto kívül a össes elektro) > eletős kcserélődés és korrelácós atás Síkullám sorfetés lassa koverál (külööse maok köelébe) Bete Eera adott, ullámsámokat keressük k(e) Potecál: maok össes krstálybel elektro > a vsált (ayeerás) elektro em befolyásola ésreveetőe (cserélődés és korrelácós atás elayaolató) A síkullám sorfetés elé yorsa koverál (suarak sáma a dffraktált yalábokéval eyek) Tltott állapotok, leerősebb damkus atás a Brlloue-óa atára köelébe Nayeerás elektrook sóródása /
Dr. BALOGH ALBERT. A folyamatképesség és a folyamatteljesítmény statisztikái (ISO 21747)
Dr. BAOGH ABERT A folyamatkéesség és a folyamatteljesítméy statistikái ISO 747 Folyamat sabályoott, ha csak véletle okú váltoásokat hibákat tartalma. Sabályoatla, ha aoosítható okú redseres váltoásokat
Molekulák elektronszerkezete - kv2n1p07/1 vázlat
Molekulák elektroszerkezete - kvp07/ vázlat Szalay Péter Eötvös Lorád Tudomáyegyetem, Kéma Itézet 0. szeptember 8. Tematka A Bor-Oppehemer közelítés. Az elektro-hullámfüggvéy közelítése; az eerga kfeezése
EUKLIDESZI TÉR. Euklideszi tér, metrikus tér, normált tér, magasabb dimenziós terek vektorainak szöge, ezek következményei
Eukldes tér, metrkus tér, ormált tér, magasabb dmeós terek vektoraak söge, eek követkemée Metrkus tér Defícó. A H halmat metrkus térek eveük, ha va ola, metrkáak eveett m: H H R {0} függvé, amelre a követkeők
y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja: z x iy,
SZÉCHENYI ISVÁN EGYEEM ALKALMAZO MECHANIKA ANSZÉK MECHANIKA-REZGÉSAN GYAKORLA (kdolgota: Fehér Lajos, eg ts; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek
y x Komplex mennyiségek tulajdonságai, műveletei Komplex mennyiség komplex szám komplex vektor. a) Komplex mennyiség algebrai alakja:, z x iy x
SZÉCHENYI ISVÁN EGYEEM LKLMZO MECHNIK NSZÉK MECHNIK-REZGÉSN GYKORL (kdolgota: Fehér Lajos, tas m; ara Gábor, mérök taár; Molár Zoltá, eg adj) Komle meségek, Mátr- és Vektoralgebra, Dfferecálegeletek Komle
Hidraulika II. Szivattyúk: típusok, jellemzők legfontosabb üzemi paraméterek és meghatározásuk
Hidraulika II. Szivattyúk: tíuok, jellemzők lefotoabb üzemi araméterek é meatározáuk Az ú. eyfokozatú ciaáza örvéyzivattyú zerkezete Sebeéek a járókerékbe: a ebeéározö. A foró járókerék laátjai a folyadékot
Á Ö Á Á Á Ü ő Ó Ü Ó Á Ü Á Ü Ó Ö ű Á Ü Ű Ó Ö Á Ü Ü Ü Á Ó ű Ü Ü ű ő Ü Á ő Á Á ő Á Á ő ő ő ő Á Á ő ő ő Á Á ű ő ő ő ő Á Á ő Á ő Á Ó ő ő ű Á ő ő Á ő ő ő ő ő Á ő Á ő ő Á Ü Á Á ő ő ő Á Á ő ő ő Á ő ő ű ő ő Ü Á
Ismérvek közötti kapcsolatok szorosságának vizsgálata. 1. Egy kis ismétlés: mérési skálák (Hunyadi-Vita: Statisztika I. 25-26. o)
Ismérvek között kapcsolatok szorosságáak vzsgálata 1. Egy ks smétlés: mérés skálák (Huyad-Vta: Statsztka I. 5-6. o) A külöböző smérveket, eltérő mérés sztekkel (skálákkal) ellemezhetük. a. évleges (omáls)
SZÁMELMÉLET. Szigeti Jenő
SZÁMELMÉLET Sigeti Jeő. OSZTHATÓSÁG A osthatósággal kapcsolatba égy alapvető eredméyt kölük bioyítás élkül. Jelölje φ() a {,,..., } halmaból ao elemek sámát, amelyek relatív prímek a -he. Ha például p
i 0 egyébként ábra. Negyedfokú és ötödfokú Bernstein polinomok a [0,1] intervallumon.
3. Bézer görbék 3.1. A Berste polomok 3.1. Defícó. Legye emegatív egész, tetszőleges egész. A ( ) B (u) = u (1 u) polomot Berste polomak evezzük, ahol ( ) = {!!( )! 0, 0 egyébkét. A defícóból közvetleül
Megjegyzés: Amint már előbb is említettük, a komplex számok
1 Komplex sámok 1 A komplex sámok algeba alakja 11 Defícó: A komplex sám algeba alakja: em más, mt x y, ahol x, y R és 1 A x -et soktuk a komplex sám valós éséek eve, míg y -t a komplex sám képetes (vagy
Döntésmodellezés a közúti közlekedési módválasztásban
Dötésmodellezés a közút közlekedés módválasztásba Kosztyó Áes, Török Ádám 2 Absztrakt Ckkükbe a közút közlekedés módválasztást, mt racoáls dötés folyamatot szereték modellez, külöös tektettel a épjárműforalom
Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é
ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü
ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü
:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő
Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű
Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü
Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü
ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü
Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó
É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű
3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése
3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem
Tömegpont-rendszer mozgása
TÓTH A: Mechaka/5 (kbővített óraválat) Tömegpot-redser mogása Boyolultságba a tömegpot utá követkeő és gyakorlat sempotból s ge fotos eset amkor több tömegpotból álló redsert ú külső tömegpot-redsert (rövdebbe:
Méréselmélet: 8. előadás,
6. Sűréselélet alapa folyt.: Kala sűrő vetoros esetbe: redserodell: x, a efyelés:. Md a redser, d a efyelés a vetor ulla várható értéű és fehér. Korreláó átrxa: Q w w } e lép w helyébe, R }, e lép optáls
ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június
ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a
26 Győri István, Hartung Ferenc: MA1114f és MA6116a előadásjegyzet, 2006/2007
6 Győri Istvá, Hartug Ferec: MA4f és MA66a előadásjegyet, 006/007. A -trasformált.. Egy iformációátviteli probléma Legye adott egy üeetátviteli redserük, amelybe a üeeteket két alapjel modjuk a és b segítségével
A forgalomba belépő gépjárművek többlet károsanyag kibocsátásának számítása a nemzetközi határértékek figyelembe vételével
Török Ádá, Zöldy Máté Közúti Közlekedés A foraloba belépő épjárűvek többlet károsaya kibocsátásáak száítása a ezetközi határértékek fiyelebe vételével A XX század véé és a XXI század elejé a otorizált
3D számítógépes geometria és alakzatrekonstrukció
D számítógées geometra és alakzatrekostrukcó 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/ htts://wwwvkbmehu/kezes/targyak/viiima0 Dr Várady Tamás Dr Salv Péter BME Vllamosmérök és Iformatka
Anyagmozgatás és gépei. 4. témakör. Egyetemi szintű gépészmérnöki szak. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék.
Anyamoatás és épei tantáry 4. témakör Eyetemi sintű épésmérnöki sak 003-04. II. félév MISKOLCI EYETEM Anyamoatási és Loistikai Tansék KÉTTENELYŰ KOCSI VIZSÁLATA v m 0 m H M C f m k C 0 C f m k V C f m
Számítógépes irányítások elmélete
Budapesti Műsaki és Gadaságtudomáyi Egyetem Gépésméröki Kar Gépéseti Iformatika asék Sámítógépes iráyítások elmélete ( Előadás ayag ) Késítette: Dr. Lipovski György Budapest, 22. september artalomjegyék.
15. Többváltozós függvények differenciálszámítása
5. Többváltoós függvének differenciálsámítása 5.. Határoa meg a alábbi kétváltoós függvének elsőrendű parciális derivált függvéneit és a gradiens függvénét, valamint eek értékét a megadott pontban:, =
Funkcionális modellek vizsgálata és pontosítása a geodéziai mérések feldolgozásához
Budapesti Msaki és Gadasátudomáyi Eyetem Építméröki Kar Általáos- és Felseodéia Tasék Fukcioális modellek visálata és potosítása a eodéiai mérések feldoloásáho PhD értekeés Éet Csaba okl. földmér és tériformatikai
Ü Á Ő É é é é é á é ü á ó é é é á á é é á é á ö á á á é ü á é í á é ő ö ö é á ő é ö ő é ő ő ü é ó á á ó é á ó é é ó á ó é é á á ó á á ő á á á ó á ó á í á ó é é á ő á ó á é í íí é őá é ő í ó é ü á é é ő
Ellenben az alábbi táblázat egére, nem additív, hiszen különbségek: =4.6 és =3,3; azaz a B típus jobban bírja az éhezést.
Meység geetka Most olya jelegekkel foglakozuk, amelyek ge sok lókuszo öröklődek. A géek kfejeződését a köryezet s befolyásolja! Pl. a Drosohla száryá a keresztér háyát, okozhatja egyrészről ot mutácó,
Á Ö É Ö Á É Ő Ü É é ü é é ö é ö é é ó é ó í í ü é é é ö é é é óé ü ó Í ö ó é é ü ó é é é ü ó é óé í é Í Ú ö í é ü ö é í é ü é é í ü é é í í É ó é Ö ö é ó é ó ó é ü é é ö ö ö í ü ü é é é ö ü í é é é é é
Valószínűségszámítás összefoglaló
Vlószíűségszámítás összefoglló I. Feezet ombtor ermutácó Ismétlés élül ülöböző elem lehetséges sorrede! b Ismétléses em feltétleül ülöböző elem összes ülöböző sorrede!... hol z zoos eleme gyorság!!...!
Műveletek komplex számokkal
Műveletek komplex sámokkl A komplex sámok lklmás nyn eyserűsíti sámos műski prolém meoldását, különös tekintettel elektrotechniki, rendserelméleti és reéstni feldtokr. A követkeőken csk műski lklmások
Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1
Suárzásos hőátadás misszióképessé:, W/m. eljes hősuárzás elnyelt hő visszavert hő a testen áthaladó hő R D R D R D a test elnyelő képessée (aszorció), R a test a visszaverő-képessée (reflexió), D a test
? közgazdasági statisztika
... Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB
Kényszereknek alávetett rendszerek
Kéyszerekek alávetett redszerek A koordátákak és sebességekek előírt egyeleteket kell kelégítee a mozgás olyamá. (Ezeket a eltételeket, egyeleteket s ayag kölcsöhatások bztosítják, de ezek a kölcsöhatások
Sztochasztikus tartalékolás és a tartalék függése a kifutási háromszög időperiódusától
Sztochasztkus tartalékolás és a tartalék függése a kfutás háromszög dőperódusától Faluköz Tamás Vtéz Ildkó Ibola Kozules: r. Arató Mklós ELTETTK Budapest IBNR kfutás háromszög IBNR: curred but ot reported
STATISZTIKA. A statisztika részei. Alapfogalmak. Példa:
STATISZTIKA Mért tauljuk statstkát? Mre hasálhatjuk? Sakrodalom értő és krtkus olvasásáho Mt állít egyáltalá a ckk? Korrektek-e a megállaítások? Vsgálatok (kísérletek és felmérések) terveéséhe, kértékeléséhe
Valós és funkcionálanalízis
Matematika taozatok. Kedd 13:3 Marx-terem 1. Baják Szabolcs (DE TTK). Baloh Ferec (SZTE TTK) 3. Glavosits Tamás (DE TTK) 4. Mészáros Fruzsia (DE TTK) 5. Mező Istvá (DE TTK) 6. Naszódi Gerely (ELTE TTK)
Enzimreakciók Aktiválási energia számítások Bevezetés a kinetikába. OH - + CH 3 Cl HO...CH HOCH 3 + Cl -
Bevezetés ketkáb Bevezetés ketkáb A B j k j,l C l D,j,l, kvtuállpotok őérséklettől függő sebesség álldó [ A] d[ B] d T dt dt )[ A][ B] [A], [B] A és B kocetrácój [ A ] f A ( T )[ A] f A eloszlásfüggvéy
KLAPCSIK KÁLMÁN DIPLOMATERV
KAPSIK KÁMÁ IPOMAERV BUAPESI MŰSZAKI ÉS AZASÁUOMÁYI EYEEM ÉPÉSZMÉRÖKI KAR HIROIAMIKAI RESZEREK ASZÉK IPOMAERVEK BUAPESI MŰSZAKI ÉS AZASÁUOMÁYI EYEEM ÉPÉSZMÉRÖKI KAR HIROIAMIKAI RESZEREK ASZÉK KAPSIK KÁMÁ
ö ö ö ü ö ü ű ö Ö ü ü ü ü ú ö ú ö ö ű Á ö ú ü ü ö ü ö
ö Ó Í Á ű ü ö ö ü ű ö ö ű ü ú ű Ó ű ü ü ö ü ö ű ű ö ö ö ü ö ü ű ö Ö ü ü ü ü ú ö ú ö ö ű Á ö ú ü ü ö ü ö ö ü ö Á ö ü Ú ö ŐÁ Í ö ú ű Ö Ő Ö ö ö ö Ő Ú Á ü Á ö ö ö ö Í ö ü ú ö ö ü ű ü Á Ó ö Ő ö Á Ő ű ö ö ö
Matematika III. mintazh. (1)
Memk III. mh. (). Írj fel r() [ cos ; s ; e ] érörbe érőjéek eyeleé 0 érékhe roó pojáb! (5 po) M: x, y,. Írj fel u r sklár-vekor füvéy rdesé! (5 po) M: rd u x(x + y + ) ; y(x + y + ) ; (x + y + ) ( r r).
