Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6.
|
|
- Etelka Lili Kozma
- 8 évvel ezelőtt
- Látták:
Átírás
1 Algorimuselméle Keresőfák, piros-fekee fák Kaona Gyula Y. Sámíásudományi és Információelmélei Tansék Budapesi Műsaki és Gadaságudományi Egyeem. előadás Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák Tároljuk a U rendee halma elemei, hogy BESZÚR, TÖRÖL, KERES, MIN, (MAX, TÓLIG) haékonyak legyenek. Bináris fa bejárása eljes fa (új def.): a alsó sin is ele van l sinű, eljes fának l csúcsa van. Fa csúcsai elem(), bal(), jobb() eseleg apa() és resfa() + Ha a gyökér, y pedig a -es csúcs, akkor * 5 bal(jobb()) = y, apa(apa(y)) =, elem(bal()) =, resfa() =. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
2 PREORDER, INORDER, POSTORDER pre() in() pos() begin begin begin láoga(); in(bal()); pos(bal()); pre(bal()); láoga(); pos(jobb()); pre(jobb()) in(jobb()) láoga() end end end + * 5 PREORDER: + 5 INORDER: 5 + POSTORDER: 5 + Lépéssám: O(n) Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Bináris keresőfa Definíció (Keresőfa-ulajdonság) Tesőleges csúcsra és a baloldali résfájában levő y csúcsra iga, hogy elem(y) elem(). Hasonlóan, ha egy csúcs a jobb résfájából, akkor elem() elem(). 0 Hái felada: Igaoljuk, hogy egy bináris keresőfa elemei a fa inorder bejárása nemcsökkenő sorrendben láogaja meg. Egy kényelmes megállapodás: a ovábbiakban felessük, hogy nincsenek ismélődő elemek a keresőfában. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
3 Naiv algorimusok KERES(s,S): Össehasonlíjuk s-e S gyökerében árol s elemmel. Ha s = s, akkor megaláluk. Ha s < s, akkor balra megyünk ovább. KERES(, S) Ha s > s, akkor jobbra megyünk. Ugyane a ua járjuk be a KERES(5, S) kapcsán, de a nem aláljuk meg. Lépéssám: O(l), ahol l a fa mélysége MIN: mindig balra lépünk, amíg lehe MAX: mindig jobbra lépünk, amíg lehe Lépéssám: O(l) TÓLIG(a, b, S): KERES(a, S) INORDER a-ól b-ig Lépéssám: O(l + k), ahol k a a és b köö levő elemek sáma Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás 5 / Naiv BESZÚR BESZÚR(s, S): KERES(s, S)-sel megkeressük, hova kerülne, és új levele adunk hoá, pl. BESZÚR(, S): Lépéssám: O(l) Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
4 Naiv TÖRÖL TÖRÖL(s, S): Ha s levél, akkor riviális, pl. TÖRÖL(, S): TÖRÖL(s, S): Ha s-nek egy fia van, akkor: s fiú(s), pl. TÖRÖL(, S): Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Naiv TÖRÖL Vagy pl. TÖRÖL(, S ): 0 0 TÖRÖL(s, S): Ha s-nek ké fia van, akkor vissaveejük a előő esere. s helyére együk y := MAX(bal(s))- és öröljük y-. Pl. TÖRÖL(, S ): 0 0 Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
5 Naiv TÖRÖL Állíás y := MAX(bal(s)) csúcsnak nem lehe ké fia. Bionyíás. Ha lenne ké fia, akkor lenne egy y jobb fia is. De ekkor y > y. Lépéssám: O(l) Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Faépíés naiv besúrásokkal Ha pl. a,,..., n soroaból épíünk fá így, akkor e kapjuk: A épíés kölsége: (n ) = O(n ) Téel n Ha egy vélelen soroaból épíünk fá naiv besúrásokkal, akkor a épíés kölsége álagosan O(n log n). A kapo fa mélysége álagosan O(log n). Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás 0 /
6 Java animáció: Bejárások, bináris keresőfa Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Piros-fekee fák Olyan bináris keresőfa, melynek mélysége nem lehe nagy. BESZÚR, TÖRÖL, KERES, MIN, (MAX, TÓLIG) haékonyak. Definíció A piros-fekee fa egy bináris keresőfa, melyre eljesülnek a kövekeők: Minden nem levél csúcsnak fia van. Elemeke belső csúcsokban árolunk. Teljesül a keresőfa ulajdonság. A fa minden csúcsa piros vagy fekee. 5 A gyökér fekee. A levelek fekeék. Minden piros csúcs mindké gyereke fekee. Minden v csúcsra iga, hogy a össes v-ből levélbe veeő úon ugyanannyi fekee csúcs van. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
