Lineáris programozási modellek érzékenységvizsgálati eredményeinek alkalmazási problémái a termelésmenedzsmentben. Dr. TamásKoltai
|
|
- Ágoston Csonka
- 6 évvel ezelőtt
- Látták:
Átírás
1 Lneárs programozás modellek érzékenységvzsgála eredményenek alkalmazás problémá a ermelésmenedzsmenben Dr. amáskola Egyeem anár Budapes Műszak és Gazdaságudomány Egyeem Menedzsmen és Vállalagazdaságan anszék amás Kola Ma. szemnárum 9..6 Prmálfelada: Ma ( c A b Opmálsmegoldás: *, OF * Duálfelada: Mn ( b A y y c y Opmálsmegoldás: y *, OF * amás Kola Ma. szemnárum 9..6
2 Érzékenységvzsgála eredmények: Célfüggvény együhaók (OFC érvényesség arománya Árnyékár Árnyékár érvényesség arománya amás Kola Ma. szemnárum 9..6 Gal,., 986, Shadow prces and sensvy analyss n lnear programmng under degeneracy. OR Spekrum,8, Evans, J. R. and Baker, N. R., 98, Degeneracy and he (msnerpreaon of sensvy analyss n lnear programmng. Decson Scences, 3, Rubn, D. S. and Wagner, H. M., 99, Shadow prces: ps and raps for managers and nsrucors. Inerfaces, (4, Jansen, B., De Jong, J. J., Roos, C., and erlaky,., 997, Sensvy analyss n lnear programmng: Jus be careful. European Journal of Operaonal Research,, 5-8. ***** Kola,. and erlaky,.,, he dfference beween he manageral and mahemacal nerpreaon of sensvy analyss resuls n lnear programmng. Inernaonal Journal of Producon Economcs, 65, Hadgeh, A. G. and erlaky,., 6, Sensvy analyss n lnear opmzaon: Invaran suppor se nervals. European Journal of Operaonal Research, 69, Kola., aay V., 8, A Praccal Approach o Sensvy Analyss of Lnear Programmng under Degeneracy n Managemen Decson Makng. 5h Inernaonal Workng Semnar on Producon Economcs, Innsbruck, Auszra, 8, 3-34 (Volume 3. amás Kola Ma. szemnárum 9..6
3 Ma R: R : Ma: Ma : Mn: Mn : ( X 35 OF R Mn R Ma P OP Mn X Ma R : R : Ma : Ma : Mn : Mn : ( X R Mn OF R POP Ma P OP Mn X amás Kola Ma. szemnárum 9..6 Addonal LP problems for sensvy analyss Célfüggvény együhaók érzékenységvzsgálaa (OFC Bal oldal érnyékár érzékenységvzsgálaa (δ< (y Jobb oldal érnyékár érzékenységvzsgálaa (δ> (y Mamáls csökkenés A y c γ e b y = OF γ γ Ma ( γ ; Opmáls megoldás: γ A b δe c = OF ξ y ξ (3 Ma( ξ Opmáls megoldás: nξ A b δe ξ e ξ e c = OF ξ y ξ (5 Ma( ξ Opmáls megoldás: pξ (7 Mamáls növekedés A y c γ e γ Ma ( γ ; Opmáls megoldás: γ A b δe ξ e b y = OF ξ γ c = OF ξ y (4 Ma( ξ Opmáls megoldás: nξ A b δe ξ e c = OF ξ ξ y (6 Ma( ξ Opmáls megoldás: pξ (8 amás Kola Ma. szemnárum
4 A célfüggvény együhaók (OFC érzékenységvzsgála számíásának megvalósíása PRIMAL *,OF *,y * Ab ma( c For = o I eended DUAL A y c γ e b y = OF γ Mn γ γ Ma γ γ = γ - γ Válozók száma: I Megoldandó LP feladaok száma: I amás Kola Ma. szemnárum 9..6 Jobb oldal paraméerek (RHS érzékenységvzsgála számíásának megvalósíása For = o J perurbed PRIMAL δ< perurbed PRIMAL δ> A bδe ma( c *,OF *,y -* *,OF *,y * eended PRIMAL eended PRIMAL A b δ e ξ e c = OF ξ y mn ζ ζ ma ζ ζ mn ζ ζ ma ζ ζ nζ - nζ pζ - pζ = Korláok száma: J Megoldandó LP feladaok száma: 6J amás Kola Ma. szemnárum
5 A mnafelada OFC érzékenységvzsgála eredménye Ma R: R: Ma: Ma: Mn: Mn: ( X 35 OF R Mn R Ma Mn X Erede LINGO POM-QM Javasol módszer érék csökkenés növekedés csökkenés növekedés γ γ P P amás Kola Ma. szemnárum 9..6 A mnafelada RHS érzékenységvzsgála eredménye Ma R: R: Ma: Ma: Mn: Mn: ( X 35 OF R Mn R Ma Mn X Erede LINGO POM-QM érék SP csökkenés növekedés SP csökkenés növekedés R 5 R 4 Ma Ma Mn 4 4 Mn 5 6 amás Kola Ma. szemnárum