É Í Ő É É Á í Ü ő í ő í ő ő Í ő ő ő í ú í í ő í ő
É Í É É Í Ő É ő ő É Í Ő É É Á í Ü ő í ő í ő ő Í ő ő ő í ú í í ő í ő Í Ó É É í ü ő É É Á ő ő É ű ő Á ő í ű ő ü ő ő ü ő ő í ő ő ő ú í ő ő ő í ü É Í É É ő í ő ő ő ő ő í í ő í ő í ú ú ú É Í Ő É í ő í ú Á ő
Á Á ő ő ó ő ő ű ó ü ü ó ü ó Ü ú ú ó ó ő ú ő ó ő ő ó ű ó ú ú ő ő ü ő ú ó ú ű ó ő ő ó ű ó Í ú ú Ü ú Ü ó ó ü ű ó ó ő ű ó ő ő ó ű ú ú ő ő ü ő ú ű ó ó ú ű
ó ú ó Á Á Á ő ő ó ő ő ű ó ü ü ó ü ó Ü ú ú ó ó ő ú ő ó ő ő ó ű ó ú ú ő ő ü ő ú ó ú ű ó ő ő ó ű ó Í ú ú Ü ú Ü ó ó ü ű ó ó ő ű ó ő ő ó ű ú ú ő ő ü ő ú ű ó ó ú ű ó ő ő ó ű ó ű ú ű ó ú ú Ü ú Í ü ó Ő Ú Á ÓÁ
ó ú ő ö ö ó ó ó ó ó ő ő ö ú ö ő ú ó ú ó ö ö ő ő ö ö ó ú ő ő ö ó ő ö ö ö ö ö ö ó Á É ű ó ő ő ű ó ó ö ö ő ó ó ú ő Ű ö ö ó ó ö ő ö ö ö ö ő Ú ú ó ű ó ó ő
Á É É É Ö ó É Á ó É Ü Ü ő Ü ő ö ö ó ő ó ö ö Ö Ú ú ö ö ö ó ó ó ó ö ö ő ő ó ó ő ö ö ö ö ó ö É ö Ö É ó ö ó ú ö ö ó ó ó ó ú ú ö ú ő ó ó ö ó ö ű ö É ö ö ő ó ö ó ö ó ö ő ó ú ő ö ö ó ó ó ó ó ő ő ö ú ö ő ú ó ú
Méréselmélet: 1. előadás,
Méréselmélet: elődás, 4 Méréselmélet c táry hoájárulás Dt Sciece éve oosított, ie keresett ismeretyho érékelők forrdlm révé elképestő meyiséű dt feldoloásár v iéy, eért dt scietist -eket keresek viláserte
ü ü ű ű ü ü ü Á ű ü ü ü ű Ü
ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü
ó Á á á ő Á Í ő Á ő á ő ő Á ó Í í Í Í Á ő Í Í Ö ó á Ü é ő á ö á é ő ő í á í Ö á á Ú í á ő á á á á ü é ó á á ú í ó é é é á í á á ü ö ö á á á á é ö á ő á á ő á á ú é ö á ú ú é ö á ú ú é ö á ú ú á
HIDROMOTOROK. s azaz kb. 1,77 l/s. A folyadéknyelésből meghatározható az elérhető maximális fordulatszám: 3
íz- és széltrbiák - ok IROMOTOROK I. Ey 6,8 bar túlyomású idraliks redszerről kívák üzemelteti ey 0 cm -es axiál dattyús idrosztatiks motort. Milye maximális fordlatszám és yomaték érető el, a a kívát
b) A tartó szilárdsági méretezése: M
ZÉCHENY TVÁN EGYETEM LKLMZOTT MECHNK TNZÉK 5 MECHNK-ZLÁRDÁGTN GYKORLT (kidogot: dr Ng Zotá eg djuktus; ojtár Gerge eg Ts; Tri Gábor méröktár) 5 Rúdserkeet siárdságti méreteése: d kn kn kn m m m dott: kn
Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é é é é ű é é é é é é é é Á é é é é é ú ú é é é é é é é ú é é é é é é é é é é é ő é é é é é é é é ű é
é é é Í Ó é é ü ő é é é ű ő ő ű é ő Í Ó ő ü é ő é ü é ő é é é é é é ú é ú Í Á é é é é é ű é é é é é é ú é ő é é é é ú é é é é é é é é é é é é é ő é é ő Í Á ő é é é é é ő é ő é ő é Í Á Ú Á Á é ő é ő é é
Regresszió számítás. Mérnöki létesítmények ellenőrzése, terveknek megfelelése. Geodéziai mérések pontok helyzete, pontszerű információ