7 Példa 5 5 Megj.: A sokásos bináris fá kiegésíjük üres levelekkel. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Piros-fekee fák Jelölések F v : v gyökerű résfa m(v): v magassága, a leghossabb v-ből levélbe veeő ú éleinek sáma fm(v): v fekee-magassága, a v-ből levélbe veeő össes úon a fekee csúcsok sáma, v- nem sámolva. (E minden úon egyforma a. ulajdonság mia.) Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
8 Tulajdonságok Állíás Egy piros-fekee fa minden v csúcsára eljesül m(v) fm(v) m(v). Bionyíás. A leghossab levélbe veeő úon a fekeék sáma nem lehe öbb a élek sámánál fm(v) m(v).. pon mia a leghossabb úon a ponoknak legalább a fele fekee m(v) fm(v). Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás 5 / Tulajdonságok Állíás F v belső csúcsainak sáma b v fm(v). Bionyíás. Indukcióval m(v)-re: m(v) = 0 fm(v) = 0, b v 0 Ha m(v) > 0, akkor legyen, y a ké fia. m() < m(v) és m(y) < m(v) fm(v) fm() fm(v) és fm(v) fm(y) fm(v) b v = b + b y + b v ( fm() )+( fm(y) )+ ( fm(v) )+ = fm(v). Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
9 Tulajdonságok Állíás Ha egy piros-fekee fában n eleme árolunk, akkor a fa magassága log(n + ). Bionyíás. Ha r a gyökér b r = n. n = b r fm(r) log(n + ) fm(r) m(r) Téel KERES, MAX, MIN lépéssáma piros-fekee fában O(log n). Bionyíás. Álalában minden keresőfában a lépéssám a fa magasságával arányos O(l) = O(log n). Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / BESZÚR lépéssáma Ha a keresőfáknál hasnálaos besúrás hasnálnánk, akkor megsérülhene a piros-fekee ulajdonság. Forgaás y s y s F y F F s F F y F s Megj.: E a művele megarja a keresőfa ulajdonságo. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
10 BESZÚR Súrjuk be a új eleme a keresőfáknál megismer módon. Új belső csúcs kelekeik (gyerekei csak üres fekee levelek): Ha a gyökér, akkor legyen fekee Ha nem gyökér, akkor legyen a apja, legyen piros. () Ha fekee fekee-magasságok sehol nem válonak () Ha piros nem eljesül a piros-fekee ulajdonság ovábbi lépések kellenek. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / BESZÚR () Mivel piros, nem gyökér legyen apja (fekee), esvére y. (.) Ha y piros ásíneük - pirosra y y Evvel a problémá ké sinel feljebb oluk, o folyajuk a fa rendbeéelé. Kivéve, ha a gyökér marad fekee fm() eggyel nagyobb les. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás 0 /
11 BESZÚR (.) Ha y fekee: (..) Ha és nem aonos oldali gyerek forgaunk körül. y y Evvel a kövekeő esere veeük a problémá. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / BESZÚR (.) Ha y fekee: (..) Ha és aonos oldali gyerek forgaunk körül, majd ásíneünk. y y y Evvel a gyökér fekee-magassága nem váloik, és eljesül a piros-fekee ulajdonság. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
12 BESZÚR Téel A BESZÚR során (a) a lépéssám O(log n), (b) legfeljebb forgaás örénik. Bionyíás. (a) y piros eseben a (.) ponban sinel feljebb kerül a baj sinenkén konsans lépés O(log n). (b) Forgaás csak a (.) eseben örénik, de ekkor nincs felgyűrűés, rögön kijavíjuk a fá. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / TÖRÖL Hasonló módserek, de bonyolulabb. Téel A TÖRÖL során (a) a lépéssám O(log n), (b) legfeljebb forgaás örénik. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
13 Példa BESZÚRásokra Súrjuk be egy üres fába sorban a,,,,, elemeke. (..) forgaás (..) ásín. (.) ásín. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás 5 / Példa BESZÚRásokra Súrjuk be egy üres fába sorban a,,,,, elemeke. (..) forgaás (..) forgaás (..) ásín. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
14 Példa BESZÚRásokra Súrjuk be egy üres fába sorban a,,,,, elemeke. (.) ásín. Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás / Java animáció: Piros-fekee fa Kaona Gyula Y. (BME SZIT) Algorimuselméle. előadás /
Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.