6 Az RHS paraméerek csökkenése y Az RHS paraméerek növekedése Erede y (y érék nξ nξ pξ pξ R 5 R 4 Ma Ma Mn Mn Erede LINGO POM-QM érék SP csökkenés növekedés SP csökkenés növekedés R 5 R 4 Ma Ma Mn 4 4 Mn 5 6 amás Kola Ma. szemnárum 9..6 X R OF R MIN MAX MIN X Ma R: R : Ma: Ma : Mn : Mn : ( Erede y (y RHS paraméerek csökkenése y RHS paraméerek növekedése érék nξ nξ pξ pξ R R Ma Ma Mn Mn Erede LINGO POM-QM érék SP csökkenés növekedés SP csökkenés növekedés R 6 6 R 4 Ma 6 Ma Mn 4 4 Mn 5 5 amás Kola Ma. szemnárum
7 ermeléservezés felada (Nahmas, S., 993, Producon and Operaons Analyss. Irwn. egy ermék génye 6 hónapra smer(d az gény maradékalanul k kell elégíen a gyárhaó mennysége a lészám haározza meg(k egy munkás felvéel kölsége h egy munkás elbocsáás kölsége f egy darab ermék hav árolás kölsége a cél a eles felvéel elbocsáás és készlearás kölségekmnmalzálása peremfeléelek: 3 fő nduló munkás 5 db nduló készle 6 db záró készle amás Kola Ma. szemnárum 9..6 A felada LP modelle: Mn 6 = h H 6 f F I 6 = = W W H F = =,...,6 P I I = D =,...,6 P Kn W = =,...,6 amás Kola Ma. szemnárum
8 Hónap Paraméerek A prmal felada opmáls megoldása ( n D h f H F W I P December Január Február Marcus Aprls Máus Júnus amás Kola Ma. szemnárum 9..6 OFC érzékenységvzsgála eredmények: Eredel LINGO szofver Javasol módszer Válozó OFC Érék csökkenés növekedés γ γ H H H H H H F F F F F F W W W W W W I I I I I P P P P P P amás Kola Ma. szemnárum
9 RHSérzékenységvzsgála eredmények: Korlá Erede LINGO sofver Javasol módszer RHS érék y csökkenés növekedés y ( y nξ nξ y pξ pξ Lészám Lészám Lészám Lészám Lészám Lészám Igény Igény Igény Igény Igény Igény ermelés ermelés ermelés ermelés ermelés ermelés W feléel I feléel I 6 feléel amás Kola Ma. szemnárum 9..6 Lészám egyenleek: W W W H F = ± =,...,6 = W H F ± =,...,6 Korlá Erede LINGO szofver Javasol mószer RHS érék y csökkenés növekedés y ( y nξ nξ y pξ pξ Lészám Lészám Lészám Lészám Lészám Lészám amás Kola Ma. szemnárum
10 Igény egyenleek: P I I = D ± =,...,6 Korlá Erede LINGO szofver Javasol módszer RHS érék y csökkenés növekedés y ( y nξ nξ y pξ pξ Igény Igény Igény Igény Igény Igény amás Kola Ma. szemnárum 9..6 ermelés egyenleek: P Kn W = ± =,...,6 P = Kn W ± =,...,6 Korlá Erede LINGO szofver Javasol módszer RHS érék y csökkenés növekedés y ( y nξ nξ y pξ pξ ermelés ermelés ermelés ermelés ermelés ermelés amás Kola Ma. szemnárum 9..6
11 Összefoglalás Ha menedzsmen dönések a éves LP érzékenységvzsgála eredményekre épülnek, akkor három fő probléma fordulha elő: Gyakran a célfüggvényegyühaókérvényesség arományára a énylegesnél szűkebb aromány kapunk. Rendszern csak egyelen árnyékára kaponk Gyakran a obb oldal paraméerek érvényesség arományára a énylegesnél szűkebb aromány kapunk. A megoldandó ovább LP feladaok száma: I6J: maemaka elemzés a ovább LP feladaok megoldása elő menedzsmen szemponú elemzés a ovább LP feladaok megoldása elő a számíás felgyorsíása amás Kola Ma. szemnárum 9..6
Aggregált termeléstervezés
Aggregál ermeléservezés Az aggregál ermeléservezés feladaa az opimális ermékszerkeze valamin a gyáráshoz felhasználhaó erőforrások opimális szinjének meghaározása. Termékek aggregálása. Erőforrások aggregálása.
