Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. 2 ahol K=10
|
|
- Ágoston Balázs
- 8 évvel ezelőtt
- Látták:
Átírás
1 9.4. Táblázatkezelés.. Folyadék gőz egyensúly kétkomponensű rendszerben Az illékonyabb komponens koncentrációja (móltörtje) nagyobb a gőzfázisban, mint a folyadékfázisban. Móltört a folyadékfázisban x; móltört a gőzfázisban y; Relatív illékonyság: α α x y + x Az α értékének változtatásakor tanulmányozzuk az y-x görbe alakját. ( α-). Ábrázolja az alábbi függvényt a [; 5] intervallumban: y 4 x x+ K( x + 3) e ahol K 3. Ábrázolja az alábbi függvényt a [; 4] intervallumban, lépésközzel: 3 y C( x + ) sin( x) ahol C 4. Ábrázolja az alábbi függvényt a [; ] intervallumban: y,x x + x+ e 3,x + 5. Csőben a víz áramlási sebessége m/s, nyomása 5 Pa. A cső szűkülete következtében megnő az áramlási sebesség. Ábrázoljuk a nyomást a sebesség függvényében (p v függvény). ρ( v v ) 3 p p + ; v m s ρ kg m p Pa v ;,5; ;,5; 3; 3,5; 4 m s. Kétértékű sav ill. bázis részecske-eloszlásgörbéinek számítása a ph függvényében. H A H + + HA - K -4 HA - H + + A - K -8
2 Koncentráció,9,8,7,6,5,4,3,, ph HA HA- A- + [H ][HA ] K [H A] [HA] K + [H + K [HA] [HA ] + [H ] KK + + ] [H ] [ A ] [ H A] [ HA ] + [H ][A ] K [HA ] Ábrázolja [H A], [HA - ], [A - ] értékeit a ph függvényében (-4;,5 egységenként). (K és K értékeit vegye fel egy-egy mezőben, majd úgy hivatkozzon rájuk.) Figyelje meg, hogyan változik az eloszlás az egyensúlyi állandók változtatásával görbe alatti terület. Határozza meg az integralas.xls fájlban lévő kromatográfiás csúcs területét! ( ; Oktatás). Mekkora hőmennyiség szükséges a megadott hőkapacitás adatokkal (integralas.xls) rendelkező gáz hőmérsékletének C-ról 7 C-ra történő emeléséhez? 3. A napig tartó próbaüzem során vizet szivattyúzunk 5 kg/h kezdeti áramlási sebességgel, mely a nap alatt egyenletesen kg/h-ra nő. Az egyes áramlási sebességeknél a szivattyú teljesítményfelvételét a integralas.xls fájl tartalmazza. Mennyibe kerül a próbaüzem alatt a szivattyú használata (5 Ft/kWh)? 4. Egy műanyag próbatestet szakítóvizsgálatnak vetünk alá. Az erő megnyúlás függvény a következő egyenlettel közelíthető: 5 ( ε +,5( ε ) F 9 e ahol F(N) az erő, ε(m) a megnyúlás. Számítsa ki a, m nyújtáshoz szükséges munkát.
3 Kromatográfiás adatok Hőkapacitás hőmérséklet függése Szivattyú Time Intensity T C Áramlási seb kg/h Teljesítmény kw,5,8783,39 5,6986 8,5,6,7539,638, ,868,436,346,564 3,54, , ,7 3,8775, ,86, ,83 9,54 4 4,456,446 5,393, ,396 33,85 5 7,647 35,9563 6,975 3,65 75,5 38, ,879 9,5893 7,3546 3, , , ,99 86,7658 8,44 4, ,985 5, ,36 98,656 9,4647 4,93 9 9,5 57, ,7 377,569,5734 5, , ,956 4, ,569,5686 5,939 4, ,7 98,656,667 6, ,6 43,36 86,7658 3,663 6, ,99 9,5893 4,77 7, ,879 35,9563 5,7485 7, ,647,446 6,7878 8,58 6 4,456, ,898 8,3938 7,8775,564 8, ,76 8,346,7539 9, ,9868 9,6,8783,99 9,346 3,5,935 9,4487,44753, 89,436,6789, 44,7,6764,3 77,4957,8786,4 98,496,459,5,39,544,6 9,979,857,7 4,556,693,8 8,79,93397,9 3,65,354, 3,484,998,9547 9,683 8, ,9794 9,778 4,9836 9,886 5,997 9,9544 6,9988 9, ,47
4 . A polimerek polidiszperzitása (PDI polidiszperzitási index) a molekulatömeg-eloszlás szélességét jelenti. A polidiszperzitást a tömeg szerinti és a szám szerinti átlag molekulatömeg arányából lehet meghatározni. A PDI mindig nagyobb mint ; minél közelebb van -hez, annál szűkebb a molekulatömeg-eloszlás. Szám átlag molekulatömeg: M ini M n N i Tömeg átlag molekulatömeg: M i Ni M w M N i i Polidiszperzitási index: M w PDI M n ahol N i az M i tömegű molekulák darabszáma. Határozza meg a mass_spec.xls fájlban lévő tömegspektrum alapján a vizsgált polimer polidiszperzitási indexét!. Két tömegspektrum hasonlóságának egy lehetséges mértékét az alábbiak szerint definiálhatjuk s x x B A x x B B Határozza meg a mass_spec.xls fájlban lévő két tömegspektrum hasonlósági indexét!