Algorimuselméle Keresőfák, piros-fekee fák Kaona Gula Y. Sámíásudománi és Információelmélei Tansék Budapesi Műsaki és Gadaságudománi Egeem. előadás Kaona Gula Y. (BME SZIT) Algorimuselméle. előadás / Keresőfák
RészletesebbenA számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány
RészletesebbenAlgoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.
Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás
RészletesebbenAdatszerkezetek 7a. Dr. IványiPéter
Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 07
Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet
Részletesebben7 7, ,22 13,22 13, ,28
Általános keresőfák 7 7,13 13 13 7 20 7 20,22 13,22 13,22 7 20 25 7 20 25,28 Általános keresőfa Az általános keresőfa olyan absztrakt adatszerkezet, amely fa és minden cellájában nem csak egy (adat), hanem
RészletesebbenPélda 30 14, 22 55,
Piros-Fekete fák 0 Példa 14, 22 55, 77 0 14 55 22 77 Piros-Fekete fák A piros-fekete fa olyan bináris keresőfa, amelynek minden pontja egy extra bit információt tartalmaz, ez a pont színe, amelynek értékei:
RészletesebbenElemi adatszerkezetek
2017/12/16 17:22 1/18 Elemi adatszerkezetek < Programozás Elemi adatszerkezetek Szerző: Sallai András Copyright Sallai András, 2011, 2014 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu
Részletesebben10. előadás Speciális többágú fák
10. előadás Adatszerkezetek és algoritmusok előadás 2018. április 17., és Debreceni Egyetem Informatikai Kar 10.1 A többágú fák kezelésére nincsenek általános elvek, implementációjuk elsősorban alkalmazásfüggő.
RészletesebbenB-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.
B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés
RészletesebbenHierarchikus adatszerkezetek
5. előadás Hierarchikus adatszerkezetek A hierarchikus adatszerkezet olyan < A, R > rendezett pár, amelynél van egy kitüntetett r A gyökérelem úgy, hogy: 1. r nem lehet végpont, azaz a A esetén R(a,r)
RészletesebbenFák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa
Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok
RészletesebbenSzámláló rendezés. Példa
Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a
RészletesebbenFa (Tree): csomópontok (nodes) halmaza, amelyeket élek (edges) kötnek össze, és teljesülnek az alábbi feltételek:
Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás Piros-fekete fa B-fa 2 Fa
RészletesebbenKupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenAlgoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
RészletesebbenAdatszerkezetek és algoritmusok
2010. január 8. Bevezet El z órák anyagainak áttekintése Ismétlés Adatszerkezetek osztályozása Sor, Verem, Lengyelforma Statikus, tömbös reprezentáció Dinamikus, láncolt reprezentáció Láncolt lista Lassú
RészletesebbenRendezettminta-fa [2] [2]
Rendezettminta-fa Minden p ponthoz tároljuk a p gyökerű fa belső pontjainak számát (méretét) Adott elem rangja: az elem sorszáma (sorrendben hányadik az adatszekezetben) Adott rangú elem keresése - T[r]
RészletesebbenBináris keresőfa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor
Bináris keresőfa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Bináris keresőfa Rekurzív
RészletesebbenAlgoritmuselmélet 2. előadás
Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés
Részletesebbenfile:///d:/okt/ad/jegyzet/ad1/b+fa.html
1 / 5 2016. 11. 30. 12:58 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes
Részletesebben17. A 2-3 fák és B-fák. 2-3 fák
17. A 2-3 fák és B-fák 2-3 fák Fontos jelentősége, hogy belőlük fejlődtek ki a B-fák. Def.: Minden belső csúcsnak 2 vagy 3 gyermeke van. A levelek egy szinten helyezkednek el. Az adatrekordok/kulcsok csak
RészletesebbenKeresőfák és nevezetes algoritmusaikat szemléltető program
EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Algoritmusok és Alkalmazásaik Tanszék Keresőfák és nevezetes algoritmusaikat szemléltető program Témavezető: Veszprémi Anna Mestertanár Szerző: Ujj László
Részletesebben1. ábra. Egy rekurzív preorder bejárás. Egy másik rekurzív preorder bejárás
Preorder ejárás Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra.
RészletesebbenKupac adatszerkezet. 1. ábra.
Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
RészletesebbenTartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1
Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek
RészletesebbenAlgoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó
RészletesebbenAlgoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.
Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás
RészletesebbenGyakorló feladatok ZH-ra
Algoritmuselmélet Schlotter Ildi 2011. április 6. ildi@cs.bme.hu Gyakorló feladatok ZH-ra Nagyságrendek 1. Egy algoritmusról tudjuk, hogy a lépésszáma O(n 2 ). Lehetséges-e, hogy (a) minden páros n-re
Részletesebben10. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28.
10. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 28. 2-3 fák Hatékony keresőfa-konstrukció. Ez is fa, de a binárisnál annyival bonyolultabb hogy egy nem-levél csúcsnak 2 vagy 3 fia
RészletesebbenA MAXIMUM-KUPACOL eljárás helyreállítja az A[i] elemre a kupactulajdonságot. Az elemet süllyeszti cserékkel mindaddig, amíg a tulajdonság sérül.
Kiválasztás kupaccal A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.
Részletesebben- Levelek: operandusok - Csomópontok: operátorok. Fenti kifejezés: (x+ (y 10)) * (6 / z) Bináris Keresőfa (BST) Példa bináris keresőfára.
Fák Fa definíciója Fa(Tree): csomópontok(nodes) halmaza, amelyeket élek(edges) kötnek össze, és teljesülnek az alábbi feltételek: - létezik egy kitűntetett csomópont: a gyökér (root) - a gyökértől különböző
Részletesebbenfile:///d:/apa/okt/ad/jegyzet/ad1/b+fa.html
1 / 6 2018.01.20. 23:23 B+ fák CSci 340: Database & Web systems Home Syllabus Readings Assignments Tests Links Computer Science Hendrix College Az alábbiakban Dr. Carl Burch B+-trees című Internetes tananyagának
Részletesebben7. BINÁRIS FÁK 7.1. A bináris fa absztrakt adattípus 7.2. A bináris fa absztrakt adatszerkezet
7. BINÁRIS FÁK Az előző fejezetekben már találkoztunk bináris fákkal. Ezt a központi fontosságú adatszerkezetet most vezetjük be a saját helyén és az általános fák szerepét szűkítve, csak a bináris fát
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
RészletesebbenAdatszerkezet - műveletek
Adatszerkezet - műveletek adatszerkezet létrehozása adat felvétele adat keresése adat módosítása adat törlése elemszám visszaadása minden adat törlése (üresít) adatszerkezet felszámolása (megszüntet) +
Részletesebben16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:
6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú
RészletesebbenBuborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:
Buborékrendezés: For ciklussal: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábr.: ha p egy mutató típusú változó akkor p^ az általa mutatott adatelem, p^.adat;p^.mut. A semmibe mutató ponter a NIL.Szabad
RészletesebbenHierarchikus adatszerkezetek
Hierarchikus adatszerkezetek A szekveniális adatszerkezetek általánosítása. Minden adatelemnek pontosan 1 megelőzője van, de akárhány rákövetkezője lehet, kivéve egy speciális elemet. Fa (tree) Hierarchikus
RészletesebbenAdatszerkezetek I. 8. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 8. előadás (Horváth Gyula anyagai felhasználásával) Kereső- és rendezőfák Közös tulajdonságok: A gyökérelem (vagy kulcsértéke) nagyobb vagy egyenlő minden tőle balra levő elemnél. A
RészletesebbenA programozás alapjai előadás. [<struktúra változó azonosítók>] ; Dinamikus adatszerkezetek:
A programozás alapjai 1 Dinamikus adatszerkezetek:. előadás Híradástechnikai Tanszék Dinamikus adatszerkezetek: Adott építőelemekből, adott szabályok szerint felépített, de nem rögzített méretű adatszerkezetek.
Részletesebbenü Ö ü í ü ü ü ü í Ö ö ü ú ü ü ö ü ü ű ö í í ö í űá ú ü ö ö ö í ü ü ü ü ü ű ö í í ö í ű ú ü ü í ü ü ű ö í í ö í űá ú ü íí ü Á í í í Á ű ú í ö ö í ü ö ö ö í ö í ú ö ü ü ű ö ö í ű ö í ű ü ű ö í ű ö í ö í
Részletesebbenó ű ó ü ó ó ü ó ü Í Ö Ő ű Á ó Á Á Á ó ü ó Ö Ö ÚÁ Ö Ó Ó Ó ó Á Ö Ö Á Ó Á Á ó Á Ö Ú Á Ú Ö Ö Á Ö ú Ú Ö ü ú ú ó ü ú ű ó ú ü ú ó ó ü ó ú ü ú Ű ó ü ó ú ó ű ó ú ú ú ó ó ú ú ü ó ü ó ú ó ó ü Ö ó ó ű ó ú ü Ö ű ó
RészletesebbenÉ ű Ö ű ű Ö ű ű ű É ű ű ű ű ű ű ű ű ű É ű ű ű ű ű ű Ó ű ű É ű ű ű ű ű Ö ű ű ű Ó ű Á Á ű ű ű Á Ü Ű ű ű ű Ő Á Á Á ű Á Á É É Á Á Á ű ű ű Á É Á Á ű Á ű Á Á ű ű ű ű ű ű ű ű ű ű ű ű Á Á É ű Á ű É ű Ü ű É É É
RészletesebbenÓ ő Ó ő ú ő ö ü Ó ő ö ő ü ő ö ő ü ö ö ő ö ü ú ö ő ü ú É ő ő ő ö ő ü ö Ó ő Á ő Á ú ü ő ú ú Ó ő Ó ő Á ő ő ő Ó ő Á ő ö ő ü ö ő ő ő ú ő Á ő ő ő Á ő ö ö ő ü ü ö ö ü ő É ő ő Á ő Á Ö ü ú ö Á ü ö ö ő ö ö ú ö ő
RészletesebbenKörkörös listák. fej. utolsó. utolsó. fej
Körkörös listák fej utolsó fej utolsó Példa. Kiszámolós játék. Körben áll n gyermek. k-asával kiszámoljuk őket. Minden k-adik kilép a körből. Az nyer, aki utolsónak marad. #include using namespace
RészletesebbenEgyesíthető prioritási sor
Egyesíthető prioritási sor Értékhalmaz: EPriSor = S E, E-n értelmezett a lineáris rendezési reláció. Műveletek: S,S 1,S 2 : EPriSor, x : E {Igaz} Letesit(S, ) {S = /0} {S = S} Megszuntet(S) {} {S = S}
RészletesebbenGyakori elemhalmazok kinyerése
Gyakori elemhalmazok kinyerése Balambér Dávid Budapesti M szaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudomány szakirány 2011 március 11. Balambér Dávid (BME) Gyakori
RészletesebbenUgrólisták. RSL Insert Example. insert(22) with 3 flips. Runtime?
Ugrólisták Ugrólisták Ugrólisták Ugrólisták RSL Insert Example insert(22) with 3 flips 13 8 29 20 10 23 19 11 2 13 22 8 29 20 10 23 19 11 2 Runtime? Ugrólisták Empirical analysis http://www.inf.u-szeged.hu/~tnemeth/alga2/eloadasok/skiplists.pdf
Részletesebben6. előadás. Kiegyensúlyozottság, AVL-fa, piros-fekete fa. Adatszerkezetek és algoritmusok előadás március 6.
6. előadás, AVL-fa, piros-fekete fa Adatszerkezetek és algoritmusok előadás 2018. március 6.,, és Debreceni Egyetem Informatikai Kar 6.1 Általános tudnivalók Ajánlott irodalom: Thomas H. Cormen, Charles
RészletesebbenRendezések. Összehasonlító rendezések
Rendezések Összehasonlító rendezések Remdezés - Alapfeladat: Egy A nevű N elemű sorozat elemeinek nagyság szerinti sorrendbe rendezése - Feltételezzük: o A sorozat elemei olyanok, amelyekre a >, relációk
Részletesebben... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)
6. Fabejáró algoritmusok Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben pontosan egyszer végrehajtja az M műveletet a fa pontjaiban
RészletesebbenInformációs Technológia
Információs Technológia Rekurzió, Fa adatszerkezet Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. november 18. Rekurzió Rekurzió
RészletesebbenAlgoritmuselmélet zárthelyi (BSc képzés) április 24.
Algoritmuselmélet zárthelyi (BSc képzés) 009. április.. Tekintsük az f (n) = 009 n! és f (n) = 00 (n )! függvényeket. Igaz-e, hogy a) f = O(f ) b) f = O(f ) c) f = Ω(f ) d) f = Ω(f )?. Dijkstra-algoritmussal
RészletesebbenAlgoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.
Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai
RészletesebbenAdatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)
Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris
RészletesebbenFájlszervezés. Adatbázisok tervezése, megvalósítása és menedzselése
Fájlszervezés Adatbázisok tervezése, megvalósítása és menedzselése Célok: gyors lekérdezés, gyors adatmódosítás, minél kisebb tárolási terület. Kezdetek Nincs általánosan legjobb optimalizáció. Az egyik
RészletesebbenAlgoritmizálás. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar
Algoritmizálás Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 7. Gráfalgoritmusok II. 7.1. Feladat: Útcaseprő A város utcáinak takarítását úgy szervezték
RészletesebbenGráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:
Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)
RészletesebbenTakács Lajos ( ) és Prékopa András ( ) emlékére.
Haladvány Kiadvány 17-06-15 Mely merev kör½u gráfok és hogyan használhaók valószín½uségi becslésekhez? Hujer Mihály hujer.misigmail.com Ajánlás. Takács Lajos (1924 2015) és Prékopa András (1929 2016) emlékére.
RészletesebbenAbsztrakt adatstruktúrák A bináris fák
ciós lámpa a legnagyobb élettartamú és a legjobb hatásfokú fényforrásnak tekinthető, nyugodtan mondhatjuk, hogy a jövő fényforrása. Ezt bizonyítja az a tény, hogy ezen a területen a kutatások és a bejelentett
RészletesebbenTérinformatikai adatszerkezetek
Térinformatikai adatszerkezetek 1. Pont Egy többdimenziós pont reprezentálható sokféle módon. A választott reprezentáció függ attól, hogy milyen alkalmazás során akarjuk használni, és milyen típusú műveleteket
RészletesebbenAlgoritmusok és adatszerkezetek II.
Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék - Németh Tamás Algoritmusok és adatszerkezetek
RészletesebbenAlgoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 5. Vágható-egyesíthető Halmaz adattípus megvalósítása önszervező
RészletesebbenÓ ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü
ú ú ú ú Ö ú ű ú Á ú ú ű ű ú ű ú ú Ó ű ű Á ú ű ű ú ú ú ű ű É ú É Á Á ú ű Ü Á Ü Á ű Ö Ú É Ó É Á Á Á Ű Á úá Á Ö É Ö É Ü Ó Á Á Á ú ú Ő Ö Ü ú Ü Á ú ú Á Ú ú ú ú É ú Ó Ö É Á ű ú É Ó ű ú ú ű ű ú ű ú ű ű ú ű ű
RészletesebbenMódosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12
Módosítható Prioritási sor Binomiális kupaccal modosit(x,k) {! if (k>x.kulcs) {!! x.kulcs=k ;!! y=x!! z=x.apa ;!! while(z!=nil and y.kulcs
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 09 Rendezések
Algortmusok és adatszerkezetek gyakorlat 09 Rendezések Néhány órával ezelőtt megsmerkedtünk már a Merge Sort rendező algortmussal. A Merge Sort-ról tuduk, hogy a legrosszabb eset dőgénye O(n log n). Tetszőleges
RészletesebbenAlgoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek
Algoritmusok és adatszerkezetek gyakorlat 06 Adatszerkezetek Tömb Ugyanolyan típusú elemeket tárol A mérete előre definiált kell legyen és nem lehet megváltoztatni futás során Legyen n a tömb mérete. Ekkor:
RészletesebbenBináris keresőfák. Adat : M Elemtip és Elemtip-on értelmezett egy lineáris rendezési reláció,
Bináris keresőfák Az F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha F bináris fa, R = {bal, jobb, apa}, bal, jobb, apa : M M, Adat : M Elemtip és Elemtip-on értelmezett egy lineáris
Részletesebbenö ő í ő ü ö ö í ö ö ö ű ő ö í ü í ö ű í ő ö ö ú ö í ö ö í ö ú ö ő í ö ő Á ű ö
ö ő ü Ö ő ő ő ö í ö Ö ő ü ö ö í ű ö ő ö ö í ö ö ö ő ö ö ő ö ö Ó ö ő ő í ő í ő ő ö ő í ő ü ö ö í ö ö ö ű ő ö í ü í ö ű í ő ö ö ú ö í ö ö í ö ú ö ő í ö ő Á ű ö ö í ő Í í ő ő í í í ö ö ö ú ö í Á í í í í í
RészletesebbenMelykeres(G) for(u in V) {szin(u):=feher Apa(u):=0} for(u in V) {if szin(u)=feher then MBejar(u)}
Mélységi keresés Ez az algoritmus a gráf pontjait járja be, eredményképpen egy mélységi feszítőerdőt ad vissza az Apa függvény által. A pontok bejártságát színekkel kezeljük, fehér= érintetlen, szürke=meg-
RészletesebbenEllenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
RészletesebbenPROJEKTÉRTÉKELÉSI ALAPOK
Eegeikai gazdasága MKEE. gyakola PROJEKTÉRTÉKELÉSI ALAPOK A gyakola célja, hogy a hallgaók A. megismejék az alapveő közgazdaságai muaóka; B. egyszeű pojekéékelési számíásoka udjaak elvégezi. A. KÖZGAZDASÁGTANI
RészletesebbenR ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský
R ++ -tree: an efficient spatial access method for highly redundant point data - Martin Šumák, Peter Gurský Recenzió: Németh Boldizsár Térbeli indexelés Az adatszerkezetek alapvetően fontos feladata, hogy
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda
RészletesebbenÖnszervező bináris keresőfák
Önszervező bináris keresőfák Vágható-egyesíthető halmaz adattípus H={2,5,7,11,23,45,75} Vag(H,23) Egyesit(H1,H2) H1= {2,5,7,11} H2= {23,45,75} Vágás A keresési útvonal mentén feldaraboljuk a fát, majd
RészletesebbenAlgoritmusok és adatszerkezetek II.
Algoritmusok és adatszerkezetek II. előadás I404e-1 H[10-11:30] BE-002-3 minden héten Szegedi Tudományegyetem - Természettudományi és Informatikai Kar - Informatikai Tanszékcsoport - Számítógépes Algoritmusok
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:
RészletesebbenAlgoritmusok és Adatszerkezetek II. előadás
Algoritmusok és Adatszerkezetek II. előadás Felelős tanszék: Számítógépes algoritmusok és mesterséges intelligencia tanszék Nappali tagozaton: Előadás: heti 2 óra / 3 kredit. Teljesítés módja: Kollokvium.
RészletesebbenMesterséges Intelligencia 1
Mesterséges Intelligencia Egy ember kecskét, farkast és kápostát seretne átvinni egy folyón, de csak egy kis csónakot talál, amelybe rajta kívül csak egy tárgy fér. Hogyan tud a folyón úgy átkelni, hogy.
RészletesebbenFeladat. Ternáris fa. Típusspecikáció. Reprezentáció. Absztrakt implementáció. Érdi Gerg EAF II. 4/3.
Feladat djuk meg, hogy egy ternáris fa INORDER bejárás szerint sorozatba f zött értékei között mekkora a leghosszabb csupa pozitív számot tartalmazó részsorozat. Ternáris fa Típusspecikáció z alaphalmaz
Részletesebben2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 8. Előadás Bevezetés Egy olyan LP-t, amelyben mindegyik változó egészértékű, tiszta egészértékű
RészletesebbenAz első kiegyensúlyozott fa algoritmus. Kitalálói: Adelson-Velskii és Landis (1962)
6. előadás AVL fák Az első kiegensúlozott fa algoritmus Kitalálói: Adelson-Velskii és Landis (196) Tulajdonságok Bináris rendezőfa A bal és jobb részfák magassága legfeljebb 1-gel különbözik A részfák
RészletesebbenA számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
RészletesebbenÁtlag napi elérés a 15 évesek és idősebbek körében országos
1 fő Átlag napi elérés a 15 évesek és idősebbek körében országos 1 6 1 4 1 438 1 449 1 47 1 2 1 8 6 499 4 371 289 2 89 Class FM Neo FM Music FM 1 Forrás: Ipsos-GfK s Közönségmérés, 212.június, ReachN Mintaelemszám:
RészletesebbenAlgoritmuselmélet 11. előadás
Algoritmuselmélet 11. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 26. ALGORITMUSELMÉLET 11. ELŐADÁS 1 Kruskal
RészletesebbenΣ imsc
Elekronika.. vizsga 7........ Σ imsc Név: Nepun:. Felada ajzoljon le egy egyszerű, de működőképes differenciál erősíő, mely véges β paraméerű, npn ranziszorpár aralmaz, munkapon állíásra ideális áram-
RészletesebbenFIZIKA KÖZÉPSZINT. Első rész. Minden feladat helyes megoldásáért 2 pont adható.
FIZIKA KÖZÉPSZINT Első rész Minden felada helyes megoldásáér 2 pon adhaó. 1. Egy rakor először lassan, majd nagyobb sebességgel halad ovább egyenleesen. Melyik grafikon muaja helyesen a mozgás? v v s s
RészletesebbenHaladó rendezések. PPT 2007/2008 tavasz.
Haladó rendezések szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Témakörök Alapvető összehasonlító rendezések Shell rendezés Kupacrendezés Leszámláló rendezés Radix rendezés Edényrendezés
RészletesebbenProgramozás I. C nyelv
Programozás I. C nyelv 12. előadás Bináris fa, bináris kereső fa, kupac, időkezelő függvények Veszprémi Egyetem Heckl István, heckl@dcs.vein.hu 1 Fogalmak Fa: összefüggő, körmentes gráf, azaz bármely két
RészletesebbenÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA
ÖNSZERVEZŐ BINÁRIS KERESŐFÁK HATÉKONYSÁGA Tétel: Ha a halmazok ábrázolására önszervező bináris keresőfát használunk, akkor minden α 1,...,α m műveletsor, ahol i {1..m}: α i {keres;bovit;torol;vag;egyesit}
RészletesebbenELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM
RészletesebbenAdaptív dinamikus szegmentálás idősorok indexeléséhez
Adaptív dinamikus szegmentálás idősorok indexeléséhez IPM-08irAREAE kurzus cikkfeldolgozás Balassi Márton 1 Englert Péter 1 Tömösy Péter 1 1 Eötvös Loránd Tudományegyetem Informatikai Kar 2013. november
RészletesebbenA programozás alapjai 1 Rekurzió
A programozás alapjai Rekurzió. előadás Híradástechnikai Tanszék - preorder (gyökér bal gyerek jobb gyerek) mentés - visszaállítás - inorder (bal gyerek gyökér jobb gyerek) rendezés 4 5 6 4 6 7 5 7 - posztorder
RészletesebbenA lecke célja: A tananyag felhasználója megismerje az anyagi pont mozgásának jellemzőit.
1 modul: Kinemaika Kineika 11 lecke: Anagi pon mogása A lecke célja: A ananag felhasnálója megismerje a anagi pon mogásának jellemői Köveelmének: Ön akkor sajáíoa el megfelelően a ananago ha: meg udja
RészletesebbenNagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.
Nagyságrendek Kiegészítő anyag az Algoritmuselmélet tárgyhoz (a Rónyai Ivanyos Szabó: Algoritmusok könyv mellé) Friedl Katalin BME SZIT friedl@cs.bme.hu 018. február 1. Az O, Ω, Θ jelölések Az algoritmusok
Részletesebbení ű í Ü ő ö ö Á Á Á
ő ő í ö ú í ű ő Í ő ö í ű í Ü ő ö ö Á Á Á ö Ö Á Á Á ű í ö ö í ő ő ő ő í ö Ö Á Ö Ö Ü ö Ö Ö ö Ö Ő Á Á ö ö Áö ö Ö Á Á Á ű í í ő ő ő ő í Ó Ó Ö Ö ö Á Ö Ú Á Ú Ö ö Á Ú ö Á Á Á Á ö ö Á Á Á í Á ö ö Á ő ő Á Á í
Részletesebben1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
Részletesebben