RészletesebbenA termelési, szolgáltatási igény előrejelzése
A ermelés, szolgálaás gény előrejelzése Termelés- és szolgálaásmenedzsmen r. alló oém egyeem docens Menedzsmen és Vállalagazdaságan Tanszék Termelés- és szolgálaásmenedzsmen Részdős üzle meserszakok r.
Részletesebben6. szemináriumi. Gyakorló feladatok. Tőkekínálat. Tőkekereslet. Várható vs váratlan esemény tőkepiaci hatása. feladatok
6. szemináriumi Gyakorló feladaok. Tőkekínála. Tőkekeresle. Várhaó vs váralan esemény őkepiaci haása. feladaok A feladaok megoldása során ahol lehe, írjon MATLAB scripe!!! Figyelem, a MATLAB a gondolkodás
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:
Részletesebben1. DINAMIKUS OPTIMALIZÁLÁS
Szolnok Tudományos özlemények XV. Szolnok, 2011. Fazekas Tamás 1 A DINAMIUS OPTIMALIZÁLÁS MÓDSZERÉNE ALALMAZÁSA A MAROÖONÓMIAI MODELLEZÉSBEN A anulmányban rövd összefoglaló és áeknés adok arról, hogy a
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 080 ÉETTSÉGI VISGA 009. május. EEKTONIKAI AAPISMEETEK EMET SINTŰ ÍÁSBEI ÉETTSÉGI VISGA JAVÍTÁSI-ÉTÉKEÉSI ÚTMTATÓ OKTATÁSI ÉS KTÁIS MINISTÉIM Egyszerű, rövid feladaok
RészletesebbenGYAKORLÓ FELADATOK 5. Beruházások
1. felada Egymás kölcsööse kizáró beruházások közöi válaszás. Ké külöböző ípusú gépe szerezheük be egyazo művele elvégzésére. A ké egymás kölcsööse kizáró projek pézáramlásai ($) a kövekező ábláza muaja:
RészletesebbenBevezetés 2. Az igény összetevői 3. Konstans jellegű igény előrejelzése 5. Lineáris trenddel rendelkező igény előrejelzése 14
Termelésmenedzsmen lőrejelzés módszerek Bevezeés Az gény összeevő 3 Konsans jellegű gény előrejelzése 5 lőrejelzés mozgó álaggal 6 Mozgó álaggal előre jelze gény 6 Gyakorló felada 8 Megoldás 9 lőrejelzés
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM
RészletesebbenSíkalapok vizsgálata - az EC-7 bevezetése
Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉGI VIZSGA 0. okór 5. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMBEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladaok
Részletesebben5. Differenciálegyenlet rendszerek
5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek
RészletesebbenGAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK
BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb
RészletesebbenDinamikus optimalizálás és a Leontief-modell
MÛHELY Közgazdasági Szemle, LVI. évf., 29. január (84 92. o.) DOBOS IMRE Dinamikus opimalizálás és a Leonief-modell A anulmány a variációszámíás gazdasági alkalmazásaiból ismere hárma. Mind három alkalmazás
RészletesebbenInstrumentális változók módszerének alkalmazásai Mikroökonometria, 3. hét Bíró Anikó Kereslet becslése: folytonos választás modell
Insrumenális válozók módszerének alkalmazásai Mikroökonomeria, 3. hé Bíró Anikó Keresle becslése: folyonos válaszás modell Folyonos vs. diszkré válaszás: elérő modellek Felevés: homogén jószág Közelíés:
RészletesebbenOptimumkeresés számítógépen
C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények
RészletesebbenStatisztika gyakorló feladatok
. Konfidencia inervallum beclé Saizika gyakorló feladaok Az egyeemiák alkoholfogyazái zokáainak vizgálaára 995. avazán egy mina alapján kérdıíve felméré végezek. A vizgál egyeemek: SOTE, ELTE Jog, KözGáz.
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó 0 ÉETTSÉGI VIZSG 0. május 3. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSBEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Elekronikai
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 05 ÉETTSÉGI VIZSGA 005. május 0. ELEKTONIKAI ALAPISMEETEK EMELT SZINTŰ ÉETTSÉGI VIZSGA Az írásbeli vizsga időarama: 0 perc JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ OKTATÁSI MINISZTÉIM
Részletesebben2014.11.18. SZABÁLYOZÁSI ESZKÖZÖK: Gazdasági ösztönzők jellemzői. GAZDASÁGI ÖSZTÖNZŐK (economic instruments) típusai. Környezetterhelési díjak
SZABÁLYOZÁSI ESZKÖZÖK: 10. hé: A Pigou-éelen alapuló környezei szabályozás: gazdasági öszönzők alapelvei és ípusai 1.A ulajdonjogok (a szennyezési jogosulság) allokálása 2.Felelősségi szabályok (káréríés)
RészletesebbenÉrzékenységvizsgálat
Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális
Részletesebben1. Előadás: Készletezési modellek, I-II.
. Előadás: Készleezési modellek, I-II. Készleeke rendszerin azér arunk hogy, valamely szükséglee, igény kielégísünk. A szóban forgó anyag, cikk iráni igény, keresle a készle fogyásá idézi elő. Gondoskodnunk
RészletesebbenVolt-e likviditási válság?
KÜLÖNSZÁM 69 VÁRADI KATA 1 Vol-e lkvdás válság? Volalás és lkvdás kapcsolaának vzsgálaa Széleskörűen aláámaszo, emprkus ény, hogy önmagában a nagyobb volalás csökken a pac lkvdásá, vagys válozékonyabb
Részletesebben1. ábra A hagyományos és a JIT-elvű beszállítás összehasonlítása
hagyományos beszállíás JIT-elvû beszállíás az uolsó echnikai mûvele a beszállíás minõségellenõrzés F E L H A S Z N Á L Ó B E S Z Á L L Í T Ó K csomagolás rakározás szállíás árubeérkezés minõségellenõrzés
RészletesebbenHF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és
Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.
Részletesebben1. feladat. 2. feladat
1. felada Írja á az alábbi függvénee úg, hog azoban ne az eredei válozó, hanem az eredei válozó haéonsági egsére juó érée szerepeljen (azaz például az Y hele az szerepeljen, ahol = Y E L. Legen a munaerőállomán
RészletesebbenDualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 5 ÉETTSÉGI VIZSG 06. május 8. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ EMEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladaok Maximális
RészletesebbenStatisztika II. előadás és gyakorlat 1. rész
Saiszika II. Saiszika II. előadás és gyakorla 1. rész T.Nagy Judi Ajánlo irodalom: Ilyésné Molnár Emese Lovasné Avaó Judi: Saiszika II. Feladagyűjemény, Perfek, 2006. Korpás Ailáné (szerk.): Álalános Saiszika
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004ályázai rojek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
RészletesebbenMakroökonómiai modellépítés monetáris politika
Makroökonómiai modellépíés moneáris poliika Szabó-Bakos Eszer 200. ½oszi félév Téelezzük fel, hogy az álalunk vizsgál gazdaságban a reprezenaív fogyaszó hasznossági függvénye az X U = ln C +! v M+ L +
RészletesebbenOKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia Szakmai felelős: Varga Júlia június
OKTATÁSGAZDASÁGTAN Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék az MTA Közgazdaságudományi
RészletesebbenANALÓG ELEKTRONIKA - előadás vázlat -
Analó elekronka - előaás vázla ANAÓG EEKONIKA - előaás vázla - Eyen mennyséek (eyen-áramú körök) vzsálaa áramkör alkaelemek: -akív / passzív fesz/áramo ermelő elemeke szokás akív, öbke passzív elemeknek
RészletesebbenGAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA Készül a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázai projek kereében Taralomfejleszés az ELTE TáTK Közgazdaságudományi Tanszékén, az ELTE Közgazdaságudományi Tanszék, az MTA Közgazdaságudományi
RészletesebbenELVÉTELES KONDENZÁCIÓS ÉS ELLENNYOMÁSÚ GŐZTURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHATÓSÁGI MODELLEZÉSE
EVÉEES KONENZÁCIÓS ÉS EENNYOMÁSÚ GŐZURBINÁS ERŐMŰEGYSÉGEK MEGBÍZHAÓSÁGI MOEEZÉSE r. Fazekas Anrás Isván Magyar Vllamos Művek Zr. / Buapes Buapes Műszak és Gazaságuomány Egyeem Energeka Gépek és Renszerek
RészletesebbenDöntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
RészletesebbenTERMELÉS- ÉS SZOLGÁLTATÁSMENEDZSMENT
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gazdaság- és Társadalomudományi Kar Üzlei Tudományok Inéze Dr. Kolai Tamás TERMELÉS- ÉS SZOLGÁLTATÁSMENEDZSMENT okaási segédanyag Budapes, 06 TARTALOMJEGYZÉK.
RészletesebbenDigitális technika felvételi feladatok szeptember a. Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat! (2p) X. órajel X X X X /LD
Nepun: Digiális echnika felvéeli feladaok 008. szepember 30. D :.a:.b: 3: Σ:. Adja meg annak a 4 bemeneő (ABCD), kimeneő (F) kombinációs hálózanak a Karnaugh áblázaá, amelynek kimenee, ha: - A és B bemenee
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉG VZSG 05. okóber. ELEKTONK LPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Elekronikai alapismereek
RészletesebbenTermelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak
Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok
RészletesebbenTiszta és kevert stratégiák
sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,
RészletesebbenAncon feszítõrúd rendszer
Ancon feszíõrúd rendszer Ancon 500 feszíőrúd rendszer Az összeköő, feszíő rudazaoka egyre gyakrabban használják épíészei, lászó szerkezei elemkén is. Nagy erhelheősége melle az Ancon rendszer eljesíi a
RészletesebbenMISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.
MISKOLCI EGYETEM GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA ELEKTOTECHNIKAI-ELEKTONIKAI TANSZÉK D. KOVÁCS ENŐ ELEKTONIKA II. (MŰVELETI EŐSÍTŐK II. ÉSZ, OPTOELEKTONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVETEEK) Villamosmérnö
RészletesebbenEPS 1,46 XPS 1,46. Ásványgyapot 0,75. Nemes vakolat 0,88. Cementvakolat 0,93. Víz 4,186
Kvona Kovács Tamara Épíészmérnk, Okleveles Léesíménymérnk Dr. Lakaos Ákos* PhD f. docens Tanszékvezeő-helyees, laborvezeő Nemze Kválóság Program - Magyary Zolán poszdokor szndíjas Debrecen Egyeem Műszak
RészletesebbenTERMELÉSMENEDZSMENT TERMELÉSMENEDZSMENT. 1. Előadás. A f é l é v t a r t a l m a. 1. Előrejelzés. 2. Kapacitástervezés. 3. Készletgazdálkodás
TERMELÉSMEEZSMET. Előadás TERMELÉSMEEZSMET. Előrejelzés 2. Kapaciáservezés 3. Készlegazdálkodás 4. Termeléservezés 5. Termelési folyama szabályozása 6. Telephely opimális kialakíása A f é l é v a r a l
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
RészletesebbenElektronika 2. TFBE1302
Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.
RészletesebbenGazdasági matematika II. vizsgadolgozat, megoldással,
Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak
RészletesebbenDemográfia és fiskális fenntarthatóság DSGE-OLG modellkeretben
Demográfia és fiskális fennarhaóság DSGE-OLG modellkereben Baksa Dániel* és Munkácsi Zsuzsa** 2. szepember 24. Absrac A hagyományos dinamikus szochaszikus álalános egyensúlyi DSGE modellkere jellegéb l
RészletesebbenMISKOLCI EGYETEM VILLAMOSMÉRNÖKI INTÉZET ELEKTROTECHNIKAI- ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II/2. (ERŐSÍTŐK) ELŐADÁS JEGYZET 2003.
MSKOL GYTM VLLMOSMÉNÖK NTÉZT LKTOTHNK- LKTONK TNSZÉK D. KOVÁS NŐ LKTONK /. (ŐSÍTŐK) LŐDÁS JGYZT 3. Mskolc gyeem lekroechnka-lekronka Tanszék.6. rősíők z erősíők az erősíő ípsú dszkré félvezeők és negrál
Részletesebben) (11.17) 11.2 Rácsos tartók párhuzamos övekkel
Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek
RészletesebbenNegyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Negyedik gyakorla: Szöveges feladaok, Homogén fokszámú egyenleek Dierenciálegyenleek, Földudomány és Környezean BSc. Szöveges feladaok A zikában el forduló folyamaok nagy része széválaszhaó egyenleekkel
RészletesebbenSPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik.
SPEKTROFOTOMETRI SPEKTROSZKÓPI: omok, molekulák energiaállapoának megválozásakor kibosáo ill. elnyeld sugárzások vizsgálaával foglalkozik. Más szavakkal: anyag és elekromágneses sugárzás kölsönhaása eredményeképp
RészletesebbenElméleti közgazdaságtan I. A korlátozott piacok elmélete (folytatás) Az oligopólista piaci szerkezet formái. Alapfogalmak és Mikroökonómia
Elmélei közgazdaságan I. Alafogalmak és Mikroökonómia A korláozo iacok elmélee (folyaás) Az oligoólisa iaci szerkeze formái Homogén ermék ökélees összejászás Az oligool vállalaok vagy megegyeznek az árban
RészletesebbenDIPLOMADOLGOZAT Varga Zoltán 2012
DIPLOMADOLGOZAT Varga Zolán 2012 Szen Isván Egyeem Gazdaság- és Társadalomudományi Kar Markeing Inéze Keresle-előrejelzés a vállalai logiszikában Belső konzulens neve, beoszása: Dr. Komáromi Nándor, egyeemi
Részletesebben5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek
5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérsékle, hőmérők A hőmérsékle a esek egyik állapohaározója. A hőmérsékle a es olyan sajáossága, ami meghaározza, hogy a es ermikus egyensúlyban van-e más esekkel. Ezen alapszik
RészletesebbenOperációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje
Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.
RészletesebbenFourier-sorok konvergenciájáról
Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees
RészletesebbenDOI 10.14267/phd.2015011 MORVAY ENDRE A MUNKAERŐPIAC SZTOCHASZTIKUS DINAMIKAI VIZSGÁLATA ELMÉLET ÉS GYAKORLAT
MORVAY ENDRE A MUNKAERŐPIAC SZTOCHASZTIKUS DINAMIKAI VIZSGÁLATA ELMÉLET ÉS GYAKORLAT Maemaikai Közgazdaságan és Gazdaságelemzés Tanszék Témavezeő: Móczár József egyeemi anár, az MTA-dokora Morvay Endre
RészletesebbenA Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
RészletesebbenMatematikai modellek megoldása számítógéppel Solver Lingo
Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle
Részletesebbenn -alkatrészfajta r -fő termékcsoportok -az i-edik alkatrészből a j-edik főcsoportba beépülő darabszám
13., ELŐAÁ A maemaikai modell ellegzees máixai, vekoai A leí kölségfüggvények felhasználásával elvégezheő oimálásokhoz szükséges adaoka a kövekező máixokból lehe leszámazani. ovábbá megelölheők az oimalizálandó
RészletesebbenBODE-diagram szerkesztés
BODE-diagram szerkeszés Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmű kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli
RészletesebbenGazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
RészletesebbenFolyamatszemléleti lehetőségek az agro-ökoszisztémák modellezésében
Folyamaszemléle leheőségek az agro-ökoszszémák modellezésében Dokor (D) érekezés ézse Ladány Mára Témavezeő: Dr. Harnos Zsol, MHAS, egyeem anár BCE, Kerészeudomány Kar, Maemaka és Informaka Tanszék Szakma
Részletesebben"#$%& %'($%&$ @ ) & @5-98& @569! @,9 + "() *!$ ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )
?* & @.9?*= @,9 =8 @5-9 "& & @ & @5-98& @569 " " " " " " " " " " " " " " " " " &&"( * + "( *,--.//,--0/,--0//,--1/,--1//,--2/ 3.-.3..42-25.1 0.6-2,2,1511 6-0340. 40,.-3.,2014 6250,,,--2// 4.41. 13..01-010.0,.
RészletesebbenBODE-diagram. A frekvencia-átviteli függvény ábrázolására különféle módszerek terjedtek el:
BODE-diagram Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmő kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli függvénnyel
RészletesebbenAz Országgyűlés Hivatala évi összesített közbeszerzési terve (2. számú módosítással egységes szerkezetben)
Jóváhagyom: Such György főgazgató Az Országgyűlés Hvatala 2018. év összesített közbeszerzés terve (2. számú módosítással egységes szerkezetben) 2018. júlus 10. Sorszám Kbt. szernt A módosítás ndoka I...
RészletesebbenGazdasági növekedés, felzárkózás és költségvetési politika
Közgazdasági Szemle, XLIX. évf., 2002. január (1 23. o.) VALENTINYI ÁKOS Gazdasági növekedés, felzárkózás és kölségveési poliika A anulmány a kölségveési poliikának a növekedésre és a felzárkózásra gyakorol
RészletesebbenElektronika 2. INBK812E (TFBE5302)
Elekronika 2. NBK812E (FBE5302) áplálás Analóg elekronika Az analóg elekronikai alkalmazásoknál a részfeladaok öbbsége öbb alkalmazási erüleen is elıforduló, közös felada. Az ilyen álalános részfeladaok
RészletesebbenModulzáró ellenőrző kérdések és feladatok (3)
Modulzáró ellenőrző kérdések és feladaok (3) 1. Érelmezze az alábbi, fennarási rendszerekkel és sraégiákkal kapcsolaos fogalmaka (1): Üzemvieli folyama. Meghibásodásig örénő üzemeleés. TMK jellegű fennarás.
Részletesebben4. Fejezet BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE Beruházási pénzáramok értékelése Infláció hatása a beruházási projektekre
. Fejeze Pénzáramok (euróban) 0. év. év. év. év. év. év 0 000 9000 900 0 000 000 000 BERUHÁZÁSI PROJEKTEK ÉRTÉKELÉSE... Saikus beruházás gazdaságossági számíások: Neó pénzáramok álaga ARR = Kezdõ pénzáram
RészletesebbenTúlgerjesztés elleni védelmi funkció
Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 06 ÉETTSÉG VZSG 006. május 8. EEKTONK PSMEETEK EMET SZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS MNSZTÉM Tesz jelleű kérdések meoldása Maximális ponszám: 0.)
RészletesebbenREV23.03RF REV-R.03/1
G2265hu REV23.03RF Telepíési és üzembe helyezési leírás A D E B C F CE1G2265hu 21.02.2006 1/8 G / 4.2.4 C Gyári beállíások / 4.2.4 2211Z16 / 4.2.1 C 2211Z16 1. 2. 1. 2. + CLICK C 12 min 2211Z16 PID 12
RészletesebbenPéldák numerikus módszerekre.
Példák num erikus módserekr e. A alaj radioakiviása egy radioakív sennyeés uán. környeevédelem a alaj és a légkör radioakiviásának visgálaa balese, háború, aomkísérleek uóhaásai Környeefiika FONTOS TUDNI:
Részletesebben( r) t. Feladatok 1. Egy betét névleges kamatlába évi 20%, melyhez negyedévenkénti kamatjóváírás tartozik. Mekkora hozamot jelent ez éves szinten?
Feladaok 1. Egy beé névleges kamalába évi 20%, melyhez negyedévenkéni kamajóváírás arozik. Mekkora hozamo jelen ez éves szinen? 21,5% a) A névleges kamalába időarányosan szokák számíani, ehá úgy veszik,
RészletesebbenHíradástechikai jelfeldolgozás
Híradásechka jelfeldolgozás 6. Előadás 05. 05. 07. észsávú és ranszformácós kódolás 05. május 8. Budapes Dr. Gaál József docens BME Hálóza endszerek és SzolgálaásokTanszék gaal@h.bme.hu észsávú kódolás
RészletesebbenOpkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Részletesebben2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0
Húzza alá az Ön képzési kódjá! 2N-4, 2N-4E 2N-00, 2N-0E 2N-AE0, 2N- AG0 Név: Azonosíó: Helyszám: Jelölje meg (aláhúzással) Gyakorlavezeőjé! Bihari Péer Czél Balázs Gróf Gyula Kovács Vikória Könczöl Sándor
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmaó 063 ÉETTSÉGI VIZSG 006. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM
RészletesebbenFenntartható makrogazdaság és államadósság-kezelés
és államadósság-kezelés Balaoni András Tóh G. Csaba (Századvég Gazdaságkuaó Zr.) Budapes, 2011. május Taralom 1. Bevezeés...4 2. A fennarhaó gazdasági növekedés...10 2.1. A neoklasszikus növekedési modell...
RészletesebbenELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az
RészletesebbenLegfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód
Legfonosabb farmakokineikai paraméerek definíciói és számíásuk Paraméer armakokineikai paraméerek Név Számíási mód max maximális plazma koncenráció ideje mér érékek alapján; a max () érékhez arozó érék
RészletesebbenSzempontok a járműkarbantartási rendszerek felülvizsgálatához
A VMMSzK evékenységének bemuaása 2013. február 7. Szemponok a járműkarbanarási rendszerek felülvizsgálaához Malainszky Sándor MÁV Zr. Vasúi Mérnöki és Mérésügyi Szolgálaó Közpon Magyar Államvasuak ZR.
RészletesebbenGingl Zoltán, Szeged, szept. 1
Gngl Zolán, Szeged, 8. 8 szep. 8 szep. z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem mndg arányos apcsola ovábbra s lneárs 8 szep. 3 d di L d I I Feszülség
RészletesebbenEmpirikus nehézségek. Termelési és költségfüggvények - elmélet. Termelési és költségfüggvények elmélet, folyt. Becslés három megközelítés
Panel elemzés alkalmazása termelés függvények becslése Mkroökonometra, 5. hét Bíró Ankó A tananyag a Gazdaság Versenyhvatal Versenykultúra özpontja és a udás-ökonóma Alapítvány támogatásával készült az
RészletesebbenOTDK-dolgozat. Váry Miklós BA
OTDK-dolgoza Váry iklós BA 203 EDOGÉ KORRUPCIÓ EGY EOKLASSZIKUS ODELLBE EDOGEOUS CORRUPTIO I A EOCLASSICAL ODEL Kézira lezárása: 202. április 6. TARTALOJEGYZÉK. BEVEZETÉS... 2. A KORRUPCIÓ BEVEZETÉSE EGY
RészletesebbenA tudás szerepe a gazdasági növekedésben az alapmodellek bemutatása*
A udás szerepe a gazdasági növekedésben az alapmodellek bemuaása* Jankó Balázs, az ECOSTAT közgazdásza E-mail: Balazs.Janko@ecosa.hu A anulmányban azoka a nemzeközi közgazdasági irodalomban fellelheő legfonosabb
RészletesebbenA lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
RészletesebbenNemlineáris, sztochasztikus differenciaegyenletek megoldása Uhlig-algoritmussal
MÛHELY Közgazdasági Szemle, LIII évf, 2006 március (235 252 o) HORVÁTH ÁRON Nemlineáris, szochaszikus differenciaegyenleek megoldása Uhlig-algorimussal A modern közgazdasági elemzések során gyakran alkalmaznak
Részletesebben1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11
ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával
RészletesebbenA lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
RészletesebbenKereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő
É 9-6// A /7 (. 7.) SzMM rendeleel módosío /6 (. 7.) OM rendele Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe örénő felvéel és örlés eljárási rendjéről alapján. Szakképesíés, szakképesíés-elágazás,
RészletesebbenErőmű-beruházások értékelése a liberalizált piacon
AZ ENERGIAGAZDÁLKODÁS ALAPJAI 1.3 2.5 Erőmű-beruházások érékelése a liberalizál piacon Tárgyszavak: erőmű-beruházás; piaci ár; kockáza; üzelőanyagár; belső kama. Az elmúl évek kaliforniai apaszalaai az
RészletesebbenMATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből
Részletesebben