Molekuláris dinamika: elméleti potenciálfelületek
|
|
- Anikó Klára Varga
- 5 évvel ezelőtt
- Látták:
Átírás
1 Molekulárs dnamka: elmélet potencálfelületek éhány szó a potencál felület meghatározásáról Szemempírkus és ab nto potencál felületek a teles felület meghatározása (pontos nem megy részletek: mndárt éhány kora szememprkus modell (történet szempontból érdekes durva felület (akár ad hoc dnamka számítás összehasonlítás kísérlettel paraméter vált. dnamka számolás swtchng functons kapcsoló függvények pl. kollneárs C C reakcóra: (R C, R C (R C f (R (R f (R C, C smert, ha 0, f (R, f (R C 0 szmptotkus forma OK, de f, f -t meg kell találn. LEPS (London - Eyrng - Polány Sato szemempírkus módszer: Datomos potencál (H Hetler London modelle alapán: (R Q ± (Coulomb kcseréldés tag (Q, 0, ha R Q Q C Q C ± ( C ( C C ( C
2 DIM (datomcs n molecules: : sznglet - : trplet egy vegyérték elektronos rendszerre gaz! De: alkalmazzák másra s! ( elektronállapot C elektronállapot és (C elektronállapot elektronállapot és (C elektronállapot elektronállapot ez a bázs az elektronkus Ĥ -t dagonolzálák ezen a bázson! sok pontra! (sok etrára! Potencál felületek számítás: napankban használt módszerek Szemempírkus módszerek (kb. 90-es évek eleég: M, PM3 Ma már kzárólag ab nícó módszereket alkalmaznak. éhány megfontolandó tény: elektron elácó fgyelembevétele szükséges (poszt - HF módszerek kellenek! poszt HF módszerek közül a méretkonzsztens módszerek önnek számításba E (... E( 0 r Ált. def.: ha kölcsönható részecske van, energa ~, ha. CI módszerek nem lyenek! (természetesen a full-ci méretkonzsztens. (MO-kból képzett determnánsok lneárs kombnácóa a hfv.
3 ók a perturbácós módszerek (pl. MPT-n alapuló módszerek! M: másodrend perturbácós tagot tartalmazó módszer (MP a legolcsóbb. CI-ból levezetett Compled-Cluster módszerek (Szalay Péterék (par, coupled-par, CC módszerek már méretkonzsztensek DFT módszerek: srség funkconál elméleten alapuló módszerek szemben a fent módszerekkel melyek konfgurácós tér függvényekkel dolgoznak DFT az elektron valószínség srséggel dolgozk. HF egyenletekhez formalag hasonló Kohn-Sham egyenletek megoldása szolgáltaták a KS-pályákat és az elektronkus energát. ázs függvények megválasztása gyakorlatlag már csak Gauss-típusú, atomra centrált függvényeket használnak (Slater pályákkal még mndg kísérleteznek nagy bázs kell a potencál topológáának pontos vsszaadásához de így s fellép a bázs-kteresztés hba: SSE SSE forrása: ( E( E( < E ( ( E( Kküszöbölés: Counterpose ekcó CP ( E( E ( ex
4 hol [ E ( E ( ( E ( E ( ] ( Csak akkor, ha nncs etra relaxácó! Ekkor: [ E (, E (, E (, E (, ] ( Több test potencálfelületek esetén tovább bonyolódk a helyzet: ( E( E( E( ( E( C C [ E ( E ( E ( C ( E ( E ( E ( C ] utentkus rodalom: PC, 97, 488, 993. SSE hatása: mélyebb potencálgödör, ersebb kölcsönhatás energa potencál erállandónak változása, alacsonyabb vbrácós frekvencák potencál mnmumának eltolódása
5 Potencál felületek számítás: Kvtelezés energaszámítások véges számú pontra felület llesztése Pot. felület llesztése: tsztán numerkus módszerek (pl. splne llesztése HOr MCSCF módszerrel számított pot. felületére Füst-Molnár L. doktor dolgozata valamféle parametrzált, ksebb-nagyobb fzka háttérrel bíró módszer. 3 példa: Lennard-ones potencál llesztése E qq r r 6 r Kéttest-potencál! Effektív potencál. E e arrpox e ( R v ( R I v ( R I, R v3 ( R I, R, R K... I I < I < < K Ilyent csnáltunk hangyasav dmerre, folyadékszmulácóban alkalmazható. PC, 0, 66, 997. CP, 999,, 340 potencál felület HS-ra (hdrox-szllén CS SCF számítások 630 konfgurácóra Potencál llesztés nterpolált potencáls energa felülettel:
6 d MS d ( W ( R ( X X Taylor sorfetés (másodk rendg : ref. pontok száma; W : súlyfüggvény a 3-6 bels koordnáta függvénye (X 3 ( X X ( g ( 3 k : -edk ref. pont pot. energáa X : X -edk koordnátáa : ref. pont -k koordnátáa ( X ( g ( f k : ref. pont gradense f ( k ( X X : ref. pont Hesse mátrxa (ermátrx ( ( X k X ( k W 3 6 ( ahol w R ( R ( ( R w ( R R d w ( R k k CP, 999, ol., 386 p p 5 ebben a tanulmányban. O( 3 P potencáls energa felülete 503 pont számítva MR-CISD számítások TZF bázssal ( r, r, r OCl ( ( r ( ( r R ( r ClO (3 ( v, r, Θ Cl ahol ( ( r D e c η (η exp(-β(r - r e, 4 β és c számítása a ckkben. R taszító pot., hasonló alak ( (r-hez 6 7 (3 c kl k l 0 [ ( r r ] k l ρ ρ cos ( ΘCl k l 9 ρ r exp α e, ahol α 0,75 β és c kl paraméterllesztéssel lesz meghatározva!
A kvantumkémia alkalmazása PES kémiai szempontból fontos jellemzői. A kvantumkémia alkalmazása Fogalmak
Fogalmak Kvantumkéma célja: molekulák egyensúly geometrájának a meghatározása. Born-Oppenhemer tétel: A magok és az elektronok mozgását szétválaszthatjuk (közelítés). Potencáls energa-hperfelület (PS):
RészletesebbenA MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA
A MOLEKULADINAMIKAI MÓDSZEREK SZISZTEMATIKUS TÁRGYALÁSA: KLASSZIKUS DINAMIKA A POSTERIORI KORREKCIÓJA KLASSZIKUS DINAMIKA Klasszkus magok mozognak egy elre elkészített potencálfelületen. Potencálfelület
RészletesebbenMonte Carlo számítások. Monte Carlo számítások. Monte Carlo számítások. Monte Carlo számítások. Monte Carlo számítások. Monte Carlo számítások
Fázstér (konfgurácós tér) feltérképezése Molekuladnamka Monte arlo determnsztkusan smert potencálfüggvény alapján A A A( p ( t), r ( t dt τ ave lm )) τ τ t Ergodctás elve: dőátlag sokaságátlag sztohasztkusan
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
RészletesebbenSZAKDOLGOZAT. FARKAS ÁDÁM LÁSZLÓ fizika BSc. (fizikus szakirány) Jahn-Teller felületek és vibronikus energiaszintek ab initio számítása
SZAKDOLGOZAT FARKAS ÁDÁM LÁSZLÓ fzka BSc. (fzkus szakrány) Jahn-Teller felületek és vbronkus energaszntek ab nto számítása Témavezető: Dr. Tarczay György adunktus, Szervetlen Kéma Tanszék Eötvös Loránd
RészletesebbenIdegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
RészletesebbenRAMAN SZÓRÁS NANOSZERKEZET KALKOGENID ÜVEGEKBEN
MITSA V., HOLOMB R., VERES M., KOÓS M. RAMAN SZÓRÁS NANOSZERKEZET KALKOGENID ÜVEGEKBEN Ungvár Budapest 009 Lektorok: Dr. Fékesházy István professzor, osztályvezet, Ukrán Nemzet Tudományos Akadéma Félvezetk
Részletesebben7. Regisztráció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (
Kató Zoltán: Ipar Képfeldolgozás 7. Regsztrácó Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZE (http://www.nf.u-szeged.hu/~kato/teachng/ Kató Zoltán: Ipar Képfeldolgozás Kép mozak agyobb
RészletesebbenA s r ségfunkcionál elmélet (Density Functional Theory)
A s r ségfunkcionál elmélet (Density Functional Theory) Tekintsünk egy szabad, N elektronos molekulát N m maggal. A Hamilton operátor rögzített magok esetében ^H = ^T + ^V + ^W ; ahol ^T a kinetikai energia,
RészletesebbenPauli-Schrödinger egyenlet
Paul-Schrödnger egyenlet Hamlton operátor Paul-Schrödnger egyenlet valószínűségsűrűség H = p m + V L r + µ B B + g S g = t ψ r, t = Hψ r, t 3 ψ ψ+ r, t r, t = ψ 4 r, t ρ r, t = ψ + r, t ψ r, t = ψ + r,
RészletesebbenMéréselmélet: 5. előadás,
5. Modellllesztés (folyt.) Méréselmélet: 5. előadás, 03.03.3. Út az adaptív elárásokhoz: (85) és (88) alapán: W P, ( ( P). Ez utóbb mndkét oldalát megszorozva az mátrxszal: W W ( ( n ). (9) Feltételezve,
Részletesebben2 Wigner Fizikai Kutatóintézet augusztus / 17
Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1
RészletesebbenMinősítéses mérőrendszerek képességvizsgálata
Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás 17. 3D Szegmentálás http://cg.t.bme.hu/portal/node/312 https://www.vk.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salv Péter BME, Vllamosmérnök
RészletesebbenA tárgy neve Meghirdető tanszék(csoport) Felelős oktató: Kredit Heti óraszám típus Számonkérés Teljesíthetőség feltétele Párhuzamosan feltétel
tárgy neve MTEMTIKI MÓDZEREK FIZIKÁBN. Megrdető tanszékcsoport ZTE TTK Elmélet Fzka Tanszék Felelős oktató: Dr. Gyémánt Iván Kredt 4 Het óraszám + típus Előadás+gyakorlat zámonkérés Kollokvum+gyakorlat
RészletesebbenÖtvözetek mágneses tulajdonságú fázisainak vizsgálata a hiperbolikus modell alkalmazásával
AGY 4, Kecskemét Ötvözetek mágneses tulajdonságú fázsanak vzsgálata a hperbolkus modell alkalmazásával Dr. Mészáros István egyetem docens Budapest Műszak és Gazdaságtudomány Egyetem Anyagtudomány és Technológa
RészletesebbenAtomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
RészletesebbenA Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA
A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,
RészletesebbenMolekulák elektronszerkezete - kv2n1p07/1 vázlat
Molekulák elektroszerkezete - kvp07/ vázlat Szalay Péter Eötvös Lorád Tudomáyegyetem, Kéma Itézet 0. szeptember 8. Tematka A Bor-Oppehemer közelítés. Az elektro-hullámfüggvéy közelítése; az eerga kfeezése
Részletesebben3D-s számítógépes geometria
3D-s számítógépes geometra 11. 3D szegmentálás http://cg.t.bme.hu/portal/node/31 https://www.vk.bme.hu/kepzes/targyak/viiiav01 Dr. Várady Tamás BME, Vllamosmérnök és Informatka Kar Irányítástechnka és
Részletesebbenv i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M
Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P
RészletesebbenMolekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
RészletesebbenAz elektromos kölcsönhatás
TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy
Részletesebben8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére
8. Egyszerû tesztek sûrûség funkcionál módszerek minõsítésére XX. Csonka, G. I., Nguyen, N. A., Kolossváry, I., Simple tests for density functionals, J. Comput. Chem. 18 (1997) 1534. XXII. Csonka, G. I.,
RészletesebbenAtomok elektronszerkezete
Atomok elektronszerkezete Az atomok elektronállapotát leíró zka mennységek Nemrelatvsztkus eset Hamlton operátor Tekntsünk egy Z töltés½u M tömeg½u atommagot és N elektront tartalmazó atomot. A Hamlton
RészletesebbenRobotok direkt geometriája
Robotok drekt geometrája. A gyakorlat célja Drekt geometra feladatot megvalósító osztály mplementálása. A megvalósított függvénycsomag tesztelése egy Stanford kar végberendezése pozícójának meghatározásához.
RészletesebbenAZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
RészletesebbenKutatási terület. Szervetlen és szerves molekulák szerkezetének ab initio tanulmányozása
Kutatási terület zervetlen és szerves molekulák szerkezetének ab initio tanulmányozása Cél: a molekulák disszociatív ionizációja során keletkező semleges és ionizált fragmentumok energetikai paramétereinek
RészletesebbenSzerven belül egyenetlen dóziseloszlások és az LNT-modell
Szerven belül egyenetlen dózseloszlások és az LNT-modell Madas Balázs Gergely, Balásházy Imre MTA Energatudomány Kutatóközpont XXXVIII. Sugárvédelm Továbbképző Tanfolyam Hunguest Hotel Béke 2013. áprls
RészletesebbenX Physique MP 2013 Énoncé 2/7
X Physique MP 2013 Énoncé 1/7 P P P P P ré r s t s t s tr s st s t r sé r tt é r s t t r r q r s t 1 rés t ts s t s ér q s q s s ts t r t t r t rô rt t s r 1 s2stè s 2s q s t q s t s q s s s s 3 é tr s
RészletesebbenTÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer
RészletesebbenCompton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
RészletesebbenKáprázás -számítási eljárások BME - VIK
Káprázás -számítási eljárások 2014.04.07. BME - VIK 1 Ismétlés: mi a káprázás? Hatása szerint: Rontó (disabilityglare, physiologische Blendung) Zavaró(discomfortglare, psychologischeblendung) Keletkezése
RészletesebbenBevezetés a kémiai termodinamikába
A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal
Részletesebben2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
RészletesebbenSzárítás során kialakuló hővezetés számítása Excel VBA makróval
Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka
RészletesebbenFizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
RészletesebbenEgyenáramú szervomotor modellezése
Egyenáramú szervomotor modellezése. A gyakorlat élja: Az egyenáramú szervomotor mködését leíró modell meghatározása. A modell valdálása számításokkal és szotverejlesztéssel katalógsadatok alapján.. Elmélet
RészletesebbenMolekuláris dinamika. 10. előadás
Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus
RészletesebbenSzámítógépes szimulációk: molekuláris dinamika és Monte Carlo
Számítógépes szimulációk: molekuláris dinamika és Monte Carlo Boda Dezső Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2014. március 21. Boda Dezső (Pannon Egyetem) Habilitációs előadás 2014.
Részletesebben3D Számítógépes Geometria II.
3D Számítógépes Geometra II. 3. Szabadformáú felületek llesztése és smítása http://cg.t.bme.h/portal/3dgeo https://www.k.bme.h/kepzes/targyak/viiiav16 Dr. Várady Tamás Dr. Sal Péter BME Vllamosmérnök és
RészletesebbenAz előadás kvaternió alapú dárumtranszformációs analitikus megoldást ismertet Bemutatja
A dátumtranszformácó a geodézában alkalmazott számítás módszer számos, különböző algortmuson alauló megoldása smert A megoldások többsége ks szögelfordulásokat feltételez lnearzálás szükséges a transzformácós
RészletesebbenA kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
Részletesebben4 205 044-2012/11 Változtatások joga fenntartva. Kezelési útmutató. UltraGas kondenzációs gázkazán. Az energia megőrzése környezetünk védelme
HU 4 205 044-2012/11 Változtatások joga fenntartva Kezelés útmutató UltraGas kondenzácós gázkazán Az energa megőrzése környezetünk védelme Tartalomjegyzék UltraGas 15-1000 4 205 044 1. Kezelés útmutató
RészletesebbenSupport Vector Machines
Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel
RészletesebbenElektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest
Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W G v,,, G v,,, z ϕ αzf G G, ( ) ϕ zf α G G 1, ϕ αzf G
RészletesebbenVéletlen gráfok szerkesztésekor n csomópontból indulunk ki. p valószínűséggel két csomópontot éllel kötünk össze.
9. előadás P(k) k Véletlen gráfok szerkesztésekor n csomópontból ndulunk k. p valószínűséggel két csomópontot éllel kötünk össze. A fokszámok Posson eloszlásúak P( k) = e pn ( pn) k! k http://www.ct.nfn.t/cactus/applets/gant%20component.html
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenEgy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
RészletesebbenFotovillamos és fotovillamos-termikus modulok energetikai modellezése
Fotovillamos és fotovillamos-termikus modulok energetikai modellezése Háber István Ervin Nap Napja Gödöllő, 2016. 06. 12. Bevezetés A fotovillamos modulok hatásfoka jelentősen függ a működési hőmérséklettől.
RészletesebbenA TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI
A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI BEVEZETÉS Alkotórészek: molekulárs modell + statsztka Mért kell a statsztka? Mert 0 23 nagyságrend mkroszkopkus változója
RészletesebbenElektrokémia 05. Elektródreakciók kinetikája. Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem
Eletroém 5. Eletródreó netá Láng Győző Kém Intézet, Fz Kém Tnszé Eötvös Loránd Tudományegyetem Budpest Átlépés polrzáó ( z ) ( e z e ) ( e) S W ,, G G v,, v, z, G G, αzf F ϕ, G G 1 ( α ) zf ϕ zf,,
RészletesebbenIDA ELŐADÁS I. Bolgár Bence október 17.
IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés, alakzatrekonstrukcó, nyomtatás b Háromszöghálók - algortmusok http://cgtbmehu/portal/node/3 https://wwwvkbmehu/kepzes/targyak/viiiav54 Dr Várady Tamás, Dr Salv Péter BME, Vllamosmérnök
RészletesebbenA multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
RészletesebbenStatisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Részletesebben1.Tartalomjegyzék 1. 1.Tartalomjegyzék
1.Tartalomjegyzék 1 1.Tartalomjegyzék 1.Tartalomjegyzék...1.Beezetés... 3.A matematka modell kálasztása...5 4.A ékony lap modell...7 5.Egy más módszer a matematka modell kálasztására...10 6.A felületet
RészletesebbenElegyek. Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet. Elegyedés
Elegyek Fzka kéma előadások 5. Turány Tamás ELTE Kéma Intézet Elegyedés DEF elegyek: makroszkokusan homogén, többkomonensű rendszerek. Nemreaktív elegyben kéma reakcó nncs, de szerkezet változás lehet!
Részletesebben3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometra modellezés alazatreonstró nyomtatás 9. Szabadformáú felülete smtása http://g.t.bme.h/portal/node/3 https://www..bme.h/epzes/targya/viiiav54 Dr. Várady Tamás Dr. Sal éter BME Vllamosmérnö
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet
RészletesebbenJanuary 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
RészletesebbenNagynyomású fázisegyensúly vizsgálata opálosodási pont megfigyelésével
Nagynyomású fázsegyensúly vzsgálata opálosodás pont megfgyelésével Bevezetés A szuperkrtkus oldószerek felhasználás területe között az utóbb két évtzedben egyre nagyobb szerepet kapnak a kéma reakcók.
RészletesebbenVIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
RészletesebbenVÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006
ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer
RészletesebbenMagszerkezet modellek. Folyadékcsepp modell
Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus
RészletesebbenSEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport
SEMMELWEIS EGYETEM Bofzka és Sugárbológa Intézet, Nanokéma Kutatócsoport TERMODINAMIKA egyensúlyok és transzportjelenségek legáltalánosabb tudománya Zríny Mklós egyetem tanár, az MTA levelező tagja mkloszrny@gmal.com
Részletesebben7. Mágneses szuszceptibilitás mérése
7. Mágneses szuszceptbltás mérése PÁPICS PÉTER ISTVÁN csllagász, 3. évfolyam 5.9.. Beadva: 5.9.9. 1. A -ES MÉRHELYEN MÉRTEM. Elször a Hall-szondát kellett htelesítenem. Ehhez RI H -t konstans (bár a mérés
Részletesebben10. Transzportfolyamatok folytonos közegben
10. Transzportfolyamatok folytonos közegben erőtörvény: mechanka Newton dff-egyenlet: pl. rugó: mat. nga: állapot -> jóslás: F a v x(t) jelenség -> magyarázat: x(t) v a F F = m & x m & x = -D x x m & x
RészletesebbenAz entrópia statisztikus értelmezése
Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok
RészletesebbenMágneses monopólusok?
1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus
RészletesebbenMOLEKULAMECHANIKA (MM)
41 MOLEKULAMECHANIKA (MM) A gyakorlat kéma számára érdekes legtöbb probléma mérete túl nagy ahhoz, hogy a kvantumkéma eszközevel kíséreljük meg azokat megválaszoln. Még ha az elektronok jó részét el s
RészletesebbenA bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
RészletesebbenKét körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) 1. ábra
Két körhenger általánosabban ( Alkalmazzuk a vektoralgebrát! ) Egy korábbi dolgozatunkban címe: Két egyenes körhenger a merőlegesen metsződő tengelyű körhengerek áthatási feladatával foglalkoztunk. Most
Részletesebben1. Potenciális-energia felület, koordinátarendszerek
. Potencáls-energa felület, koordnátarendszerek.. A potencáls-energa felület a kémában Bár az atomok térbel elhelyezkedéséhez rendelt potencáls-energa felület fogalma a kvantummechankában született, szélesebb
RészletesebbenTöréskép optimalizálás Elmélet, megvalósítás, alkalmazás
Elmélet, megvalósítás, alkalmazás Készítették: Borbély Dánel Szerkezet-építőmérnök Msc hallgató Borbély Gábor Alkalmazott matematka Msc hallgató Koppány Zoltán Földmérő- és Térnformatka mérnök Msc hallgató
RészletesebbenMolekuladinamika. Molekuladinamika. Molekuladinamika. Molekuladinamika. Molekuladinamika. Molekuladinamika
Potencáls energa felszín (sokváltozós függvény) Konfgurácós tér hatékony feltérképezése konformácók oldatfázsban flexbltás szubsztrát kötődés, leválás fő mozgásrányok korrelácós tuladonságok dffúzós tuladonságok
Részletesebben4 Approximációs algoritmusok szorzatalakú hálózatok esetén
4 Approxmácós algortmusok szorzatalakú hálózatok esetén Az MVA-n alapuló approxmácó (Bard-Schwetzer-módszer): Beérkezés tétel: T () = 1 µ [1+ ( 1) ], =1,...,N Iterácó a következő approxmácó használatával:
RészletesebbenA kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
RészletesebbenMegoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
RészletesebbenRegresszió. Fő cél: jóslás Történhet:
Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján
RészletesebbenF. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,
F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási
Részletesebben4. előadás Reaktorfizika szakmérnököknek
4. előadás TRTLOMJEGYZÉ Radoaktív kormeghatározás tommagmodellek Deformált folyadékcsepp modell o Gömbszmmetrkus és deformált atommagok o Deformált atommagok, kvadrupólus momentum o Rotácós és vbrácós
RészletesebbenRadiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
RészletesebbenRobotirányítási rendszer szimulációja SimMechanics környezetben
Robotrányítás rendszer szmulácója SmMechancs környezetben 1. A gyakorlat célja A SmMechancs szoftvereszköz megsmerése, alkalmazása robotka rendszerek rányításának szmulácójára. Két szabadságfokú kar PID
RészletesebbenZaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
RészletesebbenAtomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
RészletesebbenRadioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
RészletesebbenA csavarvonal axonometrikus képéről
A avarvonal axonometrikus képéről Miután egyre jobban megy a Graph ingyenes függvény - ábrázoló szoftver használata, kipróbáltuk, hogy tudunk - e vele avarvonalat ábrázolni, axonometrikusan. A válasz:
RészletesebbenDarupályák ellenőrző mérése
Darupályák ellenőrző mérése A darupályák építésére, szerelésére érvényes 15030-58 MSz szabvány tartalmazza azokat az előírásokat, melyeket a tervezés, építés, műszak átadás során be kell tartan. A geodéza
RészletesebbenVariancia-analízis (ANOVA) Mekkora a tévedés esélye? A tévedés esélye Miért nem csinálunk kétmintás t-próbákat?
Varanca-analízs (NOV Mért nem csnálunk kétmntás t-próbákat? B Van különbség a csoportok között? Nncs, az eltérés csak véletlen! Ez a nullhpotézs. és B nncs különbség Legyen, B és C 3 csoport! B és C nncs
RészletesebbenAz α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x;
RészletesebbenReaktivitás on-line digitális mérhetősége virtuális méréstechnikával
Szeged Tudományegyetem Természettudomány Kar Reaktvtás on-lne dgtáls mérhetősége vrtuáls méréstechnkával TDK dolgozat Készítette: Bara Péter fzkus szakos hallgató IV-V. évfolyam Témavezető: Dr. Korpás
RészletesebbenEgy negyedrendű rekurzív sorozatcsaládról
Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,
RészletesebbenSinkovicz Péter, Szirmai Gergely október 30
Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30 Áttekintés
Részletesebbenrendszer: a világ általunk vizsgált, valamilyen fallal (részben) elhatárolt része környezet: a világ rendszert körülvevő része
I. A munka ogalma, térogat és egyéb (hasznos) munka. II. A hő ogalma. III. A belső energa denícója és molekulárs értelmezése. I. A termodnamka első őtételének néhány megogalmazása.. Az entalpa ogalma,
RészletesebbenHatártalan neutrínók
Határtalan neutrínók Trócsányi Zoltán Eötvös Loránd Tudományegyetem és MTA-DE Részecskefizikai Kutatócsoport HTP utótalálkozó Budapest 218. december 8 Mottó A tudománynak azonban, hogy el ne satnyuljon,
RészletesebbenA hordófelület síkmetszeteiről
1 A hordófelület síkmetszeteiről Előző dolgozatunkban melynek címe: Ismét egy érdekes mechanizmusról azon hiányérzetünknek adtunk hangot, hogy a hordószerű test görbe felülete nem kapott nevet. Itt elneveztük
RészletesebbenHely és elmozdulás - meghatározás távolságméréssel
Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja
RészletesebbenHőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
RészletesebbenEGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
Részletesebben