Regresszó számítás Mérök létesítméek elleőrzése, terekek megfelelése Deformácózsgálat Geodéza mérések potok helzete, potszerű formácó Leárs regresszó Regresszós sík Regresszós göre Legkse égzetek módszere
Matematikai statisztika
Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),
Cölöpcsoport függőleges teherbírásának és süllyedésének számítása
17. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport füőlees teherbírásának és süllyedésének számítása Proram: Fájl: Cölöpcsoport Demo_manual_17.sp Ennek a mérnöki kézikönyvnek a célja, a
Á ü ü Á Á Á ü Á ű ű ű Ö ü ü ü ü ü ü ü ű É É É É Ö Á ű ű ű Á ű ű Á ű Ö Í ű ü ü ü ü Í ü Í Ü Ö ü Ü ü ű ű Ö Ö Ü ü ü ű ü Í ü ü ü Ő Ő Ü ü Í ű Ó ü ű Ú ü ü ü ü ü Ö ü Ű Á Á ű É ü ü ü ü ű ü ü ü ű Ö Á Í Ú ü Ö Í Ö
É Á Á Á Ü Á Á ő ő ő ő ő ő É É É É Á Ó Á ő ő ő ő ő ő Ó ő ő Á ű Á Á É ő ű ő Á É Á ő ő Ü Ú É É ő Á ű ő Á ő É Ú Á ő ő ő ő Á Ú Ó Ú ő Á Ú ű ő Ü Á É É Ü É ő ő ű É ő ő ő Ó É É Á É Á Ú Á ő É Á É Á ő ő ő ő ő ű
ö ű é é é é é é ü é é é é ű é é ü é é é é é ó ó é Í é í é é é é ó ö é ö ö ö ó é é í é é é é Ő é é é ü ü é é é ö ö ö é ü é é í é ó ü é é ü é ó é ó ó é
ö é ü ö ö Ö ú é ü ü é é é ó é é é é é ó é é Ö ö é é ó é é ó é é í é é ö ó ó ó ö ö ü é é ü é í ü é ö í é é é é é ü é ó é ü ö í í ó í ü Í é é é ü é é é ü é é ü ö ö ó ó é é í é é é é é é é Ö í ó é í ö é é
ú É ú ü ú ü ü ú ú ú Í ü ü ü Í ű ü ü ü ü ü ü ü ű ű ü ü ü Í ű ü ú ü ü ú ú ú É Á Á É Á Ő Á Á Á Á É ü Á É ú ú Ó É É Á Í Á ú ü Ó Á Á ú ü ü Á É Á Ó ú ü ú Í ú ú ú ű Í Í ű ú ú ú Í ü Í ü ü ű ú ú ű Í ü ú ú Í ú ú
Molekuláris dinamika: elméleti potenciálfelületek
Molekulárs dnamka: elmélet potencálfelületek éhány szó a potencál felület meghatározásáról Szemempírkus és ab nto potencál felületek a teles felület meghatározása (pontos nem megy részletek: mndárt éhány
Ú ű Á ű
Ú ű Á ű ű ű ű ű Ü Ü Ü Ü Ü Ü Ü Ú Ü Ü Ü Ü Ü ű ű Ú ű ű ű ű Ü ű Ö ű ű Ó Ő ű Ö ű Ö Ü Ő ű ű Ü ű ű Á Á Á Á Á ű Á Ú Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á ű ÁÁ ű Á Á Á ű Á ű Á Á Á Á ű Á Á Á Á Á Á Á Á Á Á ű
Modern Fizika Labor. 13. Molekulamodellezés. Fizika BSc. A mérés dátuma: nov. 08. A mérés száma és címe: Értékelés:
Moder Fizika Labor Fizika BSc A mérés dátuma: 2011. ov. 08. A mérés száma és címe: 13. Molekulamodellezés Értékelés: A beadás dátuma: 2011. dec. 09. A mérést végezte: Szőke Kálmá Bejami Kalas György Bejámi
? közgazdasági statisztika
Valószíűségszámítás és a statsztka Valószíűség számítás Matematka statsztka Alkalmazott statsztka? közgazdaság statsztka épesség statsztka orvos statsztka Stb. Példa: vércsoportok Az eloszlás A AB B Elem
Atomfizika előadás 4. Elektromágneses sugárzás október 1.
Aomfka előadás 4. lekromágneses sugárás 4. okóber. Alapkísérleek Ampere-féle gerjesés örvén mágneses ér örvénessége elekromos áram elekromos ér váloása Farada ndukcós örvéne elekromos ér örvénessége mágneses
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 01.11.1 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Valószínőségszámítás
Vlószíőségszáítás 6. elıdás... Kovrc Defícó. Az és ovrcáj: cov,:[--] Kszáítás: cov, [-- ]- A últ ór végé látott állítás értelée cov,, h és függetlee. Megj.: Aól, hogy cov, e övetez, hogy függetlee: legye
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekostrukcó, yomtatás 8 Rekurzív felosztáso alauló felületek htt://cgtbmehu/ortal/ode/3 htts://wwwvkbmehu/kezes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérök
A táblázatkezelő mérnöki alkalmazásai. Számítógépek alkalmazása előadás nov. 24.
A tábláatkeelő mérnöki alkalmaásai Sámítógépek alkalmaása. 7. előadás 003. nov. 4. A előadás témái Felsín- és térfogatsámítás A Visual Basic Modul hasnálata Egyenletmegoldás, sélsőérték sámítás A Solver
Regresszió és korreláció
Regresszó és korrelácó regresso: vsszatérés, hátrálás; vsszafordulás correlato: vszo, összefüggés, kölcsöösség KAD 016.11.10 1 (vsszatérés, hátrálás; vsszafordulás) Regresszó és korrelácó Gakorlat megközelítés
Ferde hatásvonalú csuklóval megtámasztott rúd stabilitási vizsgálata
MISKOCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR TUDOMÁNYOS DIÁKKÖRI DOGOZAT Ferde hatásvoalú csuklóval megtámastott rúd stabilitási visgálata egyel Ákos Jósef I. éves gépésméröki MSc sakos hallgató Koules:
Ö ú ó Á Ö É É Ö Ú Ú Í É Á Ó Ö Ú Ü ú Á É ó ú ü Í ú Ö ú ő Ú Ü ú Ő Ö Ó É Ö Ú Í É Á Á É É ő Á Á Ö Ö É Ü Ö Ö ó É Ö É É É É Ö Ö ő ő ő ő Ó Ó Ó Á Á É Ö Ö É É É É É É É Ő É É Á Ö É Ú Á Ú Ö É Ö Á Ú Ö É ő ó ő Ö ú
GÉP- ÉS KEZELŐELEMEK 2018/2019.
GÉP- ÉS KEZELŐELEMEK 2018/2019. TARTALOM Oldalszám Szorítókarok 03 06 Foantyúk és ombok 07 20 Szintezőlábak 21 25 Rözítőcsavarok 26 39 Gép- és kezelőelemek A ép- és kezelőelemek a lekisebb elemek a épyártásban,
Idegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
Az átlagra vonatkozó megbízhatósági intervallum (konfidencia intervallum)
Az átlagra voatkozó megbízhatósági itervallum (kofidecia itervallum) Határozzuk meg körül azt az itervallumot amibe előre meghatározott valószíűséggel esik a várható érték (µ). A várható értéket potosa
ö Ö ő Í ú ö ö ö ö ő ó ó Ö ú ó ü ó ö Ö ő ö ö ö ő ő ő ö ó ö ő ö ö ö őö ö őö ü ö ö ö ő ö ö ő ő ó ö ö Í ö ú ő ö ó ö ü ó ö ő ó ú ö őí ó ó ó ű ö ű ö ö ő ő ű
ö Ö ő ő ö ö ö ő ó ó Ó ú ó ó ő Í ó ö ő Á ő ő ó ó ő ó ő ö ö ú ő ó ó ó ó ó ő ó Í ő ü ö Ö ő Í ú ö ö ö ö ő ó ó Ö ú ó ü ó ö Ö ő ö ö ö ő ő ő ö ó ö ő ö ö ö őö ö őö ü ö ö ö ő ö ö ő ő ó ö ö Í ö ú ő ö ó ö ü ó ö ő
KVANTUMJELENSÉGEK ÚJ FIZIKA
KVANTUMJELENSÉGEK ÚJ FIZIKA 196 Erwin Scrödinger HULLÁMMECHANIKA 197 Werner Heisenberg MÁTRIXMECHANIKA A két különböző fizikai megközelítésről később Paul Dirac bebizonyította, ogy EGYENÉRTÉKŰEK. Erwin
á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí
é é í á é é á é ő é ú ó ő é é í ő á é ő ő é ö á á ó í ú á á á é é á é é í é é é ő á á á é ö é é é á é é í é á á é á é á á í é é á á é á é ö é é é é é ü é á é é ö á á á é é é é ő é é á ú ű é á é ő é é ü
ő ľü ó Ö ľ ő ź ź ő ľ ő ľ ľ ľ ü í ľ ö ő ľ ő ó ő í ľ ü ľ ö ü í ú í ó ú ó ó ú ó ő í í ű ľó ü ľ ö ö ö ó í ü ű Íć ű ö ö ź ę ő ö ü ő ö ő ö ö í ő ü ľ ő ü ö ź ź ó ó ő ü ľ ľ ö źľő ő ő í ó ó Ł ł ü ű ü ú í ü ź ó
V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL
86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )
Változók függőségi viszonyainak vizsgálata
Változók függőség vszoyaak vzsgálata Ismétlés: változók, mérés skálák típusa kategoráls változók Asszocácós kapcsolat számszerű változók Korrelácós kapcsolat testsúly (kg) szemüveges em ő 1 3 férf 5 3
é ö é Ö é ü é é ö ö ö ü é é ö ú ö é é é Ő ö é ü é ö é é ü é é ü é é é ű é ö é é é é é é é ö ö í é ü é ö ü ö ö é í é é é ö ü é é é é ü ö é é é é é é é é é é é é é é é ö é Í ö í ö é Í í ö é Í é í é é é é
Megállapítható változók elemzése Függetlenségvizsgálat, illeszkedésvizsgálat, homogenitásvizsgálat
Megállapítható változók elemzése Függetleségvzsgálat, lleszkedésvzsgálat, homogetásvzsgálat Ordáls, omáls esetre s alkalmazhatóak a következő χ próbá alapuló vzsgálatok: 1) Függetleségvzsgálat: két valószíűség
Üzemeltetési kézikönyv
Vízűtéses rendszerű tokozott vízűtő berendezések EWWP045KAW1M EWWP055KAW1M EWWP065KAW1M ECB1MUW ECB2MUW ECB3MUW EWWP045KAW1M EWWP055KAW1M EWWP065KAW1M ECB1MUW ECB2MUW ECB3MUW Vízűtéses rendszerű tokozott
Á Ó Ó Í Í Í Ú É Á Á Í Í Ú Ú Í Í Ő Í Í Í Ú Ú Ú Ú Ú Ű É ÉÉ É Í Í Í Í É Í Í Í É Á É Í Ú Í Í É Í É Í Í Ú Í É Ú Á Ú Ú Í Í Ő É Í Í Í Í Í Í Á Á É Í Ő Ő Ő Ő Í Í Í Í Í Ő Ő Í Í Í Í Í Ö Ú Ú Ú É Ű Í Í Ú Í Í Í Ú É
ANALÓG-DIGITÁLIS ÉS DIGITÁLIS-ANALÓG ÁTALAKÍTÓK
F3 Bev. az elektroikába E, Kísérleti Fizika Taszék ANALÓG-IGITÁLIS ÉS IGITÁLIS-ANALÓG ÁTALAKÍTÓK Az A és A átalakítók feladata az aalóg és digitális áramkörök közötti kapcsolat megvalósítása. A folytoos
n m dimenziós mátrix: egy n sorból és m oszlopból álló számtáblázat. n dimenziós (oszlop)vektor egy n sorból és 1 oszlopból álló mátrix.
Vektorok, átrok dezós átr: egy soról és oszlopól álló szátálázt. L L Jelölés: A A, L hol z -edk sor -edk elee. dezós (oszlop)vektor egy soról és oszlopól álló átr. Jelölés: u u,...,, hol z -edk koordát.
ő ľ é é ĺ Á Ü ľ Á ľ ľĺáľ ú ľ ľ á É ĺ í é á é Í é é ľ É ľ ľ í éľ é á ő ő á ö í é ő é á í é ý á ń ó ö ö ó ľ ľ ľľ ľ ć á á á á é é é é ö í é á ľ ő á á é é é é á é é á é é é á ő á ő é á á ő á ő é á áú é ő ó
ú ú Í ú ű Ú Ú ú Ú ú ű ű Ú Í ű Ú Ú É ú ű ú ú Ú Ú Í Ú ú Ú ű ú ú ú ú Ő Ú ű ú ú ú ű ű ű ű ú ű ű Í Ú Í Í ú ú ű ű ú ú ú ű ú Ú É ú ú ű ú ú Ú Í Ú Í Á ú ű ú ú ű Ú Ú Ú ú ú ú ú ú ű ű ű Ú É Ú ú ú Ú ú ú ű ú ű ű ú ú
ű ú ü ü ü ü ü ü Á ü ú ü Á Á Á É Ö Ö Ö Á É É ü Á ú ű ú Í Á Í Á ű ü ű ü Ö ű ű É ú ű ú Á Á ű ü ú ű ú ü ú ú Ó ü ű ü ü Í ü Í Í Í Ó ú ú ú ú ú ú ü ú Í Ó ű ú ű Á Á ü ü ú É Í Ü ű ü ü Á ü ú Í É ú Ó Ö ú Ó Ó Ó Í ú
ź é é é é ľ ö ö ź é é ü đ í í é é ĺ é í é é ĺí ľ ů é é ľ é í ĺź Ę é ľĺ ĺ é ö é é é ö ĺ ľ é é Áĺ ę é ú ď Í ű é é é ď ď ľ í ĺ ľ é é ü ł Ĺ ĺ ĺ ď é ą ł é
ľü ĺí ľ é é ĺ é ü é é ü ľ é é ľ ľ é ľ í ü é é łĺ ö é ö ö é Á ý ĺ é ľ ź Ó í ĺ é í ľ ł ľ ĺ ą ą ľ é ą ź ń é é ü ł Ü ł é é Ü é Ü ľ ĺ ľ ź é é é í é ľ ľ ź ĺ é ľ ľ ĺ é é é í ľ é ą ľ ľĺ ą ĺ ľ öľ é é é é é ľ ľ
Ú Í Í í í ú Ő ü Ú É í í Ü ű ü ű í í í ű ü ú ü í ű ü ú ü ú ü ü ü ű ü Ú É í ú ü ü ü ú ü ü ú í ü ü ú ü í í ú ű í ú ű ü í í ü í Í í í ü í ú Ü Ú É í í í ü ü ü ú ú ü ü ú ü ü ú ú í í ű ü ü ü ű Á ü ú ű í í ü ü
í Á ű ö ű ö Í Ö í ó í ö í ű ö ü ú ö ó ó ó ö ó ó ű ö ü ó ű ö ó ó ó ó ó ó ó ó ó Í ó ó ó ó ó ú ó ü ó ó ó ó ó ó ö ó ó ó ö ó ó Ö Í ö ö ó ó Ö ö ó ó ö ú ó ó ó íú Í ó ó ö Íó ó ó ú Ö ó í í í Ö ú í í ó ó í Ö ó ó
Példák numerikus módszerekre.
Példák num erikus módserekr e. A alaj radioakiviása egy radioakív sennyeés uán. környeevédelem a alaj és a légkör radioakiviásának visgálaa balese, háború, aomkísérleek uóhaásai Környeefiika FONTOS TUDNI: