Példák numerikus módszerekre.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Példák numerikus módszerekre."

Átírás

1 Példák num erikus módserekr e.

2 A alaj radioakiviása egy radioakív sennyeés uán. környeevédelem a alaj és a légkör radioakiviásának visgálaa balese, háború, aomkísérleek uóhaásai Környeefiika FONTOS TUDNI: hogyan váloik egy sennyeődés uán a radioakív anyagok konenráiója a alaj különböő réegeiben

3 Modell kidolgoása a sennyeődés pillanaserű, a felüleen a =0 pillanaban kövekeik be ( ) = δ ( ) δ ( ), 0 0, = 0, = 0 0 KÉT HATÁS: (,). a sapadék haására a radioakív anyagok bemosódnak a alaj mélyebb réegeibe a felüleen a konenráió sökken, a mélyebb réegekben nő D diffúiós állandó. a radioakív anyagok folyamaosan bomlanak a össes réegben sökken a konenráió α bomlási állandó

4 Differeniális egyenleek felírása ( ) ( ) d d (, ) d S d = D d d(, ) = α d (, ) = α (, ) Sámíógépes simuláió: D D (, ) (, ) + ( d, ) d d N sámú d vasag alajréege ekinünk, a i. Réegben a radioakív anyag konenráiója [i] d d (, ) S + D ( d, ) D = α [ i] [ i] + [ i ] d példa paraméerek: N=0; α=0.00, D/d = 0.003, d=0.00 S D d

5 Diskreiálás időbeli derivál érbeli derivál diskreiál egyenle ( ) ( ) ( ) ( ) ( ) ( ) d d + = = + = ( ) ( ) ( ) ( ) ( ) ( ) d d + = = + = ( ) ( ) ( ) D D + = +,,, α

6 Differeniálegyenleek inegrálási módserei dkk x& k = fk k, d ( x, ) ; k,k =,,... M FELADAT: meghaároni x k n x k, n egyenlees időlépés??? n 0 n JELÖLÉS: f k x i, n, n f k,n erő ényeő DISZKRETIZÁLÁS: a inervallum melyik ponjában sámoljuk a erő ago?

7 A Euler módser előre irányú diskreiálás: O f, n f, n O lokális hiba globális hiba: N T O!!!! sérülnek a megmaradási örvények!!! ponosság, sabiliás sámíási haékonyság Sámíási semponból a legegyserűbb módser, de nem alkalmas fiikai problémák anulmányoására. Önmagában SOSEM hasnáljuk!!!! Kélépéses módser másodrendű sorfejés: hárafele irányú diskreiálás 3 ismerni kell x 0 és x -e a módser nem önindíós, más módserrel kell beindíani

8 Taylor sorok módsere f f ha a és pariális deriválak analiikusan kisámolhaók x df f, d x x f n a deriválak a n pillanaban vannak f x x, f f n n n, n álalában a pariális deriválak sámíása nem prakikus!!!

9 Négylépéses Adams-Bashforh módser negyedrendű sorfejésből indulunk ki: deriválak kisámíása: polinomiális inerpoláió -3, -, -, ponokon keresül f O f 6 3 n f 3 n 3 f 3 n f 6 n 3 O 4 f-e sorbafejjük n körül ~δ kis érékekre f beaonosíjuk a megfelelő rendű agok együhaói d n 6 3 O O 5

10 Runge-Kua módserek enrális diskreiálása ẋ -nak a inervallum köepén nem ismerjük f, n -e, hogyan sámoljuk ki a f-e??? Euler módserrel: f, n f, n RK k ; k f k, n k ; RK4 k k ; k f, k ; k n 3 f, n k 4 f k 3, ; 6 k 3 k 3 k 3 6 k 4 O 5 ;

11 Implii módserek eredendően sabil módserek, de sokkal nehékesebbek sámíási semponból explii módserek: a + kisámíásáho a össes informáió explii módon a rekurióban alálhaó; implii módserek: a informáiók egy rése implii módon a erő agban van elrejve. PÉLDÁK: f, n f, n f, n a rekurió nemlineáris!!! ieraív módsereke hasnálunk: megbesüljük valahogy a + -e, eel sámolunk egy jobb beslés és isméeljük a ieráió

12 Predikor-korrekor módserek explii módserrel megbesüljük a + -e javíjuk a éréke egy hasonló rendű implii módserrel inervallum séle inervallum belseje PREDIKTOR: KORREKTOR: negyedrendű Adams-Bashforh módser négylépéses Adams-Molon módser BECSLÉS O 5 KORREKCIÓ O 5

13 Verle algorimusok p x p f x x f x eredei Verle: f sebesség Verle: p n f p n p n f f

14 Sinkroniáió a erméseben Nagyon gyakori jelenség... ingaórák sinkroniálódása (Huygens, 667) senjánosbogarak dél-kele Ásiában (J. Buk, Si. Am., May 976) paemaker sejek a síviomban (C. Peskin, Mahemaial Aspes of Hear Physiology, New York, 975) üskök siriplése (E. Sismondo; Siene 49, 55,990) osilláló kémiai reakiók (J. Neu, SIAM J. Appl. Mah. 38, 305,980) kapsol Josephson ámeneek hálóaa (P. Hadley e al. Phys. Rev. B, 38, 87, 988) neuron sejek a agyban (J. Hopfield, Naure 376, 33,995) egymás melle járó emberek lépei aps / vasaps együ élő nők mensruáiós iklusának a sinkroniáiója

15 Senjánosbogarak sinkroniáiója Délkele Ásiában öbb eer hím senjánosbogár ül a fákon és villog sinkroniál villogás mi okoa e? egymás befolyásolják: ha a egyik lája a másik felvillanásá, gyorsul vagy lassul úgy, hogy a kövekeő villanásuk sinkronban legyen Hanson (978) kísérlee: mű senjánosbogár mellei valódi senjánosbogár villanása a senjánosbogár a sajá periódusáho köeli arományban (~0,9s) alkalmakodo ha a auomaa úl gyors vagy úl lassú vol, nem örén sinkroniáió modell: Ermenrou & Rinel (984) θ θ = 0 a bogarak felvillanásának fáisa: villanás -ban külső haás hiányában: & θ = ω simulálás fáisa: villanás Θ = 0 -ban simuláns egyenlee: Θ & = Ω () Θ ha a simulálás hamarabb kövekeik be, a senjánosbogár felgyorsul, különben lelassul & θ = ω + Asin ( Θ θ ) ( )

16 Több senjánosbogár sinkroniáiója Hasonló elven működő elekronikus bogarak Néda Zolán és soporja

17 A Kuramoo modell ekinünk N darab osilláor saol osilláor-rendser egyenlee: numerikusan inegráljuk i + rendparaméer: r = ( osθ i sinθ ) N i i Sinkroniál és nem sinkroniál fáisok jelenlée (fáisáalakulás) K kriikus saolás K<K : K>K : K-> : r=0 (a sinkroniáió eljes hiánya) r>0 (pariális sinkroniáió) r= (eljes sinkroniáió) másodfajú fáisáalakulás hp:// hp://

Numerikus módszerek. 9. előadás

Numerikus módszerek. 9. előadás Numerikus módszerek 9. előadás Differenciálegyenletek integrálási módszerei x k dx k dt = f x,t; k k ' k, k '=1,2,... M FELADAT: meghatározni x k t n x k, n egyenletes időlépés??? t n =t 0 n JELÖLÉS: f

Részletesebben

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont: 3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:

Részletesebben

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja

REAKCIÓKINETIKA ALAPFOGALMAK. Reakciókinetika célja REKCIÓKINETIK LPFOGLMK Reakiókineika élja. Reakiók idbeli lefuásának, idbeliségének vizsgálaa: miér gyors egy reakió, és miér lassú egy másik?. Hogyan függ a reakiók sebessége a hmérséklel? 3. Reakiók

Részletesebben

Fourier-sorok konvergenciájáról

Fourier-sorok konvergenciájáról Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees

Részletesebben

Differenciálegyenletek numerikus megoldása

Differenciálegyenletek numerikus megoldása a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens

Részletesebben

Felkészítő feladatok a 2. zárthelyire

Felkészítő feladatok a 2. zárthelyire . Silárdságani alapismereek.. Mohr-féle fesülségsámíás Felkésíő feladaok a. árhelire Talajok mehanikai jellemői Ado: =4 kpa, = kpa és = kpa, ovábbá ===. Sámísk ki a főfesülségeke és adjk meg a fősíkok

Részletesebben

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás) Maemaika A3 gyakorla Energeika és Mecharonika BSc szakok, 6/7 avasz 3. feladasor: Görbe ívhossza, görbemeni inegrál megoldás. Mi az r 3 3 i + 6 5 5 j + 9 k görbe ívhossza a [, ] inervallumon? A megado

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

Intraspecifikus verseny

Intraspecifikus verseny Inraspecifikus verseny Források limiálsága evolúciós (finesz) kövekezmény aszimmeria Denziás-függés Park és msai (930-as évek, Chicago) - Tribolium casaneum = denziás-függelen (D-ID) 2 = alulkompenzál

Részletesebben

EC4 számítási alapok,

EC4 számítási alapok, Ösvérserkeeek 2. előadás EC4 sámíási alapok, beon berepedésének haása, együdolgoó sélesség, rövid idejű és arós erhek, km. osályoás, képlékeny km. ellenállás késíee: Dr. Kovás Nauika 2018.10.12. EC4 alapok

Részletesebben

3. Gyakorlat. A soros RLC áramkör tanulmányozása

3. Gyakorlat. A soros RLC áramkör tanulmányozása 3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik

Részletesebben

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta BIOFIZIKA I 010. Okóber 0. Bugyi Beáa TRANSZPORTELENSÉGEK Transzpor folyama: egy fizikai mennyiség érbeli eloszlása megválozik Emlékezeő: ermodinamika 0. főéele az egyensúly álalános feléele TERMODINAMIKAI

Részletesebben

Runge-Kutta módszerek

Runge-Kutta módszerek Runge-Kutta módszerek A Runge-Kutta módszerek az Euler módszer továbbfejlesztésének, javításának tekinthetők, kezdeti értékkel definiált differenciál egyenletek megoldására. Előnye hogy a megoldás során

Részletesebben

Legfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód

Legfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód Legfonosabb farmakokineikai paraméerek definíciói és számíásuk Paraméer armakokineikai paraméerek Név Számíási mód max maximális plazma koncenráció ideje mér érékek alapján; a max () érékhez arozó érék

Részletesebben

GABONASILÓKBA TELEPÍTETT TÁVHOMÉROK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA

GABONASILÓKBA TELEPÍTETT TÁVHOMÉROK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA GABONASILÓKBA TELEPÍTETT TÁVHOMÉROK ELMÉLETI ÉS KÍSÉRLETI VIZSGÁLATA Halás Isván * Oros Árpád ** RÖVID KIVONAT A gabonasilókban a árol anyag homérsékleének emelkedése károsodás ill. minoségromlás oko,

Részletesebben

5. Szerkezetek méretezése

5. Szerkezetek méretezése . Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások

Részletesebben

! Védelmek és automatikák!

! Védelmek és automatikák! ! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA

Részletesebben

A hőszivattyúk műszaki adatai

A hőszivattyúk műszaki adatai Gyáró: Geowa Kf. Vaporline GBI (x)-hacw folyadék-víz hőszivayú család Típusok: GBI 62; GBI 70; GBI 80; A hőszivayúk műszaki adaai Verzió száma: 2.3 2013. január 19. 1 Gyáró: Geowa Kf. A Vaporline hőszivayú

Részletesebben

Fizika A2E, 7. feladatsor megoldások

Fizika A2E, 7. feladatsor megoldások Fizika A2E, 7. feladasor ida György József vidagyorgy@gmail.com Uolsó módosíás: 25. március 3., 5:45. felada: A = 3 6 m 2 kereszmesze rézvezeékben = A áram folyik. Mekkora az elekronok drifsebessége? Téelezzük

Részletesebben

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb

Részletesebben

Fizika A2E, 11. feladatsor

Fizika A2E, 11. feladatsor Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk

Részletesebben

A Lorentz transzformáció néhány következménye

A Lorentz transzformáció néhány következménye A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre

Részletesebben

Mátrixhatvány-vektor szorzatok hatékony számítása

Mátrixhatvány-vektor szorzatok hatékony számítása Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis

Részletesebben

8. előadás Ultrarövid impulzusok mérése - autokorreláció

8. előadás Ultrarövid impulzusok mérése - autokorreláció Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,

Részletesebben

12. KÜLÖNLEGES ÁRAMLÁSMÉRİK

12. KÜLÖNLEGES ÁRAMLÁSMÉRİK 12. KÜLÖNLEGES ÁRAMLÁSMÉRİK 12.1. Ulrahangos áramlásmérık 12.1.1. Alkalmazási példa 12.1.2. Mőködési elvek f1 f2 2 v f1 cosθ a f1 f2

Részletesebben

MÉLYALAPOK KÉPLÉKENY TEHERBÍRÁSÁNAK NUMERIKUS VIZSGÁLATA VÉGESELEMES ÉS DLO TECHNIKÁKKAL

MÉLYALAPOK KÉPLÉKENY TEHERBÍRÁSÁNAK NUMERIKUS VIZSGÁLATA VÉGESELEMES ÉS DLO TECHNIKÁKKAL XI. MAGYAR MECHANIKAI KONFERENCIA MaMeK, 2011 Miskol, 2011. agszs 29-31. MÉLYALAPOK KÉPLÉKENY TEHERBÍRÁSÁNAK NUMERIKUS VIZSGÁLATA VÉGESELEMES ÉS DLO TECHNIKÁKKAL Lafer Imre 1 1 BME Geoehnikai Tanszék,

Részletesebben

REAKCIÓKINETIKA ELEMI REAKCIÓK ÖSSZETETT REAKCIÓK. Egyszer modellek

REAKCIÓKINETIKA ELEMI REAKCIÓK ÖSSZETETT REAKCIÓK. Egyszer modellek REKIÓKINETIK ELEMI REKIÓK ÖSSZETETT REKIÓK Egyszer moelle Párhuzamos (parallel reaió Egyensúlyra veze reaió Egymás öve (sorozaos onszeuív reaió 4 Sorozaos reaió egyensúlyi lépéssel Moleuláris moelle reaiósebességi

Részletesebben

7.1 ábra Stabilizált tápegység elvi felépítése

7.1 ábra Stabilizált tápegység elvi felépítése 7. Tápegységek A ápegységek az elekronikus rendezések megfelelő működéséhez szükséges elekromos energiá bizosíják. Felépíésüke és jellemzőike a áplálandó rendezés igényei haározzák meg. A legöbb elekronikus

Részletesebben

A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben

A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben A Richardson-extrapoláció és alkalmazása a Dániai Euleri Modellben Faragó István 1, Havasi Ágnes 1, Zahari Zlatev 2 1 ELTE Alkalmazott Analízis és Számításmatematikai Tanszék és MTA-ELTE Numerikus Analízis

Részletesebben

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok

Részletesebben

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása

Fluoreszkáló festék fénykibocsátásának vizsgálata, a kibocsátott fény időfüggésének megállapítása Fluoreszkáló fesék fénykibocsáásának vizsgálaa, a kibocsáo fény időfüggésének megállapíása A) A méréshez használ eszközök: 1. A fekee színű doboz aralmaz egy fluoreszkáló fesékkel elláo felülee, LED-eke

Részletesebben

A hőszivattyúk műszaki adatai

A hőszivattyúk műszaki adatai Gyáró: Geowa Kf. Vaporline GBI (x)-hacw folyadék-víz hőszivayú család Típusok: GBI 66; GBI 80; GBI 96; A hőszivayúk műszaki adaai Verzió száma: 1.0 2010-02-15 Cím: Békéscsaba Szabó D.u.25. 5600 HUNGARY

Részletesebben

MODELLEZÉS - SZIMULÁCIÓ

MODELLEZÉS - SZIMULÁCIÓ Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)

Részletesebben

Adatbányászat: Rendellenesség keresés. 10. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba

Adatbányászat: Rendellenesség keresés. 10. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba Adabányásza: Rendellenesség keresés 10. fejeze Tan, Seinbach, Kumar Bevezeés az adabányászaba előadás-fóliák fordíoa Ispány Máron Logók és ámogaás A ananyag a TÁMOP-4.1.2-08/1/A-2009-0046 számú Kele-magyarországi

Részletesebben

2.2. A z-transzformált

2.2. A z-transzformált 22 MAM2M előadásjegyet, 2008/2009 2. A -transformált 2.. Egy információátviteli probléma Legyen adott egy üenetátviteli rendserünk, amelyben a üeneteket két alapjel mondjuk a és b segítségével kódoljuk

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Oldalszög Magassági szög Moduláció Antenna 0 * 0 * 1 1

Oldalszög Magassági szög Moduláció Antenna 0 * 0 * 1 1 . ADA MÉÉS ALAPJAI, HULLÁMCSOMAG TEJEDÉSE A radar alapölee igen egyserű: a radar nagyfrekvenciás elekromágneses energiá sugáro ki, majd a a különböő reflekáló objekumokról vissaverődve deekálja és méri.

Részletesebben

2. gyakorlat: Z épület ferdeségmérésének mérése

2. gyakorlat: Z épület ferdeségmérésének mérése . gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban

Részletesebben

BODE-diagram szerkesztés

BODE-diagram szerkesztés BODE-diagram szerkeszés Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmű kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli

Részletesebben

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6.

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6. Algorimuselméle Keresőfák, piros-fekee fák Kaona Gyula Y. Sámíásudományi és Információelmélei Tansék Budapesi Műsaki és Gadaságudományi Egyeem. előadás Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel

Részletesebben

Középszintű érettségi feladatsor Fizika. Első rész

Középszintű érettségi feladatsor Fizika. Első rész Középzinű éreégi feladaor Fizika Elő réz 1. Egy cónak vízhez vizonyío ebeége 12. A cónakban egy labda gurul 4 ebeéggel a cónak haladái irányával ellenéeen. A labda vízhez vizonyío ebeége: A) 8 B) 12 C)

Részletesebben

FIZIKA FELVÉTELI MINTA

FIZIKA FELVÉTELI MINTA Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé

Részletesebben

2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0

2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0 Húzza alá az Ön képzési kódjá! 2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0 Név: Azonosíó: Helyszám: Jelölje meg (aláhúzással) Gyakorlavezeőjé! Bihari Péer Czél Balázs Gróf Gyula Kovács Vikória Könczöl Sándor

Részletesebben

A MATEMATIKA NÉHÁNY KIHÍVÁSA

A MATEMATIKA NÉHÁNY KIHÍVÁSA A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,

Részletesebben

6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok

6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok 6. szemináriumi Gyakorló feladaok. Tőkekínála. Tőkekeresle. Várhaó vs váralan esemény őkepiaci haása. feladaok A feladaok megoldása során ahol lehe, írjon MATLAB scripe!!! Figyelem, a MATLAB a gondolkodás

Részletesebben

7. KÜLÖNLEGES ÁRAMLÁSMÉRİK

7. KÜLÖNLEGES ÁRAMLÁSMÉRİK 7. KÜLÖNLEGES ÁRAMLÁSMÉRİK 7.1. Ulrahangos áramlásmérık 7.1.1. Alkalmazási példa 7.1.2. Mőködési elvek f1 f2 = 2 v f1 cosθ a f1 f2

Részletesebben

Modulzáró ellenőrző kérdések és feladatok (3)

Modulzáró ellenőrző kérdések és feladatok (3) Modulzáró ellenőrző kérdések és feladaok (3) 1. Érelmezze az alábbi, fennarási rendszerekkel és sraégiákkal kapcsolaos fogalmaka (1): Üzemvieli folyama. Meghibásodásig örénő üzemeleés. TMK jellegű fennarás.

Részletesebben

Tóth András. Kísérleti Fizika I.

Tóth András. Kísérleti Fizika I. Tóh András Kísérlei Fiika I 7 TÓTH A: Ponkinemaika (kibőíe óraála Beeeés Fiika: a só eredei görög alakjának jelenése "ermése", akkoriban a össes ermései jelenség isgálaá jelenee Később a isgálaok köre

Részletesebben

SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik.

SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik. SPEKTROFOTOMETRI SPEKTROSZKÓPI: omok, molekulák energiaállapoának megválozásakor kibosáo ill. elnyeld sugárzások vizsgálaával foglalkozik. Más szavakkal: anyag és elekromágneses sugárzás kölsönhaása eredményeképp

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és

HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

REV23.03RF REV-R.03/1

REV23.03RF REV-R.03/1 G2265hu REV23.03RF Telepíési és üzembe helyezési leírás A D E B C F CE1G2265hu 21.02.2006 1/8 G / 4.2.4 C Gyári beállíások / 4.2.4 2211Z16 / 4.2.1 C 2211Z16 1. 2. 1. 2. + CLICK C 12 min 2211Z16 PID 12

Részletesebben

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN eljes mozgás helye csak a nulladik módussal számolni: még azonos ömegek eseén is öbb min 98% súllyal a nulladik módus gerjed. Nem ez a helyze a b) kezdei feléelnél, amikor már m 0,1M melle is öbb min 3%,

Részletesebben

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Járműelemek I. (KOJHA 7) Tengelyköés kisfelada (A ípus) Szilárd illeszés Járműelemek és Hajások Tanszék Ssz.: A/... Név:...................................

Részletesebben

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia

Részletesebben

Síkalapok vizsgálata - az EC-7 bevezetése

Síkalapok vizsgálata - az EC-7 bevezetése Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül

Részletesebben

Fizika I minimumkérdések:

Fizika I minimumkérdések: Fizika I minimumkérdések: 1. Elmozdulás: r 1, = r r 1. Sebesség: v = dr 3. Gyorsulás: a = dv 4. Sebesség a gyorsulás és kezdei sebesség ismereében: v ( 1 ) = 1 a () + v ( 0 0 ) 5. Helyvekor a sebesség

Részletesebben

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását

Lagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális

Részletesebben

XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész

XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész osan megszûn Ez alapján közelíôleg egy évben kimondoan csak a avaszi óraáállíásnak köszönheôen álagosan 43 GWh érékkel csökken az országos villamosenergia-fogyaszás Hasonlóképpen számolunk mind az 5 évben

Részletesebben

ÉLETTARTAM KOCKÁZAT A nyugdíjrendszerre nehezedő egyik teher

ÉLETTARTAM KOCKÁZAT A nyugdíjrendszerre nehezedő egyik teher ÉLETTARTAM KOCKÁZAT A nyudíjrendszerre nehezedő eyik eher Májer Isván - Kovács Erzsébe i.majer@erasmusmc.nl Taralom. Várhaó élearam alakulása 2. A moraliás modellezése a Lee-Carer modell 3. Alkalmazás

Részletesebben

Operátorszeletelési módszerek hibaanalízise és alkalmazásuk reakciódiffúzió-problémákra

Operátorszeletelési módszerek hibaanalízise és alkalmazásuk reakciódiffúzió-problémákra Operátorszeletelési módszerek hibaanalízise és alkalmazásuk reakciódiffúzió-problémákra Ladics Tamás 05, április 3. Bevezetés A disszertáció négy fő részből áll, amelyekben az operátorszeletelés módszerét

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

Az atommag szerkezete

Az atommag szerkezete z aommag szerkezee Biofizika előadások szepember Elekron mikroszkóp Orbán József Elekron - J. J. Thomson (897) Proon - E. Goldsein (9) ommag - E. Ruherford (9) Neuron - James Cheidwick (9) Kvarkok - Leon

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Hőszivattyúk műszaki adatai

Hőszivattyúk műszaki adatai Gyáró: Geowa Kf. Vaporline GBI (x)-hacw folyadék-víz hőszivayú család Típusok: GBI 09; GBI 13; GBI 18; Hőszivayúk műszaki adaai Verzió száma: 1.0 2010-02-15 Cím: Békéscsaba Szabó D.u.25. 5600 HUNGARY 1

Részletesebben

Együttdolgozó acél-beton öszvérhídszerkezetek

Együttdolgozó acél-beton öszvérhídszerkezetek Együdolgoó aél-bon ösvérhídsrkk Dr. Köllő Gábor a műsaki udomány dokora Kolosvári űsaki Egym Bvés uóbbi évidkbn a ösvérsrkk gyr nagyobb mérékbn alkalmaák. Sok fjl orságban a újonnan épül hidak nagyrés

Részletesebben

5. Differenciálegyenlet rendszerek

5. Differenciálegyenlet rendszerek 5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:

Részletesebben

Radioaktivitás. Stabilitás elérésének módjai. -bomlás» -sugárzás. Természetes dolog-e a radioaktivitás?

Radioaktivitás. Stabilitás elérésének módjai. -bomlás» -sugárzás. Természetes dolog-e a radioaktivitás? Radioakiviás Sugárzások Sugárzások kölcsönhaása az anyaggal PE ÁOK Biofizikai néz, 0 okóbr Orbán Józsf rmészs dolog- a radioakiviás? gn, a Big Bang óa lézik... Mi a kiváló oka gy aommag radioakív áalakulásának?

Részletesebben

Előszó. 1. Rendszertechnikai alapfogalmak.

Előszó. 1. Rendszertechnikai alapfogalmak. Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)

Részletesebben

Biológiai molekulák számítógépes szimulációja Balog Erika

Biológiai molekulák számítógépes szimulációja Balog Erika Bológa molekulák számíógépes szmulácóa Balog Eka Semmelwes Egyeem, Bofzka és Sugábológa Inéze SZEKVENCIA ALA THR SER THR LYS LYS LEU HSD LYS GLU PRO ALA ILE LEU LYS ALA ILE ASP ASP THR TYR VAL LYS PRO

Részletesebben

Tartalom. Éghajlati rendszer: a légkör és a vele kölcsönhatásban álló 4 geoszféra együttese. Idıjárás vs. éghajlat

Tartalom. Éghajlati rendszer: a légkör és a vele kölcsönhatásban álló 4 geoszféra együttese. Idıjárás vs. éghajlat Az éghajlai modellszimulációk bizonyalanságainak felérképezése a Kárpá-medencére Szabó Péer (szabo.p@me.hu) és Szépszó Gabriella Taralom Alapfogalmak és az éghajlai rendszer Numerikus modellezés Az éghajlai

Részletesebben

Lineáris programozási modellek érzékenységvizsgálati eredményeinek alkalmazási problémái a termelésmenedzsmentben. Dr. TamásKoltai

Lineáris programozási modellek érzékenységvizsgálati eredményeinek alkalmazási problémái a termelésmenedzsmentben. Dr. TamásKoltai Lneárs programozás modellek érzékenységvzsgála eredményenek alkalmazás problémá a ermelésmenedzsmenben Dr. amáskola Egyeem anár Budapes Műszak és Gazdaságudomány Egyeem Menedzsmen és Vállalagazdaságan

Részletesebben

Túlgerjesztés elleni védelmi funkció

Túlgerjesztés elleni védelmi funkció Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan

Részletesebben

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. MISKOLCI EGYETEM GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA ELEKTOTECHNIKAI-ELEKTONIKAI TANSZÉK D. KOVÁCS ENŐ ELEKTONIKA II. (MŰVELETI EŐSÍTŐK II. ÉSZ, OPTOELEKTONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVETEEK) Villamosmérnö

Részletesebben

Nemlineáris egyenletrendszerek megoldása április 15.

Nemlineáris egyenletrendszerek megoldása április 15. Nemlineáris egyenletrendszerek megoldása 2014. április 15. Nemlineáris egyenletrendszerek Az egyenletrendszer a következő formában adott: f i (x 1, x 2,..., x M ) = 0 i = 1...N az f i függvények az x j

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT

Részletesebben

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.

JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. 216. okóber 7., Budapes JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. Alapfogalmak, fizikai réeg mindenki álal ismer fogalmak (hobbiból azér rákérdezheek vizsgán): jel, eljesímény,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elekronikai alapismereek emel szin 080 ÉETTSÉGI VISGA 009. május. EEKTONIKAI AAPISMEETEK EMET SINTŰ ÍÁSBEI ÉETTSÉGI VISGA JAVÍTÁSI-ÉTÉKEÉSI ÚTMTATÓ OKTATÁSI ÉS KTÁIS MINISTÉIM Egyszerű, rövid feladaok

Részletesebben

14. fejezet. Tárgymutató Címszavak jegyzéke

14. fejezet. Tárgymutató Címszavak jegyzéke 14. fejezet Tárgymutató 14.1. Címszavak jegyzéke A Adams Bashforth módszerek 71 Adams Moulton módszerek 71 Adams módszerek, változó lépéstávolságú 96 algebro-differenciálegyenletek 150 alulintegráció 346,

Részletesebben

Elektronika 2. TFBE1302

Elektronika 2. TFBE1302 Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.

Részletesebben

2. Alapfeltevések és a logisztikus egyenlet

2. Alapfeltevések és a logisztikus egyenlet Populáció dinamika Szőke Kálmán Benjamin - SZKRADT.ELTE 22. május 2.. Bevezetés A populációdinamika az élőlények egyedszámának és népességviszonyainak térbeli és időbeli változásának menetét adja meg.

Részletesebben

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

Acélszerkezeti mintapéldák az Eurocode szabványhoz,

Acélszerkezeti mintapéldák az Eurocode szabványhoz, Budapesi Műsaki Egeem Acélserkeeek Tansék Acélserkeei minapéldák a Eurocode sabvánho, angol nelvű minapéldák alapján Fordíoa: Hegedűs Krisián Javíoa: Dr. Iváni Miklós. javío váloa 999. május 5. . Eurocode

Részletesebben

Aggregált termeléstervezés

Aggregált termeléstervezés Aggregál ermeléservezés Az aggregál ermeléservezés feladaa az opimális ermékszerkeze valamin a gyáráshoz felhasználhaó erőforrások opimális szinjének meghaározása. Termékek aggregálása. Erőforrások aggregálása.

Részletesebben

1 ZH kérdések és válaszok

1 ZH kérdések és válaszok 1. A hőérzee befolyásoló ényezők 1 ZH kérdések és válaok Hőérzee befolyásoló ényezők: - a levegő hőmérséklee, annak érbeli, időbeli elolása, válozása - a környező felüleek közepes sugárzási hőmérséklee

Részletesebben

Izzítva, h tve... Látványos kísérletek vashuzallal és grafitceruza béllel

Izzítva, h tve... Látványos kísérletek vashuzallal és grafitceruza béllel kísérle, labor Izzíva, h ve... Láványos kísérleek vashuzallal és graficeruza béllel Az elekromos, valamin az elekronikus áramköröknél is, az áfolyó elekromos áram h"haása mia az egyes áramköri alkoóelemek

Részletesebben

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.

Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és

Részletesebben

A környezetszennyezés folyamatai anyagok migrációja

A környezetszennyezés folyamatai anyagok migrációja A környezetszennyezés folyamatai anyagok migráiója 9/1 Migráió homogén és heterogén környezeti rendszerekben Homogén rendszer: felszíni- és karsztvíz, atmoszféra Heterogén rendszer: talajvíz, kızetvíz,

Részletesebben

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer

4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,

Részletesebben