5 M N M*N M*M*N , ,549 Mn 67, , ,96 Mw 633, , , , ,49 P, , , , , , , , , , , , , , , , , ,58 93, ,73695E+ szilibin izoszilibin m/z I abs m/z I abs skalár , 363, ,88433
6 Célértékkeresés (goal seeker). Ábrázolja a sin(x)-,5*x függvényt a [-; ] intervallumban, majd oldja meg a sin(x)-,5*x egyenletet!. Ábrázolja az x 5 -x 4 +3x 3 +3x -x- függvényt a [-; ] intervallumban, majd határozza meg a zérushelyét! 3. Ábrázolja az x 5 -x 4 +3x 3 +3x -x-,5 függvényt a [-; ] intervallumban, majd határozza meg a zérushelyeit! 4. Egy anyag fajhőjét az alábbi harmadfokú polinommal adhatjuk meg a hőmérséklet függvényében: c p (t),*t 3,5*t + t + 8. Ábrázolja a függvényt a [; 5] intervallumban! Keresse meg azt a hőmérsékletet, amelyen a fajhő értéke éppen! 5. 5 mol % benzolt, 5 mol % toluolt és 5 mol % o-xilolt tartalmazó elegyet atm nyomáson és C-on egyensúlyi elpárologtatással választunk szét. Számítsuk ki a gőz és a folyékony állapotú termék mennyiségét és összetételét. K illékonysági állandók:,83;,74;,63. x,8957 sin(x)-,5x -, X,88855 x 5 -x 4 +3x 3 +3x -x-,
7 3. X,6384 x 5 -x 4 +3x 3 +3x -x-,5,34 y ,5 - -,5 -,5,5 - c p (t),*t 3 -,5*t +t+8 t 3,787 5 cp V, L,673 Excel solver 3. Ábrázolja az x ( x ) + x + függvényt a [; ] intervallumban, majd határozza meg a zérushelyeit a solver funkcióval!. Oldja meg a következő egyenletrendszert: sin(x)+y +ln(z)-7 3*x+ y +-z 3 x+y+z-5 3. Egy reaktorban a konverzió hő fejlődésével megy végbe. Az anyag- és energiamérleget az alábbi egyenletek írják le, ahol x a konverzió és T a hőmérséklet: x 5k x x Anyagmérleg () ke 4(58,4 T ) + 8 x Energiamérleg ()
8 Ahol a paraméterek: k, e k e e T 575 (98 ),8 38,96 T 459 ( T 536,4) 536,4T Excellel megoldva az egyenleteket keresse meg x és T értékét. Kezdeti értékek pl.: x,5 and T 4. Az ütközési energia függvényében mértük a molekulák disszociálatlan hányadát. Az alábbi értékeket kaptuk: E SY 5 5,99 5,99 3,98 35,89 4,66 45,38 5,7 55,6 6, 65,9,8,7,6,5,4,3,, Illessze az alábbi kétparaméteres függvényt a mérési adatsorra, és határozza meg az a és b paraméter értékét: b s a e E SY e ahol s 53.
9 x.8459 T a 77.5 b A Maxwell-Boltzman sebességeloszlás számítása M f (v) 4π RT π 3 v e M R M,4 M, M3,4 M4,3 T 98 a, Ábrázolja a sebességeloszlásokat (valószínűség sűrűség)! Figyelje meg, hogyan változik az eloszlás a molekulatömeg, illetve a hőmérséklet változtatásával! b, A Ne atomok hány százaléka rendelkezik m/s-nál nagyobb sebességgel?.%
10 c, Olvassa le az ábráról a neon legvalószínűbb sebességét (a valószínűség sűrűség függvény maximális)! V p..m/s Vesse össze a képlettel kiszámolt értékkel: kt RT v p..m/s m M d, Határozza meg a neon átlagsebességét! v avr v f ( v) dv V avr..m/s Vesse össze a képlettel kiszámolt értékkel: v avr 8kT 8RT..m/s π m π M e, Határozza meg neon esetén a sebességnégyzetek átlagának a négyzetgyökét! v rms v f ( v) dv V rms..m/s Vesse össze a képlettel kiszámolt értékkel: 3kT 3RT v rms..m/s m M
2011/2012 tavaszi félév 2. óra. Tananyag:
2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Desztilláció: gyakorló példák
Desztilláció: gyakorló példák 1. feladat Számítsa ki egy 40 mol% benzolt és 60 mol% toluolt tartalmazó folyadékelegy egyensúlyi gőzfázisának összetételét 60 C-on! Az adott elegyre érvényes Raoult törvénye.
Gőz-folyadék egyensúly
Gőz-folyadék egyensúly UNIFAC modell: csoport járulék módszer A UNIQUAC modellből kiindulva fejlesztették ki A molekulákat különböző csoportokból építi fel - csoportokra jellemző, mért paraméterek R és
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően
Mekkora az égés utáni elegy térfogatszázalékos összetétele
1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora
Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar
Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg
Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo
Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani
FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete
Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz
8.8. Folyamatos egyensúlyi desztilláció
8.8. olyamatos egyensúlyi desztilláció 8.8.1. Elméleti összefoglalás olyamatos egyensúlyi desztillációnak vagy flash lepárlásnak nevezzük azt a desztillációs műveletet, amelynek során egy folyadék elegyet
1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont
1. feladat Összesen 8 pont Az ábrán egy szállítóberendezést lát. A) Nevezze meg a szállítóberendezést!... B) Milyen elven működik a berendezés?... C) Nevezze meg a szállítóberendezést számokkal jelölt
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Termodinamika (Hőtan)
Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Mérésadatgyűjtés, jelfeldolgozás.
Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Lemezeshőcserélő mérés
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai
A 27/2012. (VIII. 27.) NGM rendelet (25/2014 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (25/2014 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 524 02 Vegyipari technikus
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Hatvani István fizikaverseny Döntő. 1. kategória
1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:
Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi
Fázisátalakulások. A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek.
Fázisátalakulások A víz fázisai. A nem közönséges (II-VIII) jég kristálymódosulatok csak több ezer bar nyomáson jelentkeznek. Fából vaskarika?? K Vizes kalapács Ha egy tartályban a folyadék fölötti térrészből
(2006. október) Megoldás:
1. Állandó hőmérsékleten vízgőzt nyomunk össze. Egy adott ponton az edény alján víz kezd összegyűlni. A gőz nyomását az alábbi táblázat mutatja a térfogat függvényében. a)ábrázolja nyomás-térfogat grafikonon
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
Pelletek térfogatának meghatározása Bayes-i analízissel
Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály
Bor Pál Fizikaverseny, középdöntő 2016/2017. tanév, 8. osztály 1. Igaz-hamis Döntsd el az állításokról, hogy igazak, vagy hamisak! Válaszodat az állítás melletti cellába írhatod! (10 pont) Két különböző
ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár
ROMAVERSITAS 2017/2018. tanév Kémia Számítási feladatok (oldatok összetétele) 4. alkalom Összeállította: Balázs Katalin kémia vezetőtanár 1 Számítási feladatok OLDATOK ÖSSZETÉTELE Összeállította: Balázs
(Kémiai alapok) és
011/01 tavasz félév 6. óra Híg oldatok törvénye Fagyáspontsökkenés és forráspont-emelkedés, Ozmózsnyomás Molárs tömeg meghatározása kollgatív tulajdonságok segítségével Erős elektroltok kollgatív tulajdonsága
Oldatok - elegyek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
Numerikus matematika
Numerikus matematika Baran Ágnes Gyakorlat Nemlineáris egyenletek Baran Ágnes Numerikus matematika 9.10. Gyakorlat 1 / 14 Feladatok (1) Mutassa meg, hogy az 3x 3 12x + 4 = 0 egyenletnek van gyöke a [0,
Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)
Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám
Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások
ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia II. kategória 2. forduló Megoldások I. FELADATSR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D 9.
Folyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
2012/2013 tavaszi félév 8. óra
2012/2013 tavasz félév 8. óra Híg oldatok törvénye Fagyáspontcsökkenés és forráspont-emelkedés, Ozmózsnyomás Molárs tömeg meghatározása kollgatív tulajdonságok segítségével Erős elektroltok kollgatív tulajdonsága
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!
1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat! G H = H \ G = 2. Ha 1 kg szalámi ára 2800 Ft, akkor hány
1. feladat Összesen: 7 pont. 2. feladat Összesen: 16 pont
1. feladat Összesen: 7 pont Gyógyszergyártás során képződött oldatból 7 mintát vettünk. Egy analitikai mérés kiértékelésének eredményeként a következő tömegkoncentrációkat határoztuk meg: A minta sorszáma:
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
POLIMERTECHNIKA Laboratóriumi gyakorlat
MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata
NULLADIK MATEMATIKA szeptember 13.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Kinetika. Általános Kémia, kinetika Dia: 1 /53
Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika
b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
Oldatok - elegyek. Többkomponensű homogén (egyfázisú) rendszerek. Elegyek: komponensek mennyisége azonos nagyságrendű
Oldatok - elegyek Többkomponensű homogén (egyfázisú) rendszerek Elegyek: komponensek mennyisége azonos nagyságrendű Oldatok: egyik komponens mennyisége nagy (oldószer) a másik, vagy a többihez (oldott
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. 1.-2. Gyakorlat 1 / 42 Numerikus differenciálás
3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
3. Gyakorlat Áramlástani feladatok és megoldásuk
3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T
1. feladat Összesen 17 pont
1. feladat Összesen 17 pont Két tartály közötti folyadékszállítást végzünk. Az ábrán egy centrifugál szivattyú- és egy csővezetéki (terhelési) jelleggörbe látható. A jelleggörbe alapján válaszoljon az
Általános és szervetlen kémia Laborelıkészítı elıadás I.
Általános és szervetlen kémia Laborelıkészítı elıadás I. Halmazállapotok, fázisok Fizikai állapotváltozások (fázisátmenetek), a Gibbs-féle fázisszabály Fizikai módszerek anyagok tisztítására - Szublimáció
1. Feladatok a termodinamika tárgyköréből
. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi
MATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
SZÁMÍTÁSI FELADATOK I.
SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),
Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék
Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
12 48 b Oldjuk meg az Egyenlet munkalapon a következő egyenletrendszert az inverz mátrixos módszer segítségével! Lépések:
A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Egyenletrendszerek megoldása Excelben. Solver használata. Mátrixműveletek és függvények
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:
SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?
SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a
Általános kémia gyakorlat vegyészmérnököknek. 2015/2016. őszi félév
Általános kémia gyakorlat vegyészmérnököknek 2015/2016. őszi félév Zárthelyik A zárthelyik időpontja az kari zh-időpont: 17 00 19 00. A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Alkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
Általános kémia gyakorlat biomérnököknek
Általános kémia gyakorlat biomérnököknek Zárthelyi követelmények A zárthelyik időtartama 90 perc. Mindkét zárthelyin legalább 50%-ot kell teljesíteni az elégséges jegyért. Akinek nincs meg az 50%-os eredménye,
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Atomok. szilárd. elsődleges kölcsönhatás. kovalens ionos fémes. gázok, folyadékok, szilárd anyagok. ionos fémek vegyületek ötvözetek
Atomok elsődleges kölcsönhatás kovalens ionos fémes véges számú atom térhálós szerkezet 3D ionos fémek vegyületek ötvözetek molekulák atomrácsos vegyületek szilárd gázok, folyadékok, szilárd anyagok Gázok
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások I. FELADATSOR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D
Dr.Tóth László
Szélenergia Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Dr.Tóth László Amerikai vízhúzó 1900 Dr.Tóth László Darrieus 1975 Dr.Tóth László Smith Putnam szélgenerátor 1941 Gedser Dán 200 kw
Másodfokú egyenletek, egyenlőtlenségek
Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
1. feladat Összesen 14 pont Töltse ki a táblázatot!
1. feladat Összesen 14 pont Töltse ki a táblázatot! Szerkezeti képlet: A funkciós csoporton tüntesse fel a kötő és nemkötő elektronpárokat is! etanol etanal aminoetán A funkciós csoport neve: Szilárd halmazát
TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok
Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán
Cseppfolyós halmazállapotú közegek hőtranszport-jellemzőinek számítása Gergely Dániel Zoltán Bevezetés Ez a segédlet elsősorban a Pécsi Tudományegyetem Pollack Mihály Műszaki és Informatikai kar Gépészmérnök
Mérnöki alapok 8. előadás
Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!
Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Az előadás vázlata: Állapotjelzők: Állapotjelzők: Állapotjelzők: Állapotjelzők: nagy közepes kicsi. Hőmérséklet, T tapasztalat (hideg, meleg).
Az előadás vázlata: I. A tökéletes gáz és állapotegyenlete. izoterm, izobár és izochor folyamatok. II. Tökéletes gázok elegyei, a móltört fogalma, a parciális nyomás, a Dalton-törvény. III. A reális gázok
Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)
I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy
1. feladat Összesen 10 pont. 2. feladat Összesen 10 pont
1. feladat Összesen 10 pont Töltse ki a táblázatot oxigéntartalmú szerves vegyületek jellemzőivel! Tulajdonság Egy hidroxil csoportot tartalmaz, moláris tömege 46 g/mol. Vizes oldatát ételek savanyítására
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =